1
|
Nayak A, Streiff H, Gonzalez I, Adekoya OO, Silva I, Shenoy AK. Wnt Pathway-Targeted Therapy in Gastrointestinal Cancers: Integrating Benchside Insights with Bedside Applications. Cells 2025; 14:178. [PMID: 39936971 PMCID: PMC11816596 DOI: 10.3390/cells14030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
The Wnt signaling pathway is critical in the onset and progression of gastrointestinal (GI) cancers. Anomalies in this pathway, often stemming from mutations in critical components such as adenomatous polyposis coli (APC) or β-catenin, lead to uncontrolled cell proliferation and survival. In the case of colorectal cancer, dysregulation of the Wnt pathway drives tumor initiation and growth. Similarly, aberrant Wnt signaling contributes to tumor development, metastasis, and resistance to therapy in other GI cancers, such as gastric, pancreatic, and hepatocellular carcinomas. Targeting the Wnt pathway or its downstream effectors has emerged as a promising therapeutic strategy for combating these highly aggressive GI malignancies. Here, we review the dysregulation of the Wnt signaling pathway in the pathogenesis of GI cancers and further explore the therapeutic potential of targeting the various components of the Wnt pathway. Furthermore, we summarize and integrate the preclinical evidence supporting the therapeutic efficacy of potent Wnt pathway inhibitors with completed and ongoing clinical trials in GI cancers. Additionally, we discuss the challenges of Wnt pathway-targeted therapies in GI cancers to overcome these concerns for effective clinical translation.
Collapse
|
2
|
Xu J, Sadiq U, Zhao W, Xia H, Liu Y, Zhang R, Xu A. Integrated single-cell RNA sequencing reveals the tumor heterogeneity and microenvironment landscape during liver metastasis in adenocarcinoma of esophagogastric junction. Front Immunol 2025; 15:1484234. [PMID: 39850884 PMCID: PMC11754270 DOI: 10.3389/fimmu.2024.1484234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Background Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies. Methods We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases. This approach enabled us to characterize the diverse cell populations involved in the liver metastatic process. Results Our analysis revealed a significant involvement of fibroblasts and mural cells in AEGJ liver metastasis. We identified a specific fibroblast type in AEGJ liver metastasis and observed distinct gene expression patterns between adenocarcinoma of the esophagogastric junction and other stomach adenocarcinomas. Our study demonstrated high expression of the SFRP2 gene in pericyte cells during the liver metastasis of AEGJ. The incorporation of GEO, TCGA, and immunofluorescence staining of SFRP2 expression enhanced our study. High expression of SFRP2 in pericytes may influence vascular stability and angiogenesis through the Wnt pathway. Conclusion Our study provides novel insights into the cellular interactions and molecular mechanisms that underlie AEGJ liver metastasis. Targeting the identified subtype of fibroblasts or influencing SFRP2 gene expression in pericytes may offer new therapeutic strategies for combating this aggressive tumor.
Collapse
Affiliation(s)
- Junrui Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ussama Sadiq
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wangruizhi Zhao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengbo Xia
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiwei Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aman Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Dai Z, Jiang J, Chen Q, Bai M, Sun Q, Feng Y, Liu D, Wang D, Zhang T, Han L, Ng L, Zheng J, Zou H, Mao W, Zhu J. Combining methylated RNF180 and SFRP2 plasma biomarkers for noninvasive diagnosis of gastric cancer. Transl Oncol 2025; 51:102190. [PMID: 39541711 PMCID: PMC11600768 DOI: 10.1016/j.tranon.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Gastric cancer (GC) is a common malignant tumor, and early diagnosis significantly improves patient survival rates. This study aimed to investigate the diagnostic value of ring finger protein 180 (RNF180) and secreted frizzled protein 2 (SFRP2) in GC. MATERIALS & METHODS A total of 165 healthy individuals, 34 patients with precancerous gastric lesions, and 104 patients with confirmed GC were divided into training and validation sets; methylated RNF180 and SFRP2 were detected in circulating DNA from blood samples. Six models, including those based on logistic regression, Naive Bayes, K-nearest neighbor algorithm, glmnet, neural network, and random forest (RF) were built and validated. Area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value were determined. RESULTS In the training set, the RF model with RNF180 and SFRP2 (R + S) had an AUC of 0.839 (95 % CI: 0.727-0.951), sensitivity of 60.3 %, and specificity of 85.5 % for diagnosing GC. The RF model with R + S+ Tumor markers had an AUC of 0.849 (95 % CI: 0.717-0.981), sensitivity of 62.8 %, and specificity of 87.1 %. In the validation set, the RF model with R + S had an AUC of 0.844 (95 % CI: 0.774-0.923), sensitivity of 87.8 %, and specificity of 69.2 %. The RF model with R + S + Tumor markers had an AUC of 0.858 (95 % CI: 0.781-0.939), sensitivity of 85.4 %, and specificity of 76.9 %. CONCLUSION Our results suggest that RNF180 and SFRP2 could serve as diagnostic biomarkers for GC when using the RF model.
Collapse
Affiliation(s)
- Zhihao Dai
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jin Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yanru Feng
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Dong Liu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Dong Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Hebei University of Engineering, Handan, 056009, China
| | | | | | | | | | | | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Ji Zhu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China.
| |
Collapse
|
4
|
Guido D, Maqoud F, Aloisio M, Mallardi D, Ura B, Gualandi N, Cocca M, Russo F. Transcriptomic Module Discovery of Diarrhea-Predominant Irritable Bowel Syndrome: A Causal Network Inference Approach. Int J Mol Sci 2024; 25:9322. [PMID: 39273274 PMCID: PMC11394741 DOI: 10.3390/ijms25179322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is the most prevalent subtype of IBS, characterized by chronic gastrointestinal symptoms in the absence of identifiable pathological findings. This study aims to investigate the molecular mechanisms underlying IBS-D using transcriptomic data. By employing causal network inference methods, we identify key transcriptomic modules associated with IBS-D. Utilizing data from public databases and applying advanced computational techniques, we uncover potential biomarkers and therapeutic targets. Our analysis reveals significant molecular alterations that affect cellular functions, offering new insights into the complex pathophysiology of IBS-D. These findings enhance our understanding of the disease and may foster the development of more effective treatments.
Collapse
Affiliation(s)
- Davide Guido
- Data Science Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Michelangelo Aloisio
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Domenica Mallardi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Nicolò Gualandi
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Massimiliano Cocca
- INSERM U1052, CNRS UMR_5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Institute of Hepatology Lyon (IHL), 69002 Lyon, France
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| |
Collapse
|
5
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
6
|
Zhang W, Zhang K, Ma Y, Song Y, Qi T, Xiong G, Zhang Y, Kan C, Zhang J, Han F, Sun X. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother 2023; 166:115344. [PMID: 37634472 DOI: 10.1016/j.biopha.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yuanzhu Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| |
Collapse
|
7
|
Li H, Da D, Yu W, Chen L, Yang S, Zhang B, Wang Y, Li L, Dang C. Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC. Hum Mol Genet 2022; 32:79-92. [PMID: 35921230 PMCID: PMC9838096 DOI: 10.1093/hmg/ddac185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant epithelial tumors. Studies have suggested that DNA hypermethylation of promoters and abnormal histone modifications could induce tumor suppressor genes (TSGs) downregulation in NSCLC. However, the exact mechanism of TSGs downregulation remains unclear. In this study, we found that there is no difference in the regions of most TSGs promoters in NSCLC. Moreover, we found that there is no DNA methylation difference in the region of VILL promoter in NSCLC compared with adjacent tissue samples by pyrosequencing. We further demonstrated that VILL was markedly reactivated in A549 and H1703 cells infected with miR-26A1 lentivirus while this activation was inhibited by JQ1, an enhancer inhibitor. In addition, we identified that miR-26A1 could function as a tumor suppressor to inhibit proliferation and metastasis of NSCLC cells. Chromatin immunoprecipitation assays revealed that overexpression of miR-26A1 could significantly induce the enrichment of H3K27ac at the enhancer regions in A549 cells. To sum up, our findings revealed that enhancer-mediated TSGs regulation occured in NSCLC, suggesting that miR-26A1 could serve as a key regulator and may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hongling Li
- To whom correspondence should be addressed at: Department of Oncology, Gansu Provincial Hospital, Lanzhou 730000, PR China. Tel: +86-0931-8281563;
| | | | | | - Lu Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Shuai Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Yongying Wang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Linyu Li
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Chunyan Dang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| |
Collapse
|
8
|
Y KN, Perumalsamy NK, Warrier S, Perumalsamy LR, Dharmarajan A. Wnt antagonist as therapeutic targets in ovarian cancer. Int J Biochem Cell Biol 2022; 145:106191. [PMID: 35272015 PMCID: PMC7616886 DOI: 10.1016/j.biocel.2022.106191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is a fatal malignancy in women with a low survival rate that demands new therapeutic paradigms. Cancer cells acquire various exclusive alterations to proliferate, invade, metastasize, and escape cell death, acting independently of growth-inducing or growth-inhibiting signals. The nature of cellular signaling in tumorigenesis is interwoven. Wnt signaling is an evolutionarily conserved signaling cascade that has been shown to regulate ovarian cancer pathogenesis. The molecular mechanism of Wnt signaling underlying the development of ovarian cancer, drug resistance, and relapse is not completely understood. Extracellularly secreted Wnt signaling inhibitors are crucial regulators of ovarian cancer tumorigenesis and malignant properties of cancer stem cells. Wnt inhibitors arbitrated modifications affecting Wnt pathway proteins on the cell membranes, in the cytoplasm, and in the nucleus have been shown to span essential contributions in the initiation, progression, and chemoresistance of ovarian cancer. Although many extrinsic inhibitors developed targeting the downstream components of the Wnt signaling pathway, investigating the molecular mechanisms of endogenous secreted inhibitors might substantiate prognostic or therapeutic biomarkers development. Given the importance of Wnt signaling in ovarian cancer, more systematic studies combined with clinical studies are requisite to probe the precise mechanistic interactions of Wnt antagonists in ovarian cancer. This review outlines the latest progress on the Wnt antagonists and ovarian cancer-specific regulators such as micro-RNAs, small molecules, and drugs regulating these Wnt antagonists in ovarian tumourigenesis.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India
| | - Naveen Kumar Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India.
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India; Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
9
|
Zeng Y, Rong H, Xu J, Cao R, Li S, Gao Y, Cheng B, Zhou T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front Genet 2022; 13:823905. [PMID: 35309131 PMCID: PMC8931997 DOI: 10.3389/fgene.2022.823905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a very common malignancy with a poor prognosis, and its occurrence and development are closely related to epigenetic modifications. Methylation of DNA before or during gastric cancer is an interesting research topic. This article reviews the studies on DNA methylation related to the cause, diagnosis, treatment, and prognosis of gastric cancer and aims to find cancer biomarkers to solve major human health problems.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Rong
- Department of Reconstructive Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruyue Cao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhua Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baoquan Cheng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
10
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
11
|
Wu Q, Yin X, Zhao W, Xu W, Chen L. Downregulation of SFRP2 facilitates cancer stemness and radioresistance of glioma cells via activating Wnt/β-catenin signaling. PLoS One 2021; 16:e0260864. [PMID: 34852024 PMCID: PMC8635357 DOI: 10.1371/journal.pone.0260864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Secreted frizzled-related protein 2 (SFRP2) is a glycoprotein with frizzled-like cysteine-rich domain that binds with Wnt ligands or frizzled receptors to regulate Wnt signaling. SFRP2 is frequently hypermethylated in glioma patients, and analysis of TCGA data indicates that SFRP2 is one of the most downregulated genes in radiotherapy treated glioma patients. In the present study, we aimed to explore the potential function of SFRP2 in tumorigenesis and radioresistance of glioma. The RNA sequencing data of TCGA glioma samples were downloaded and analyzed. SFRP2 expression in 166 glioma patients was evaluated by qRT-PCR. The potential functions of SFRP2 in glioma were evaluated by loss-of-function assays and gain-of-function assays in glioma cell lines. We found that SFRP2 was downregulated in radiotherapy-treated glioma patients, and low SFRP2 expression was correlated with advanced tumor stage and poor prognosis. CRISP/Cas9-meidated SFRP2 knockdown promoted soft agar colony formation, cancer stemness and radioresistance of glioma cells, while enforced SFRP2 expression exhibited opposite effects. Moreover, Wnt/β-catenin signaling was activated in radiotherapy treated glioma patients. SFRP2 knockdown activated Wnt/β-catenin signaling in glioma cell lines, while overexpression of SFRP2 inhibited Wnt/β-catenin activation. Besides, pharmacological inhibition of Wnt/β-catenin signaling by XAV-939 abrogated the effects of SFRP2 knockdown on cancer stemness and radioresistance of glioma cells. Our data for the first time demonstrated a role of SFRP2 in radioresistance of glioma cells, and suggested that inhibition of Wnt/β-catenin signaling might be a potential strategy for increasing radiosensitivity of glioma patients.
Collapse
Affiliation(s)
- Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenbo Zhao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenli Xu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- * E-mail:
| |
Collapse
|
12
|
Sremac M, Paic F, Grubelic Ravic K, Serman L, Pavicic Dujmovic A, Brcic I, Krznaric Z, Nikuseva Martic T. Aberrant expression of SFRP1, SFRP3, DVL2 and DVL3 Wnt signaling pathway components in diffuse gastric carcinoma. Oncol Lett 2021; 22:822. [PMID: 34691249 PMCID: PMC8527567 DOI: 10.3892/ol.2021.13083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Diffuse gastric carcinoma (DGC) is characterized by poorly cohesive cells, highly invasive growth patterns, poor prognosis and resistance to the majority of available systemic therapeutic strategies. It has been previously reported that the Wnt/β-catenin signaling pathway serves a prominent role in the tumorigenesis of gastric carcinoma. However, the mechanism underlying the dysregulation of this pathway in DGC has not been fully elucidated. Therefore, the present study aimed to investigate the expression profiles of Wnt antagonists, secreted frizzled-related protein 1 (SFRP1) and secreted frizzled-related protein 3 (SFRP3), and dishevelled protein family members, dishevelled segment polarity protein 2 (DVL2) and dishevelled segment polarity protein 3 (DVL3), in DGC tissues. The association between the expression levels of these factors and the clinicopathological parameters of the patients was determined. Protein and mRNA expression levels in 62 DGC tumor tissues and 62 normal gastric mucosal tissues obtained from patients with non-malignant disease were measured using immunohistochemical and reverse transcription-quantitative PCR (RT-qPCR) analysis. Significantly lower protein expression levels of SFRP1 (P<0.001) and SFRP3 (P<0.001), but significantly higher protein expression levels of DVL2 (P<0.001) and DVL3 (P<0.001) were observed in DGC tissues compared with in control tissues by immunohistochemistry. In addition, significantly lower expression levels of SFRP1 (P<0.05) and higher expression levels of DVL3 (P<0.05) were found in in DGC tissues compared with those in normal gastric mucosal tissues using RT-qPCR. According to correlation analysis between the SFRP1, SFRP3, DVL2 and DVL3 protein expression levels and the clinicopathological characteristics of patients with DGC, a statistically significant correlation was found between the SFRP3 volume density and T stage (r=0.304; P=0.017) and between the SFRP3 volume density and clinical stage (r=0.336; P=0.008). In conclusion, the findings of the present study suggested that the Wnt signaling pathway components SFRP1, SFRP3, DVL2 and DVL3 may be aberrantly expressed in DGC tissues, implicating their possible role in the development of this malignant disease. The present data also revealed a positive relationship between SFRP3 protein expression and the clinical and T stage of DGC.
Collapse
Affiliation(s)
- Maja Sremac
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Frane Paic
- Laboratory for Epigenetics and Molecular Medicine, Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katja Grubelic Ravic
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Ljiljana Serman
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Aja Pavicic Dujmovic
- Department of Radiology, General Hospital ‘Dr. Ivo Pedisic’, 44000 Sisak, Croatia
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
| | - Zeljko Krznaric
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Tamara Nikuseva Martic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Yan H, Chen W, Ge K, Mao X, Li X, Liu W, Wu J. Value of Plasma Methylated SFRP2 in Prognosis of Gastric Cancer. Dig Dis Sci 2021; 66:3854-3861. [PMID: 33216241 DOI: 10.1007/s10620-020-06710-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Secreted frizzled-related protein 2 (SFRP2) in circulating tumor DNA (ctDNA) is related to gastric cancer (GC) proliferation. However, whether methylated SFRP2 in ctDNA serves as the biomarker in GC patients remains unknown. AIMS To investigate the relationship between methylated SFRP2 and the clinical outcomes of GC patients. METHODS One hundred and forty-eight GC patients receiving systemic chemotherapy were collected during 2015-2017. Aberrant SFRP2 methylation was detected before and after chemotherapy by digital PCR-based technologies. RESULTS Baseline SFRP2 methylation positively correlated with lymph node status (P < 0.001), distant metastasis (P < 0.001) and TNM stage (P = 0.005). The top 50% methylated SFRP2 had shorter progression-free survival (PFS) and overall survival (OS) than those with bottom 50% in stage III GC patients (median PFS, 11.0 vs. NR months; HR 13.05; 95% CI 3.05-55.95; median OS 17.0 vs. NR months; HR 7.80; 95% CI 1.81-33.60) and stage IV GC patients (median PFS, 4.0 vs. 7.0 months; HR 2.74; 95% CI 1.58-4.78; median OS 12.0 vs. 16.0 months; HR 3.14; 95% CI 1.67-5.92). Besides, the increased methylated SFPR2 from baseline to post-treatment was related to the worse PFS and OS among stage IV patients (median PFS, 5.0 vs. 7.0 months; HR 2.17; 95% CI 1.25-3.76; median OS 12.0 vs. 15.5 months; HR 3.51; 95% CI 1.94-6.35), but not to stage III patients. CONCLUSIONS SFRP2 methylation and dynamic change are associated with GC prognosis. Our findings provide potential biomarker detection approach in ctDNA for prognosis prediction and dynamic monitoring among GC patients.
Collapse
Affiliation(s)
- Haijiao Yan
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Wenyu Chen
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Kele Ge
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xizheng Mao
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xiaodong Li
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Wensong Liu
- Hepatobiliary Surgery Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Jun Wu
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.
| |
Collapse
|
14
|
Busuttil RA, George J, House CM, Lade S, Mitchell C, Di Costanzo NS, Pattison S, Huang YK, Tan P, Cheong JH, Rha SY, Boussioutas A. SFRP4 drives invasion in gastric cancer and is an early predictor of recurrence. Gastric Cancer 2021; 24:589-601. [PMID: 33277667 PMCID: PMC8064978 DOI: 10.1007/s10120-020-01143-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gastric cancer patients generally have a poor outcome, particularly those with advanced-stage disease which is defined by the increased invasion of cancer locally and is associated with higher metastatic potential. This study aimed to identify genes that were functional in the most fundamental hallmark of cancer, namely invasion. We then wanted to assess their value as biomarkers of gastric cancer progression and recurrence. DESIGN Data from a cohort of patients profiled on cDNA expression arrays was interrogated using K-means analysis. This genomic approach classified the data based on patterns of gene expression allowing the identification of the genes most correlated with the invasion of GC. We evaluated the functional role of a key protein from this analysis in invasion and as a biomarker of recurrence after curative resection. RESULTS Expression of secreted frizzled-related protein 4 (SFRP4) was identified as directly proportional to gastric cancer invasion. This finding was validated in multiple, independent datasets and its functional role in invasion was also confirmed using invasion assays. A change in serum levels of SFRP4 after curative resection, when coupled with AJCC stage, can accurately predict the risk of disease recurrence after curative therapy in an assay we termed PredictR. CONCLUSIONS This simple ELISA-based assay can help predict recurrence of disease after curative gastric cancer surgery irrespective of adjuvant therapy. The results require further evaluation in a prospective trial but would help in the rational prescription of cancer therapies and surveillance to prevent under or over treatment of patients after curative resection.
Collapse
Affiliation(s)
- Rita A Busuttil
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Joshy George
- Computational Sciences, Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - Colin M House
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC, Australia
| | - Stephen Lade
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Natasha S Di Costanzo
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC, Australia
| | - Sharon Pattison
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Alex Boussioutas
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Xiang L, Chen LM, Zhai YJ, Sun WJ, Yang JR, Fan YC, Wang K. Hypermethylation of secreted frizzled related protein 2 gene promoter serves as a noninvasive biomarker for HBV-associated hepatocellular carcinoma. Life Sci 2021; 270:119061. [PMID: 33454364 DOI: 10.1016/j.lfs.2021.119061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
For patients with hepatocellular carcinoma (HCC), early detection is critical to improve survival. Secreted frizzled-related protein 2 (SFRP2) is a candidate tumor suppressor as Wnt antagonist and SFRP2 promoter has been found hypermethylated in various malignancies. This study aimed to investigate the methylation status of SFRP2 promoter in hepatitis B virus (HBV) associated HCC and estimate its diagnostic value as a non-invasive biomarker. A total of 293 patients, including 132 patients with HBV-associated HCC, 121 with chronic hepatitis B (CHB) and 40 healthy controls (HCs) were enrolled. SFRP2 methylation level in peripheral mononuclear cells (PBMCs) was quantitatively detected by MethyLight. SFRP2 methylation level was significantly higher in patients with HBV-associated HCC than in those with CHB (p < 0.001) and HCs (p < 0.001) while mRNA level of SFRP2 was significantly lower in HCC group than the other two groups (p < 0.05). In HCC subgroup, SFRP2 methylation level markedly increased in patients >50 years old, female, with negative HBeAg, negative HBV-DNA and poor differentiation compared with the remaining groups (P < 0.05). Furthermore, SFRP2 methylation level showed a significantly better diagnostic value than alpha-fetoprotein (AFP) and the combination of AFP and methylation levels of SFRP2 markedly improved the area under the receiver operating characteristic curve (p < 0.05). In conclusion, hypermethylation of SFRP2 promoter exists in HBV-associated HCC. The combination of SFRP2 methylation level in PBMCs and AFP could significantly improve the diagnostic ability of AFP in discriminating HBV-associated HCC from CHB and SFRP2 methylation level had the potential to serve as a non-invasive biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Gong W, Martin TA, Sanders AJ, Jiang A, Sun P, Jiang WG. Location, function and role of stromal cell‑derived factors and possible implications in cancer (Review). Int J Mol Med 2021; 47:435-443. [PMID: 33416125 PMCID: PMC7797432 DOI: 10.3892/ijmm.2020.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Despite improvements in therapy and management, cancer represents and remains a major cause of mortality and morbidity worldwide. Although genetics serve an important role in tumorigenesis and tumour progression, the tumour microenvironment (TME) in solid tumours is also important and has been indicated to contribute to these processes. Stromal cell‑derived factors (SDFs) represent an important family within the TME. The family includes SDF‑1, SDF‑2, SDF2‑like 1 (SDF2L1), SDF‑3, SDF‑4 and SDF‑5. SDF‑1 has been demonstrated to act as a positive regulator in a number of types of tumour, such as oesophago‑gastric, pancreatic, lung, breast, colorectal and ovarian cancer, while the biology and functions of other members of the SDF family, including SDF‑2, SDF2L1, SDF‑4 and SDF‑5, in cancer are different, complex and controversial, and remain mainly unknown. Full identification and understanding of the SDFs across multiple types of cancer is required to elucidate their function and establish potential key targets in cancer.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Aihua Jiang
- Department of Anaesthesiology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK,Correspondence to: Professor Wen G. Jiang, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Henry Wellcome Building, Cardiff CF14 4XN, UK, E-mail:
| |
Collapse
|
17
|
Miao J, Liu Y, Zhao G, Liu X, Ma Y, Li H, Li S, Zhu Y, Xiong S, Zheng M, Fei S. Feasibility of Plasma-Methylated SFRP2 for Early Detection of Gastric Cancer. Cancer Control 2021; 27:1073274820922559. [PMID: 32379490 PMCID: PMC7218304 DOI: 10.1177/1073274820922559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is fifth most frequently diagnosed cancer and second leading cause of cancer in China. More than 80% of GC are diagnosed at an advanced stage due to low uptake rate of invasive screening method. The performance of methylated SFRP2 test was evaluated in 236 plasma samples, including 92 patients with GC, 16 intestinal metaplasia patients, 26 gastric fundic gland polyp patients, 13 small adenoma patients, 39 hyperplastic polyp patients, and 50 control patients. The sensitivity of plasma methylated SFRP2 was compared to serum CEA, CA72-4, CA19-9, and CA242 results in 79 patients with GC. The sensitivities for detecting GC and gastric intestinal metaplasia by methylated SFRP2 test were 60.9% and 56.3% with a specificity of 86.0%. Methylated SFRP2 test had significantly higher positive detection rate for patients with GC than gastric fundic gland polyp, small adenoma, and hyperplastic polyp patients. In 79 patients with GC, the sensitivities of CEA, CA72-4, CA19-9, and CA242 for detecting GC were 22.8%, 16.5%, 12.7%, and 11.4%. In comparison, the sensitivity of methylated SFRP2 test for detecting GC was 58.2%. Plasma methylated SFRP2 test may become a valuable tool for the noninvasive detection of GC and precursor lesions and showed higher sensitivity than serum tumor markers.
Collapse
Affiliation(s)
- Jin Miao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Liu
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guodong Zhao
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.,Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu, China
| | - Xiaoyu Liu
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu, China
| | - Yong Ma
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiming Li
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu, China
| | - Yun Zhu
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu, China
| | - Shangmin Xiong
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu, China.,Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu, China
| | - Minxue Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Sujuan Fei
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
van Loon K, Huijbers EJM, Griffioen AW. Secreted frizzled-related protein 2: a key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev 2020; 40:191-203. [PMID: 33140138 PMCID: PMC7897195 DOI: 10.1007/s10555-020-09941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control. Cell Rep 2020; 28:1511-1525.e5. [PMID: 31390565 DOI: 10.1016/j.celrep.2019.07.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 05/31/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022] Open
Abstract
Secreted frizzled-related proteins (SFRPs) are mainly known for their role as extracellular modulators and tumor suppressors that downregulate Wnt signaling. Using the established (CRISPR/Cas9 targeting promoters of SFRPs and targeting SFRPs transcript) system, we find that nuclear SFRPs interact with β-catenin and either promote or suppress TCF4 recruitment. SFRPs bind with β-catenin on both their N and C termini, which the repressive effects caused by SFRP-β-catenin-N-terminus binding overpower the promoting effects of their binding at the C terminus. By high Wnt activity, β-catenin and SFRPs only bind with their C termini, which results in the upregulation of β-catenin transcriptional activity and cancer stem cell (CSC)-related genes. Furthermore, we identify disulfide bonds of the cysteine-rich domain (CRD) and two threonine phosphorylation events of the netrin-related motif (NTR) domain of SFRPs that are essential for their role as biphasic modulators, suggesting that SFRPs are biphasic modulators of Wnt signaling-elicited CSC properties beyond extracellular control.
Collapse
|
20
|
Boughanem H, Cabrera-Mulero A, Hernández-Alonso P, Clemente-Postigo M, Casanueva FF, Tinahones FJ, Morcillo S, Crujeiras AB, Macias-Gonzalez M. Association between variation of circulating 25-OH vitamin D and methylation of secreted frizzled-related protein 2 in colorectal cancer. Clin Epigenetics 2020; 12:83. [PMID: 32517740 PMCID: PMC7285750 DOI: 10.1186/s13148-020-00875-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUNDS Colorectal cancer (CRC) results from the accumulation of epigenetic and genetic changes in colon cells during neoplasic transformation, which the activation of Wingless (Wnt) signaling pathway is a common mechanism for CRC initiation. The Wnt pathway is mainly regulated by Wnt antagonists, as secreted frizzled-related protein (SFRP) family. Indeed, SFRP2 is proposed as a noninvasive biomarker for CRC diagnosis. Vitamin D also antagonizes Wnt signaling in colon cancers cells. Several studies showed that vitamin D was able to alter DNA methylation, although this mechanism is not yet clear. Therefore, the aim of this study was to find an association between circulating 25-OH vitamin D (30th percentile of vitamin D) and the SFRP2 methylation. METHODS A total of 67 CRC patients were included in the study. These patients were subdivided into two groups based on their 30th percentile vitamin D (20 patients were below, and 47 participants were above the 30th percentile of vitamin D). We investigated the SFRP2 methylation in peripheral blood mononuclear cells (PBMCs), visceral adipose tissue (VAT), CRC tumor tissue, and adjacent tumor-free area. We also determined the relationship between SFRP2 methylation and methylation of carcinogenic and adipogenic genes. Finally, we tested the effect of vitamin D on the SFRP2 methylation in human colorectal carcinoma cell lines 116 (HCT116) and studied the association of neoadjuvant therapy under the 30th percentile vitamin D with SFRP2 promoter methylation. RESULTS SFRP2 methylation in tumor area was decreased in patients who had higher levels of vitamin D. SFRP2 promoter methylation was positively correlated in tumor area with insulin and homeostasis model assessment of insulin resistance (HOMA-IR) but negatively correlated with HDL-c. SFRP2 methylation was also correlated with T cell lymphoma invasion and metastasis 1 (TIAM1) methylation in tumor area and CCAAT/enhancer-binding protein alpha (C/EBPα) in VAT. Treatment with vitamin D did not affect SFRP2 methylation in HCT116 cell line. Finally, neoadjuvant treatment was correlated with higher circulating 25-OH vitamin D and SFRP2 methylation under linear regression model. CONCLUSION Our results showed that higher circulating vitamin D is associated with low SFRP2 promoter methylation. Therefore, our results could suggest that vitamin D may have an epigenetic effect on DNA methylation. Finally, higher vitamin D could contribute to an improvement response to neoadjuvant treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- Biomedical Research Institute of Malaga (IBIMA), Faculty of Science, University of Malaga, 29010, Málaga, Spain
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
| | - Amanda Cabrera-Mulero
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Hernández-Alonso
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201, Reus, Spain
| | - Mercedes Clemente-Postigo
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Felipe F Casanueva
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Francisco José Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Sonsoles Morcillo
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Ana B Crujeiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
| | - Manuel Macias-Gonzalez
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Malaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Koushyar S, Powell AG, Vincan E, Phesse TJ. Targeting Wnt Signaling for the Treatment of Gastric Cancer. Int J Mol Sci 2020; 21:E3927. [PMID: 32486243 PMCID: PMC7311964 DOI: 10.3390/ijms21113927] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is evolutionarily conserved, regulating both embryonic development and maintaining adult tissue homeostasis. Wnt signaling controls several fundamental cell functions, including proliferation, differentiation, migration, and stemness. It therefore plays an important role in the epithelial homeostasis and regeneration of the gastrointestinal tract. Often, both hypo- or hyper-activation of the pathway due to genetic, epigenetic, or receptor/ligand alterations are seen in many solid cancers, such as breast, colorectal, gastric, and prostate. Gastric cancer (GC) is the fourth commonest cause of cancer worldwide and is the second leading cause of cancer-related death annually. Although the number of new diagnoses has declined over recent decades, prognosis remains poor, with only 15% surviving to five years. Geographical differences in clinicopathological features are also apparent, with epidemiological and genetic studies revealing GC to be a highly heterogeneous disease with phenotypic diversity as a result of etiological factors. The molecular heterogeneity associated with GC dictates that a single 'one size fits all' approach to management is unlikely to be successful. Wnt pathway dysregulation has been observed in approximately 50% of GC tumors and may offer a novel therapeutic target for patients who would otherwise have a poor outcome. This mini review will highlight some recent discoveries involving Wnt signaling in GC.
Collapse
Affiliation(s)
- Sarah Koushyar
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK; (S.K.); (A.G.P.)
| | - Arfon G. Powell
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK; (S.K.); (A.G.P.)
- Division of Cancer & Genetics, Cardiff University, Cardiff CF14 4XW, UK
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth WA 6102, Australia
| | - Toby J. Phesse
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne VIC 3000, Australia
| |
Collapse
|
22
|
Kim TO, Han YK, Yi JM. Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients. Intest Res 2020; 18:297-305. [PMID: 32019290 PMCID: PMC7385571 DOI: 10.5217/ir.2019.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Overwhelming evidence suggests that inflammatory bowel disease (IBD) is caused by a complicated interplay between the multiple genes and abnormal epigenetic regulation in response to environmental factors. It is becoming apparent that epigenetic factors are significantly associated with the development of the disease. DNA methylation remains the most studied epigenetic modification, and hypermethylation of gene promoters is associated with gene silencing. METHODS DNA methylation alterations may contribute to the many complex diseases development by regulating the interplay between external and internal environmental factors and gene transcriptional expression. In this study, we used 15 tumor suppressor genes (TSGs), originally identified in colon cancer, to detect promoter methylation in patients with Crohn's disease (CD). Methylation specific polymerase chain reaction and bisulfite sequencing analyses were performed to assess methylation level of TSGs in CD patients. RESULTS We found 6 TSGs (sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4) are robustly hypermethylated in CD patient samples. Bisulfite sequencing analysis confirmed the methylation levels of the sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4 promoters in the representative CD patient samples. CONCLUSIONS In this study, the promoter hypermethylation of the TSGs observed indicates that CD exhibits specific DNA methylation signatures with potential clinical applications for the noninvasive diagnosis of IBD and the prognosis for patients with IBD.
Collapse
Affiliation(s)
- Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
23
|
Cheng YY, Rath EM, Linton A, Yuen ML, Takahashi K, Lee K. The Current Understanding Of Asbestos-Induced Epigenetic Changes Associated With Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2020; 11:1-11. [PMID: 32021524 PMCID: PMC6955579 DOI: 10.2147/lctt.s186843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Asbestos is a naturally occurring mineral consisting of extremely fine fibres that can become trapped in the lungs after inhalation. Occupational and environmental exposures to asbestos are linked to development of lung cancer and malignant mesothelioma, a cancer of the lining surrounding the lung. This review discusses the factors that are making asbestos-induced lung cancer a continuing problem, including the extensive historic use of asbestos and decades long latency between exposure and disease development. Genomic mutations of DNA nucleotides and gene rearrangements driving lung cancer are well-studied, with biomarkers and targeted therapies already in clinical use for some of these mutations. The genes involved in these mutation biomarkers and targeted therapies are also involved in epigenetic mechanisms and are discussed in this review as it is hoped that identification of epigenetic aberrations in these genes will enable the same gene biomarkers and targeted therapies to be used. Currently, understanding of how asbestos fibres trapped in the lungs leads to epigenetic changes and lung cancer is incomplete. It has been shown that oxidoreduction reactions on fibre surfaces generate reactive oxygen species (ROS) which in turn damage DNA, leading to genetic and epigenetic alterations that reduce the activity of tumour suppressor genes. Epigenetic DNA methylation changes associated with lung cancer are summarised in this review, and some of these changes will be due to asbestos exposure. So far, little research has been carried out to separate the asbestos driven epigenetic changes from those due to non-asbestos causes of lung cancer. Asbestos-associated lung cancers exhibit less methylation variability than lung cancers in general, and in a large proportion of samples variability has been found to be restricted to promoter regions. Epigenetic aberrations in cancer are proving to be promising biomarkers for diagnosing cancers. It is hoped that further understanding of epigenetic changes in lung cancer can result in useful asbestos-associated lung cancer biomarkers to guide treatment. Research is ongoing into the detection of lung cancer epigenetic alterations using non-invasive samples of blood and sputum. These efforts hold the promise of non-invasive cancer diagnosis in the future. Efforts to reverse epigenetic aberrations in lung cancer by epigenetic therapies are ongoing but have not yet yielded success.
Collapse
Affiliation(s)
- Yuen Yee Cheng
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma M Rath
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anthony Linton
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Man Lee Yuen
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ken Takahashi
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth Lee
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Jiang Y, Wang W, Wu X, Shi J. Pizotifen inhibits the proliferation and invasion of gastric cancer cells. Exp Ther Med 2019; 19:817-824. [PMID: 32010241 PMCID: PMC6966152 DOI: 10.3892/etm.2019.8308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/07/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third highest cause of cancer-associated mortality worldwide. Therefore, research on the pathogenesis of gastric cancer is of utmost importance. It has been reported that aberrant activation of the Wnt/β-catenin signaling pathway is involved in the occurrence and development of gastric cancer. In the present study, it was found that pizotifen could inhibit the viability of gastric cancer cell lines MNK45 and AGS cells in a dose-dependent manner. Pizotifen treatment suppressed cell migration and invasion in MNK45 and AGS cells, whilst also inducing apoptosis. Western blot analysis demonstrated that pizotifen blocked the expression of Wnt3a, β-catenin and N-cadherin, whilst increasing E-cadherin expression. In addition, BML-284, a pharmacological Wnt signaling activator, partially reversed the changes in the expression levels of β-catenin, N-cadherin and E-cadherin in MNK45 and AGS cells induced by pizotifen. Collectively, these findings suggested that pizotifen demonstrates potential as a novel anti-cancer drug for the treatment of gastric cancer by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Wei Wang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Xi Wu
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Jihua Shi
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| |
Collapse
|
25
|
Yu J, Xie Y, Li M, Zhou F, Zhong Z, Liu Y, Wang F, Qi J. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett 2019; 18:3481-3492. [PMID: 31516566 PMCID: PMC6733008 DOI: 10.3892/ol.2019.10709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Abnormal methylation of secreted frizzled-related proteins (SFRPs) has been observed in various human cancer types. The loss of SFRP gene expression induces the activation of the Wnt pathway and is a vital mechanism for tumorigenesis and development. The aim of the present systematic review was to assess the association between SFRP methylation and cancer risk. A meta-analysis was systematically conducted to assess the clinicopathological significance of SFRP methylation in cancer risk. The Cochrane Library, PubMed and Web of Science databases were comprehensively searched, and 83 publications with a total of 21,612 samples were selected for the meta-analysis. The pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the degree of associations between SFRP promoter methylation and cancer risk. Subgroup analysis, meta regression and sensitivity analysis were used to identify the potential sources of heterogeneity. SFRP1, SFRP2, SFRP4 and SFRP5 hypermethylation was significantly associated with cancer risk, with ORs of 8.48 (95% CI, 6.26-11.49), 8.21 (95% CI, 6.20-10.88), 11.41 (95% CI, 6.42-20.30) and 6.34 (95% CI, 3.86-10.42), respectively. SFRP2 methylation was significantly associated with differentiation in colorectal cancer (OR, 2.16; 95% CI, 1.02-4.56). The results of the present study demonstrated that SFRP methylation may contribute to carcinogenesis, especially in certain cancer types, including hepatocellular carcinoma and colorectal cancer.
Collapse
Affiliation(s)
- Jun Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yang Xie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mengying Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenyang Zhong
- Department of Nephrology, Xingguo County People's Hospital, Ganzhou, Jiangxi 344000, P.R. China
| | - Yuting Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Feng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jian Qi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
26
|
Öktem EK, Yazar M, Gulfidan G, Arga KY. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (Ambystoma mexicanum) During Wound Healing. ACTA ACUST UNITED AC 2019; 23:389-405. [DOI: 10.1089/omi.2019.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elif Kubat Öktem
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
27
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [PMID: 31416571 DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
28
|
Ribaldone DG, Simondi D, Petrini E, Astegiano M, Durazzo M. Non-invasive biomarkers for gastric cancer diagnosis: ready for prime time? MINERVA BIOTECNOL 2019; 31. [DOI: 10.23736/s1120-4826.18.02463-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
29
|
Hou MX, Gao YL, Liu JX, Dai LY, Kong XZ, Shang J. Network analysis based on low-rank method for mining information on integrated data of multi-cancers. Comput Biol Chem 2018; 78:468-473. [PMID: 30563751 DOI: 10.1016/j.compbiolchem.2018.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/01/2023]
Abstract
The noise problem of cancer sequencing data has been a problem that can't be ignored. Utilizing considerable way to reduce noise of these cancer data is an important issue in the analysis of gene co-expression network. In this paper, we apply a sparse and low-rank method which is Robust Principal Component Analysis (RPCA) to solve the noise problem for integrated data of multi-cancers from The Cancer Genome Atlas (TCGA). And then we build the gene co-expression network based on the integrated data after noise reduction. Finally, we perform nodes and pathways mining on the denoising networks. Experiments in this paper show that after denoising by RPCA, the gene expression data tend to be orderly and neat than before, and the constructed networks contain more pathway enrichment information than unprocessed data. Moreover, learning from the betweenness centrality of the nodes in the network, we find some abnormally expressed genes and pathways proven that are associated with many cancers from the denoised network. The experimental results indicate that our method is reasonable and effective, and we also find some candidate suspicious genes that may be linked to multi-cancers.
Collapse
Affiliation(s)
- Mi-Xiao Hou
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Ying-Lian Gao
- Library of Qufu Normal University, Qufu Normal University, Rizhao, China
| | - Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China; Co-Innovation Center for Information Supply & Assurance Technology, Anhui University, Hefei, China.
| | - Ling-Yun Dai
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Xiang-Zhen Kong
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Junliang Shang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| |
Collapse
|
30
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
31
|
Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA, Cheng WF. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics 2018; 10:1397-1413. [PMID: 30324802 DOI: 10.2217/epi-2018-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the CDH1, DLEC1 and SFRP5 gene methylation panel for advanced epithelial ovarian carcinoma (EOC). MATERIALS & METHODS One hundred and seventy-seven advanced EOC specimens were evaluated by methylation-specific PCR. We also used The Cancer Genome Atlas dataset to evaluate the panel. RESULTS The presence of two or more methylated genes was significant in recurrence (hazard ratio [HR]: 1.91 [1.33-2.76]; p = 0.002) and death (HR: 1.96 [1.26-3.06]; p = 0.006) in our cohort. In The Cancer Genome Atlas dataset, the presence of two or three methylated genes was significant in death (HR: 1.59 [1.15-2.18]; p = 0.0047) and close to the significance level in recurrence (HR: 1.37 [0.99-1.88]; p = 0.058). CONCLUSION The CDH1, DLEC1 and SFRP5 methylation panel is a potential prognostic biomarker for advanced EOC.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Chi-Feng Fu
- Department of Obstetrics & Gynecology, E-da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan 32546, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
32
|
Oh SC, Sohn BH, Cheong JH, Kim SB, Lee JE, Park KC, Lee SH, Park JL, Park YY, Lee HS, Jang HJ, Park ES, Kim SC, Heo J, Chu IS, Jang YJ, Mok YJ, Jung W, Kim BH, Kim A, Cho JY, Lim JY, Hayashi Y, Song S, Elimova E, Estralla JS, Lee JH, Bhutani MS, Lu Y, Liu W, Lee J, Kang WK, Kim S, Noh SH, Mills GB, Kim SY, Ajani JA, Lee JS. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun 2018; 9:1777. [PMID: 29725014 PMCID: PMC5934392 DOI: 10.1038/s41467-018-04179-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a heterogeneous cancer, making treatment responses difficult to predict. Here we show that we identify two distinct molecular subtypes, mesenchymal phenotype (MP) and epithelial phenotype (EP), by analyzing genomic and proteomic data. Molecularly, MP subtype tumors show high genomic integrity characterized by low mutation rates and microsatellite stability, whereas EP subtype tumors show low genomic integrity. Clinically, the MP subtype is associated with markedly poor survival and resistance to standard chemotherapy, whereas the EP subtype is associated with better survival rates and sensitivity to chemotherapy. Integrative analysis shows that signaling pathways driving epithelial-to-mesenchymal transition and insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1R) pathway are highly activated in MP subtype tumors. Importantly, MP subtype cancer cells are more sensitive to inhibition of IGF1/IGF1R pathway than EP subtype. Detailed characterization of these two subtypes could identify novel therapeutic targets and useful biomarkers for prognosis and therapy response. The prognosis and treatment of gastric cancer is complicated by heterogeneity. Here, the authors reveal two molecular subtypes, the mesenchymal subtype associated with poor survival and chemoresistance, and the epithelial phenotype associated with better survival and sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Sang Cheul Oh
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Internal Medicine, Guro Hospital, College of Medicine, Division of Hemato-Oncology, Korea University, Seoul, 08308, Korea
| | - Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang-Bae Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jae Eun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang Ho Lee
- Department of Surgery, Kosin University, College of Medicine, Busan, 49267, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Yun-Yong Park
- Department of Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyun-Sung Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hee-Jin Jang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eun Sung Park
- Medical Research Institute, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Sang-Cheol Kim
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, Daejeon, 34141, Korea
| | - Jeonghoon Heo
- Department of Molecular Biology and Immunology, Kosin University, College of Medicine, Busan, 49267, Korea
| | - In-Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - You-Jin Jang
- Department of Surgery, Guro Hospital, College of Medicine, Korea University, Seoul, 08308, Korea
| | - Young-Jae Mok
- Department of Surgery, Guro Hospital, College of Medicine, Korea University, Seoul, 08308, Korea
| | - WonKyung Jung
- Department of Surgery, Guro Hospital, College of Medicine, Korea University, Seoul, 08308, Korea
| | - Baek-Hui Kim
- Department of Pathology, Guro Hospital, College of Medicine, Korea University, Seoul, 08308, Korea
| | - Aeree Kim
- Department of Pathology, Guro Hospital, College of Medicine, Korea University, Seoul, 08308, Korea
| | - Jae Yong Cho
- Medical Oncology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae Yun Lim
- Medical Oncology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yuki Hayashi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elena Elimova
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeannelyn S Estralla
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey H Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Manoop S Bhutani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenbin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeeyun Lee
- Department of Medicine, Samsung Medical Center, Division of Hematology-Oncology, Gangnam-Gu, Seoul, 06351, Korea
| | - Won Ki Kang
- Department of Medicine, Samsung Medical Center, Division of Hematology-Oncology, Gangnam-Gu, Seoul, 06351, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Gangnam-Gu, Seoul, 06351, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Wang Z, Li R, He Y, Huang S. Effects of secreted frizzled-related protein 1 on proliferation, migration, invasion, and apoptosis of colorectal cancer cells. Cancer Cell Int 2018; 18:48. [PMID: 29610564 PMCID: PMC5872544 DOI: 10.1186/s12935-018-0543-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/15/2018] [Indexed: 01/29/2023] Open
Abstract
Background Secreted frizzled-related protein 1 (SFRP1) is a member of the SFRPs family that modulates the Wnt signal transduction pathway. Recent studies have showed down-regulation of SFRP1 expression in colorectal cancer (CRC). We aimed to evaluate the effect of SFRP1 on the proliferation, migration, invasion and apoptosis of CRC cells in vitro. Materials and methods We used real-time fluorescence quantification (RT-PCR) and Western blotting to detect SFRP1 expression in CRC, pericarcinomatous tissues and CRC cell lines. We assessed the influence of overexpression and knockdown of SFRP1 on CRC cell proliferation, migration, invasion, and apoptosis, Western blotting was used to evaluate protein levels of Wnt, β-catenin, and apoptosis-related proteins. Results The expression of SFRP1 was significantly decreased in CRC tissues. Among the six CRC cell lines (sw-480, sw1116, caco-2, ht-29, colo-205, and hct-116), RT-PCR revealed that sw1116 cells had the lowest expression of SFRP1, while caco-2 cells had the highest SFRP1 expression. SFRP1 overexpression in sw1116 cells significantly suppressed cell proliferation while SFRP1 knockdown in caco-2 cells significantly increase the cell proliferation. In addition, overexpression of SFRP1 in sw1116 cells remarkedly suppressed cell migration and invasion, whereas knockdown of SFRP1 in caco-2 cells resulted in significant enhancement of migration and invasion. Furthermore, SFRP1 overexpression in sw1116 cells promoted cell apoptosis. Western blotting showed that SFRP1 overexpression significantly decreased the protein levels of Wnt, β-catenin and apoptosis-related proteins, including MMP2, MMP9, Twist, CDK1, TGF, and Bcl2. Conclusion Our results demonstrate that SFRP1 suppresses cell proliferation, migration and invasion, and promotes apoptosis in CRC cells.
Collapse
Affiliation(s)
- Zhongchuan Wang
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Rujia Li
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Yongshan He
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Shiyong Huang
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
| |
Collapse
|
34
|
Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes (Basel) 2018; 9:genes9040178. [PMID: 29570681 PMCID: PMC5924520 DOI: 10.3390/genes9040178] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Chloe R Austin
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Toby J Phesse
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
35
|
Puneet, Kazmi HR, Kumari S, Tiwari S, Khanna A, Narayan G. Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol Oncol Res 2018; 24:757-770. [PMID: 29552712 DOI: 10.1007/s12253-018-0410-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the most common malignancy worldwide. The various genetic and epigenetic events have been found to be associated with its carcinogenesis. The epigenetic is a heritable and transient/reversible change in the gene expression that is not accompanied by modification in the DNA sequence. This event is characterized by the alteration in the promoter CpG island of the gene or histone modification. These events are associated with silencing of critical tumor suppressor gene and activation of oncogenes leading to carcinogenesis. The DNA methylation is a chemical change in the DNA sequence that most commonly occurs at cytosine moiety of CpG dinucleotide and histone, primarily on N- terminal tail that ultimately effect the interaction of DNA with chromatin modifying protein.Hypermethylation of tumor suppressor genes and global hypomethylation of oncogenes are widely studied epigenetic modifications. There are large number of publish reports regarding epigenetic events involving gastric cancer. These changes are potentially useful in identifying markers for early diagnosis and management of this lethal malignancy. Also, role of specific miRNAs and long non coding RNAs in regulation of gene expression is gaining interest and is a matter of further investigation. In this review, we aimed to summarize major epigenetic events (DNA methylation) in gastric cancer along with alteration in miRNAs and long non coding RNAs which plays an important role in pathology of this poorly understood malignancy.
Collapse
Affiliation(s)
- Puneet
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Hasan Raza Kazmi
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Soni Kumari
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satendra Tiwari
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - A Khanna
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
36
|
Abstract
BACKGROUND This study aimed to investigate the changes in the promoter methylation and gene expression of multiple Wnt antagonists between the chronic infection and eradication of Helicobacter pylori (H. pylori) in gastric carcinogenesis. METHODS The levels of methylation and corresponding mRNA expression of seven Wnt antagonist genes (SFRP1, -2, -5, DKK1, -2, -3, WIF1) were compared among the patients with H. pylori-positive gastric cancers (GCs), and H. pylori-positive and H. pylori-negative controls, by quantitative MethyLight assay and real-time reverse transcription (RT)-polymerase chain reaction (PCR), respectively. The changes of the methylation and expression levels of the genes were also compared between the H. pylori eradication and H. pylori-persistent groups 1 year after endoscopic resection of GCs. RESULTS The methylation levels of SFRP and DKK family genes were significantly increased in the patients with H. pylori-positive GCs and followed by H. pylori-positive controls compared with H. pylori-negative controls (P < 0.001). SFRP1, -2, and DKK3 gene expression was stepwise downregulated from H. pylori-negative controls, H. pylori-positive controls, and to H. pylori-positive GCs (P < 0.05). Among the Wnt antagonists, only the degrees of methylation and downregulation of DKK3 were significantly reduced after H. pylori eradication (P < 0.05). CONCLUSION Epigenetic silencing of SFRP and DKK family genes may facilitate the formation of an epigenetic field during H. pylori-associated gastric carcinogenesis. The epigenetic field may not be reversed even after H. pylori eradication except by DKK3 methylation.
Collapse
|
37
|
Han F, Sun LP, Liu S, Xu Q, Liang QY, Zhang Z, Cao HC, Yu J, Fan DM, Nie YZ, Wu KC, Yuan Y. Promoter methylation of RNF180 is associated with H.pylori infection and serves as a marker for gastric cancer and atrophic gastritis. Oncotarget 2017; 7:24800-9. [PMID: 27050149 PMCID: PMC5029743 DOI: 10.18632/oncotarget.8523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/06/2016] [Indexed: 12/23/2022] Open
Abstract
Promoter methylation (PM) of RING-finger protein (RNF) 180 affects gastric cancer (GC) prognosis, but its association with risk of GC or atrophic gastritis (AG) is unclear. We investigated relationships between RNF180 PM and GC or AG, and the effects of Helicobactor pylori (H.pylori) infection on RNF180 PM. This study included 513 subjects (159 with GC, 186 with AG, and 168 healthy controls [CON]) for RNF180 PM analysis, and another 55 GC patients for RNF180 gene expression analysis. Methylation was quantified using average methylation rates (AMR), methylated CpG site counts (MSC) and hypermethylated CpG site counts (HSC). RNF180 promoter AMR and MSC increased with disease severity. Optimal cut-offs were GC + AG: AMR > 0.153, MSC > 4 or HSC > 1; GC: AMR > 0.316, MSC > 15 and HSC > 6. Hypermethylation at 5 CpG sites differed significantly between GC/AG and CON groups, and was more common in GC patients than AG and CON groups for 2 other CpG sites. The expression of RNF180 mRNA levels in tumor were significantly lower than those in non-tumor, with the same as in hypermethylation than hypomethylation group. H.pylori infection increased methylation in normal tissue or mild gastritis, and increased hypermethylation risk at 3 CpG sites in AG. In conclusion, higher AMR, MSC and HSC levels could identify AG + GC or GC. Some RNF180 promoter CpG sites could identify precancerous or early-stage GC. H.pylori affects RNF180 PM in normal tissue or mild gastritis, and increases hypermethylation in 3 CpG sites in AG.
Collapse
Affiliation(s)
- Fang Han
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Shuang Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Qiao-Yi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hai-Chao Cao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Dai-Ming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| |
Collapse
|
38
|
SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. DISEASE MARKERS 2017; 2017:2536187. [PMID: 29386699 PMCID: PMC5745727 DOI: 10.1155/2017/2536187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56%) and SFRP5 (70%) in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A) via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.
Collapse
|
39
|
DNA Methylation as a Noninvasive Epigenetic Biomarker for the Detection of Cancer. DISEASE MARKERS 2017; 2017:3726595. [PMID: 29038612 PMCID: PMC5605861 DOI: 10.1155/2017/3726595] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
In light of the high incidence and mortality rates of cancer, early and accurate diagnosis is an important priority for assigning optimal treatment for each individual with suspected illness. Biomarkers are crucial in the screening of patients with a high risk of developing cancer, diagnosing patients with suspicious tumours at the earliest possible stage, establishing an accurate prognosis, and predicting and monitoring the response to specific therapies. Epigenetic alterations are innovative biomarkers for cancer, due to their stability, frequency, and noninvasive accessibility in bodily fluids. Epigenetic modifications are also reversible and potentially useful as therapeutic targets. Despite this, there is still a lack of accurate biomarkers for the conclusive diagnosis of most cancer types; thus, there is a strong need for continued investigation to expand this area of research. In this review, we summarise current knowledge on methylated DNA and its implications in cancer to explore its potential as an epigenetic biomarker to be translated for clinical application. We propose that the identification of biomarkers with higher accuracy and more effective detection methods will enable improved clinical management of patients and the intervention at early-stage disease.
Collapse
|
40
|
Flanagan DJ, Vincan E, Phesse TJ. Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. Br J Pharmacol 2017; 174:4666-4683. [PMID: 28568899 DOI: 10.1111/bph.13890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer persists as a frequent and deadly disease that claims over 700 000 lives annually. Gastric cancer is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal cancers, making it therapeutically challenging. As such, and largely attributed to late-stage diagnosis, gastric cancer patients show only partial response to standard chemo and targeted molecular therapies, highlighting an urgent need to develop new targeted therapies for this disease. Wnt signalling has a well-documented history in the genesis of many cancers and is, therefore, an attractive therapeutic target. As such, drug discovery has focused on developing inhibitors that target multiple nodes of the Wnt signalling cascade, some of which have progressed to clinical trials. The collective efforts of patient genomic profiling has uncovered genetic lesions to multiple components of the Wnt pathway in gastric cancer patients, which strongly suggest that Wnt-targeted therapies could offer therapeutic benefits for gastric cancer patients. These data have been supported by studies in mouse models of gastric cancer, which identify Wnt signalling as a driver of gastric tumourigenesis. Here, we review the current literature regarding Wnt signalling in gastric cancer and highlight the suitability of each class of Wnt inhibitor as a potential treatment for gastric cancer patients, in relation to the type of Wnt deregulation observed. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Toby J Phesse
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,Cell Signalling and Cancer Laboratory, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
41
|
Zeng XQ, Wang J, Chen SY. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int J Oncol 2017; 50:1921-1933. [DOI: 10.3892/ijo.2017.3981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
|
42
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
43
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69:403-408. [PMID: 28273499 DOI: 10.1016/j.pharep.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Secreted frizzled-related protein (SFRP)2, an identified member of the SFRPs family of molecules, is often methylated in human cancers and its down-regulation is closely related to Wnt signaling activity and tumor progression. Although the blocker of the Wnt signaling has not been fully used in clinical trial, interest has been further enhanced by the realization of SFRPs' potential as targets to modulate Wnt signaling and cancer cell growth. Emerging evidence showed that SFRP2 was an anti-oncogene, however, a steady flow of research has indicated that it may also have tumor promotion effects in some cancer types. Furthermore, SFRP2 methylation was shown to accelerate cancer cell invasion and growth in tumor progression. In this review, we define recent understanding of the diverse roles of SFRP2 in tumorigenesis, and it might promote the development of novel drugs for curing cancer by targeting SFRP2.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China.
| |
Collapse
|
44
|
Wang H, Duan XL, Qi XL, Meng L, Xu YS, Wu T, Dai PG. Concurrent Hypermethylation of SFRP2 and DKK2 Activates the Wnt/β-Catenin Pathway and Is Associated with Poor Prognosis in Patients with Gastric Cancer. Mol Cells 2017; 40:45-53. [PMID: 28152305 PMCID: PMC5303888 DOI: 10.14348/molcells.2017.2245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022] Open
Abstract
Aberrant hypermethylation of Wnt antagonists has been observed in gastric cancer. A number of studies have focused on the hypermethylation of a single Wnt antagonist and its role in regulating the activation of signaling. However, how the Wnt antagonists interacted to regulate the signaling pathway has not been reported. In the present study, we systematically investigated the methylation of some Wnt antagonist genes (SFRP2, SFRP4, SFRP5, DKK1, DKK2, and APC) and their regulatory role in carcinogenesis. We found that aberrant promoter methylation of SFRP2, SFRP4, DKK1, and DKK2 was significantly increased in gastric cancer. Moreover, concurrent hypermethylation of SFRP2 and DKK2 was observed in gastric cancer and this was significantly associated with increased expression of β-catenin, indicating that the joint inactivation of these two genes promoted the activation of the Wnt signaling pathway. Further analysis using a multivariate Cox proportional hazards model showed that DKK2 methylation was an independent prognostic factor for poor overall survival, and the predictive value was markedly enhanced when the combined methylation status of SFRP2 and DKK2 was considered. In addition, the methylation level of SFRP4 and DKK2 was correlated with the patient's age and tumor differentiation, respectively. In conclusion, epigenetic silencing of Wnt antagonists was associated with gastric carcinogenesis, and concurrent hypermethylation of SFRP2 and DKK2 could be a potential marker for a prognosis of poor overall survival.
Collapse
Affiliation(s)
- Hao Wang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
| | - Xiang-Long Duan
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi,
China
- Department of General Surgery, The First Hospital of Yulin, Yulin, Shaanxi,
China
| | - Xiao-Li Qi
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
| | - Lei Meng
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, Shaanxi,
China
| | - Yi-Song Xu
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
| | - Tong Wu
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
| | - Peng-Gao Dai
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, Shaanxi,
China
| |
Collapse
|
45
|
Xiang T, Fan Y, Li C, Li L, Ying Y, Mu J, Peng W, Feng Y, Oberst M, Kelly K, Ren G, Tao Q. DACT2 silencing by promoter CpG methylation disrupts its regulation of epithelial-to-mesenchymal transition and cytoskeleton reorganization in breast cancer cells. Oncotarget 2016; 7:70924-70935. [PMID: 27708215 PMCID: PMC5340116 DOI: 10.18632/oncotarget.12341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
Wnt signaling plays an important role in breast carcinogenesis. DAPPER2 (DACT2) functions as an inhibitor of canonical Wnt signaling and plays distinct roles in different cell contexts, with its role in breast tumorigenesis unclear. We investigated DACT2 expression in breast cancer cell lines and primary tumors, as well as its functions and molecular mechanisms. Results showed that DACT2 expression was silenced in 9/9 of cell lines. Promoter CpG methylation of DACT2 was detected in 89% (8/9) of cell lines, as well as in 73% (107/147) of primary tumors, but only in 20% (1/5) of surgical margin tissues and in none of normal breast tissues. Demethylation of BT549 and T47D cell lines with 5-aza-2'-deoxycytidine restored DACT2 expression along with promoter demethylation, suggesting that its downregulation in breast cancer is dependent on promoter methylation. Furthermore, ectopic expression of DACT2 induced breast cell apoptosis in vitro, and further inhibited breast tumor cell proliferation, migration and EMT, through antagonizing Wnt/β-catenin and Akt/GSK-3 signaling. Thus, these results demonstrate that DACT2 functions as a tumor suppressor for breast cancer but was frequently disrupted epigenetically in this cancer.
Collapse
Affiliation(s)
- Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Chunhong Li
- Oncology Department, Suining Sichuan Center Hospital, Sichuan, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Ying Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Michael Oberst
- Signal Transduction Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathleen Kelly
- Signal Transduction Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| |
Collapse
|
46
|
Liu L, Cao L, Gong B, Yu J. Novel biomarkers for the identification and targeted therapy of gastric cancer. Expert Rev Gastroenterol Hepatol 2016. [PMID: 26220043 DOI: 10.1586/17474124.2015.1072466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer development follows the pathologic pattern such that chronic inflammation in the gastric mucosa progressively transforms normal mucosa into atrophy, intestinal metaplasia, adenoma/dysplasia and eventually invasive and metastatic tumors. The accumulation of multiple genetic and epigenetic alterations leads to the dysregulation of oncogenes and tumor suppressors, which was considered as the driver behind events during the tumorigenesis. Almost all gastric cancers are adenocarcinomas, which share considerable heterogeneity with distinct morphology, pathogenesis and clinical behavior. Therefore, identifying subtypes of gastric cancers with molecular and genetic features will be beneficial for the early identification and selection of new effective agents for targeted treatment. High-throughput sequencing techniques such as whole genomic, epigenome and transcriptome sequencing and proteomics platforms have identified major genomic characteristics that exhibit identification and prognostic impacts and distinct response patterns. In this article, the authors aim to summarize the information regarding the most promising molecules that may have clinical application as non-invasive biomarkers and therapy targets.
Collapse
Affiliation(s)
- Lei Liu
- a 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
47
|
Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers (Basel) 2016; 8:cancers8050050. [PMID: 27196929 PMCID: PMC4880867 DOI: 10.3390/cancers8050050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer.
Collapse
|
48
|
Wu Y, Bai J, Hong L, Liu C, Yu S, Yu G, Zhang Y. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma. Oncol Lett 2016; 12:199-206. [PMID: 27347125 DOI: 10.3892/ol.2016.4560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/15/2016] [Indexed: 01/17/2023] Open
Abstract
The identification of a specific molecular marker for aggressiveness of nonfunctioning pituitary adenomas (NFPAs) is urgently required in order to guide the clinical diagnosis and treatment of NFPAs. In the present study, low expression of secreted frizzled-related protein 2 (sFRP2) in NFPAs was demonstrated by reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. The results confirmed an abnormal accumulation of free β-catenin in the nuclei of NFPAs, which is the core step for the activation of the Wnt canonical signaling pathway. Furthermore, cyclin D1 and c-Myc, the downstream proteins of the Wnt canonical signaling pathway, were overexpressed in aggressive NFPAs. These findings demonstrated the activation of the Wnt canonical signaling pathway in aggressive NFPAs. In addition, sFRP2 expression was observed to be inversely correlated to the aggressiveness of NFPAs. Therefore, sFRP2 may act as a tumor suppressor through modulation of the cellular cytosolic pool of β-catenin in NFPAs. Furthermore, the expression of sFRP2 may serve as a biomarker for NFPAs aggressiveness and prognosis.
Collapse
Affiliation(s)
- Youtu Wu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Jiwei Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Linchuan Hong
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Chunhui Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Shengyuan Yu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Guoqiang Yu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
49
|
Pećina-Šlaus N, Kafka A, Varošanec AM, Marković L, Krsnik Ž, Njirić N, Mrak G. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma. Mol Med Rep 2016; 13:4245-51. [PMID: 27035837 PMCID: PMC4838070 DOI: 10.3892/mmr.2016.5061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an increased expression level of SFRP3 was identified in the high grade astrocytomas when compared with those of a low grade. This may suggest that SFRP3 acts as an agonist of Wnt signaling and promotes invasive behavior.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Ana Maria Varošanec
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Leon Marković
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Niko Njirić
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| |
Collapse
|
50
|
Kristiansen S, Sölétormos G. Clinical Utility of Solid Tumor Epigenetics. MEDICAL EPIGENETICS 2016:459-471. [DOI: 10.1016/b978-0-12-803239-8.00025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|