1
|
Chen D, Guo Z, Yao L, Sun Y, Dian Y, Zhao D, Ke Y, Zeng F, Zhang C, Deng G, Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol 2025; 84:103686. [PMID: 40424719 DOI: 10.1016/j.redox.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS), regulators of cellular behaviors ranging from signaling to cell death, have complex production and control mechanisms to maintain a dynamic redox balance under physiological conditions. Redox imbalance is frequently observed in tumor cells, where ROS within tolerable limits promote oncogenic transformation, while excessive ROS induce a range of regulated cell death (RCD). As such, targeting ROS-mediated regulated cell death as a vulnerability in cancer. However, the precise regulatory networks governing ROS-mediated cancer cell death and their therapeutic applications remain inadequately characterized. In this Review, we first provide a comprehensive overview of the mechanisms underlying ROS production and control within cells, highlighting their dynamic balance. Next, we discuss the paradoxical nature of the redox system in tumor cells, where ROS can promote tumor growth or suppress it, depending on the context. We also systematically explored the role of ROS in tumor signaling pathways and revealed the complex ROS-mediated cross-linking networks in cancer cells. Following this, we focus on the intricate regulation of ROS in RCD and its current applications in cancer therapy. We further summarize the potential of ROS-induced RCD-based therapies, particularly those mediated by drugs targeting specific redox balance mechanisms. Finally, we address the measurement of ROS and oxidative damage in research, discussing existing challenges and future prospects of targeting ROS-mediated RCD in cancer therapy. We hope this review will offer promise for the clinical application of targeting oxidative stress-mediated regulated cell death in cancer therapy.
Collapse
Affiliation(s)
- Danyao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhe Ke
- The First Affliated Hospital of Shihezi University, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China.
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Li X, Ge J, Wan M, Feng T, Li X, Zhang H, Wang Z, Gao Y, Chen M, Pan F. SLC31A1 promotes chemoresistance through inducing CPT1A-mediated fatty acid oxidation in ER-positive breast cancer. Neoplasia 2025; 61:101125. [PMID: 39904115 PMCID: PMC11847129 DOI: 10.1016/j.neo.2025.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. In vitro experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our in vivo studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.
Collapse
Affiliation(s)
- Xudong Li
- Department of Oncology, Guangyuan Central Hospital, Guangyuan 628000, Sichuan, China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Mengdi Wan
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tongtong Feng
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoqian Li
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haibo Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhangyan Wang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Meiting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fei Pan
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Dawi J, Affa S, Kafaja K, Misakyan Y, Kades S, Dayal S, Fardeheb S, Narasimhan A, Tumanyan K, Venketaraman V. The Role of Ferroptosis and Cuproptosis in Tuberculosis Pathogenesis: Implications for Therapeutic Strategies. Curr Issues Mol Biol 2025; 47:99. [PMID: 39996820 PMCID: PMC11853893 DOI: 10.3390/cimb47020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M.tb) remains a global health crisis, with over 10 million people affected annually. Despite advancements in treatment, M.tb has developed mechanisms to evade host immune responses, complicating efforts to eradicate the disease. Two emerging cell death pathways, ferroptosis and cuproptosis, have been linked to TB pathogenesis. Ferroptosis, an iron-dependent form of cell death, is driven by lipid peroxidation and reactive oxygen species (ROS) accumulation. This process can limit M.tb replication by depleting intracellular iron and inducing macrophage necrosis. However, excessive ferroptosis may lead to tissue damage and aid bacterial dissemination. Cuproptosis, triggered by copper accumulation, disrupts mitochondrial metabolism, leading to protein aggregation and cell death. M.tb exploits both iron and copper metabolism to survive within macrophages, manipulating these processes to resist oxidative stress and immune responses. This review examines the roles of ferroptosis and cuproptosis in TB, discussing how M.tb manipulates these pathways for survival. While therapeutic strategies targeting these processes, such as ferroptosis inducers (Erastin, RSL3) and inhibitors (Ferrostatin-1) and copper ionophores (Disulfiram, Elesclomol) and chelators, show promise, the limited understanding of these pathways and potential off-target effects remains a significant challenge. Further exploration of these pathways may provide insights into the development of targeted therapies aimed at controlling M.tb infection while minimizing host tissue damage. By elucidating the complex interactions between ferroptosis, cuproptosis, and TB, future therapies could better address bacterial resistance and improve clinical outcomes.
Collapse
Affiliation(s)
- John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Stephen Affa
- Department of Chemistry, Physics, and Engineering, Los Angeles Valley College, Valley Glen, CA 91401, USA;
| | - Kevin Kafaja
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Yura Misakyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Samuel Kades
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Surbi Dayal
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Sabrina Fardeheb
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Ananya Narasimhan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| | - Kevin Tumanyan
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (K.K.); (Y.M.); (S.K.); (S.D.); (S.F.); (A.N.)
| |
Collapse
|
4
|
Panda B, Tripathy A, Patra S, Kullu B, Tabrez S, Jena M. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. IUBMB Life 2024; 76:592-613. [PMID: 38600696 DOI: 10.1002/iub.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Superoxide dismutase (SOD) is a crucial enzyme responsible for the redox homeostasis inside the cell. As a part of the antioxidant defense system, it plays a pivotal role in the dismutation of the superoxide radicals (O 2 - ) generated mainly by the oxidative phosphorylation, which would otherwise bring out the redox dysregulation, leading to higher reactive oxygen species (ROS) generation and, ultimately, cell transformation, and malignancy. Several studies have shown the involvement of ROS in a wide range of human cancers. As SOD is the key enzyme in regulating ROS, any change, such as a transcriptional change, epigenetic remodeling, functional alteration, and so forth, either activates the proto-oncogenes or aberrant signaling cascades, which results in cancer. Interestingly, in some cases, SODs act as tumor promoters instead of suppressors. Furthermore, SODs have also been known to switch their role during tumor progression. In this review, we have tried to give a comprehensive account of SODs multifactorial role in various human cancers so that SODs-based therapeutic strategies could be made to thwart cancers.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ankita Tripathy
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Srimanta Patra
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| | - Bandana Kullu
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
5
|
König S, Strassheimer F, Brandner NI, Schröder JH, Urban H, Harwart LF, Hehlgans S, Steinbach JP, Ronellenfitsch MW, Luger AL. Superoxide dismutase 1 mediates adaptation to the tumor microenvironment of glioma cells via mammalian target of rapamycin complex 1. Cell Death Discov 2024; 10:379. [PMID: 39187509 PMCID: PMC11347576 DOI: 10.1038/s41420-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
In glioblastoma (GB) cells oxidative stress is induced by both, conditions of the tumor microenvironment as well as by therapeutic interventions. Upregulation of superoxide dismutase 1 (SOD1), a key enzyme for oxidative defense and downstream target of mammalian target of rapamycin complex 1 (mTORC1) is a candidate mechanism to sustain survival and proliferation of tumor cells. SOD1 was inhibited by shRNA mediated gene suppression, CRISPR/Cas9 knockout and pharmacological inhibition in human (primary) GB cells. SOD1 activity was determined by SOD1/2 activity assay. ROS levels, cell death and the NADPH/NADP-ratio were measured under normal and starvation conditions. To study the mTORC1-SOD1 axis, mTORC1 activated TSC2 knockdown cells (TSC2sh) were analyzed. Genetic and pharmacological inhibition of SOD1 correlated with decreased SOD1 activity, increased ROS and enhanced the sensitivity of glioma cells towards starvation- and hypoxia-induced cell death. This was accompanied by a decreased NADPH/NADP-ratio. Furthermore, combination therapy of SOD1 and mTORC1 inhibition partially rescued the protective effect of mTORC1 inhibitor monotherapy. SOD1 mediates adaptation of GB cells to stress conditions in the tumor microenvironment in a mTORC1-dependent manner. Moreover, SOD1 activation contributes to the cell death resistance conferred by mTORC1 inhibitors under hypoxic conditions.
Collapse
Affiliation(s)
- Sven König
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Florian Strassheimer
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Nadja I Brandner
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Jan-Hendrik Schröder
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Hans Urban
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Leander F Harwart
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Goethe University Frankfurt, University Hospital, Department of Radiotherapy and Oncology, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Anna-Luisa Luger
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
6
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
8
|
Sedaghat MR, Shiri H, Tavakkol-Afshari J, Norouzmahani ME, Bahri F, Fooladi S, Momeni-Moghaddam H, Danesh Z, Nikpoor AR, Momeni-Moghaddam MA, Nematollahi MH, Sadeghi J. Impact of a 50bp insertion/deletion polymorphism of the superoxide dismutase-1 on oxidative stress status and risk of keratoconus. Exp Eye Res 2024; 238:109742. [PMID: 38040051 DOI: 10.1016/j.exer.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Keratoconus (KC) is characterized by the predominant primary ectatic disease, affecting the cornea, necessitating corneal transplants in some cases. While some loci associated with KC risk have been identified, the understanding of the disease remains limited. Superoxide dismutase (SOD) enzymes play a crucial role in countering the reactive oxygen species and providing protection against oxidative stress (OS). Accordingly, the objective of this study was to investigate a potential association of a 50 nucleotide base pairs (bp) insertion/deletion (I/D) within the SOD1 promoter, and the located 1684 bp upstream of the SOD1 ATG, with KC in the Iranian population. Additionally, an assessment was conducted on SOD activity and the total antioxidant capacity (TAC), as determined by the ferric reducing-antioxidant power assay, along with malondialdehyde (MDA) levels. In this case-control study, genomic DNA was extracted from the blood cells of KC (n = 402) and healthy (n = 331) individuals. The genotype of this gene was determined using the PCR technique. Furthermore, the amount of SOD enzyme activity and the MDA and TAC levels were measured in the serum of the study groups. The (I/I) genotype was present in 84.23%, the (I/D) genotype in 15.06%, and the (D/D) genotype in 0.69% of both groups. A statistically significant relationship was seen between different genotypes and TAC, MDA, and SOD1 activity indices (P < 0.05). Individuals with the D/D genotype exhibited a decrease in total antioxidant capacity, an increase in the amount of MDA, and a decrease in SOD1 enzyme activity (P < 0.05). Moreover, the logistic regression analysis of KC development indicated that elevated levels of MDA increased the risk of KC incidence in the patient group compared to the healthy group, while a higher activity of SOD1 and greater values of TAC decreased the KC risk. The removal of the 50 bp fragment reduced SOD1 activity and elevated OS levels, thereby impacting the oxidant-antioxidant balance. This could potentially play a significant role in individuals afflicted by KC.
Collapse
Affiliation(s)
| | - Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Tavakkol-Afshari
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of allergy and immunology, School of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Faegheh Bahri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Hamed Momeni-Moghaddam
- Rehabilitation Sciences Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zeynab Danesh
- Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Javad Sadeghi
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Sun Y, Yao L, Man C, Gao Z, He R, Fan Y. Development and validation of cuproptosis-related lncRNAs associated with pancreatic cancer immune microenvironment based on single-cell. Front Immunol 2023; 14:1220760. [PMID: 37822927 PMCID: PMC10563513 DOI: 10.3389/fimmu.2023.1220760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Background Cuproptosis, a novel mode of cell death associated with the tricarboxylic acid (TCA) cycle, is relevant to the development of cancer. However, the impact of single-cell-based Cuproptosis-associated lncRNAs on the Tumor immune microenvironment (TIME) of Pancreatic adenocarcinoma (PAAD) and its potential value for individualized immunotherapy has not been clarified. Methods 14 immune-related CRGs were screened by exploring the interaction between differentially expressed Immune-Related Genes (IRGs) and Cuproptosis-Related Genes (CRGs) in PAAD. Next, the expression amount and expression distribution of CRGs in single-cell samples were analyzed by focusing on 7-CRGs with significant expressions. On the one hand, MAP2K2, SOD1, and VEGFA, which were significantly differentially expressed between PAAD sites and normal tissues adjacent to them, were subjected to immunohistochemical validation and immune landscape analysis. On the other hand, from these 7-CRGs, prognostic signatures of lncRNAs were established by co-expression and LASSO-COX regression analysis, and their prognostic value and immune relevance were assessed. In addition, this study not only validated the hub CRGs and the lncRNAs constituting the signature in a PAAD animal model treated with immunotherapy-based combination therapy using immunohistochemistry and qRT-PCR but also explored the potential value of the combination of targeted, chemotherapy and immunotherapy. Results Based on the screening of 7-CRGs significantly expressed in a PAAD single-cell cohort and their co-expressed Cuproptosis-Related lncRNAs (CRIs), this study constructed a prognostic signature of 4-CRIs named CIR-score. A Nomogram integrating the CIR-score and clinical risk factors was constructed on this basis to predict the individualized survival of patients. Moreover, high and low-risk groups classified according to the median of signatures exhibited significant differences in clinical prognosis, immune landscape, bioenrichment, tumor burden, and drug sensitivity. And the immunohistochemical and qRT-PCR results of different mouse PAAD treatment strategies were consistent with the trend of inter-group variability in drug sensitivity of hub CRGs and CIR-score. The combination of immunotherapy, targeted therapy, and chemotherapy exhibited a better tumor suppression effect. Conclusion CIR-score, as a Cuproptosis-related TIME-specific prognostic signature based on PAAD single cells, not only predicts the prognosis and immune landscape of PAAD patients but also provides a new strategy for individualized immunotherapy-based combination therapy.
Collapse
Affiliation(s)
- Yimeng Sun
- Cancer Institute, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lin Yao
- Cancer Institute, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Changfeng Man
- Cancer Institute, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhenjun Gao
- Department of Gastroenterology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Rong He
- Cancer Institute, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 607] [Impact Index Per Article: 202.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
11
|
Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, Ouyang M. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front Oncol 2022; 12:1019153. [PMID: 36419894 PMCID: PMC9676660 DOI: 10.3389/fonc.2022.1019153] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Copper is an essential trace element in an organism, and changes in copper levels in vivo often indicate a diseased state. Copper and immunity have been discussed since the last century, with copper deficiency significantly affecting the development and function of the immune system, such as increased host susceptibility to various pathogens, decreased number and impaired function of neutrophils, reduced antibacterial activity of macrophages, decreased proliferation of splenocytes, impaired B cell ability to produce antibodies and impaired function of cytotoxic T lymphocyte and helper T cells. In the past 20 years, some studies have shown that copper ions are related to the development of many tumors, including lung cancer, acute lymphoid leukaemia, multiple myeloma and other tumors, wherein copper ion levels were significantly elevated, and current studies reveal that copper ions are involved in the development, growth and metastasis of tumors through various pathways. Moreover, recent studies have shown that copper ions can regulate the expression of PD-L1, thus, attention should be paid to the important role of copper in tumor immunity. By exploring and studying copper ions and tumor immunity, new insights into tumor immunity could be generated and novel therapeutic approaches to improve the clinical prognosis of patients can be provided.
Collapse
Affiliation(s)
- Fu Cheng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Geng Peng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinuo Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- Guangdong Country Garden School, Shunde, Foshan, Guangdong, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Sangwan N, Knox DP, Suttle NF. Effects of Chronic Exposure to Molybdate and Tetrathiomolybdate Supplementation of Water on Immature Rats Acutely Infected with Nippostrongylus brasiliensis. 1. Effects on Outcome of Infection and Host Health. J Comp Pathol 2022; 198:22-28. [DOI: 10.1016/j.jcpa.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
|
13
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
14
|
Lv J, Yi Y, Qi Y, Yan C, Jin W, Meng L, Zhang D, Jiang W. Mitochondrial homeostasis regulates definitive endoderm differentiation of human pluripotent stem cells. Cell Death Discov 2022; 8:69. [PMID: 35177589 PMCID: PMC8854419 DOI: 10.1038/s41420-022-00867-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular organelles play fundamental roles in almost all cell behaviors. Mitochondria have been reported to be functionally linked to various biological processes, including reprogramming and pluripotency maintenance. However, very little about the role of mitochondria has been revealed in human early development and lineage specification. Here, we reported the characteristics and function of mitochondria during human definitive endoderm differentiation. Using a well-established differentiation system, we first investigated the change of mitochondrial morphology by comparing undifferentiated pluripotent stem cells, the intermediate mesendoderm cells, and differentiated endoderm cells, and found that mitochondria were gradually elongated and matured along differentiation. We further analyzed the expression pattern of mitochondria-related genes by RNA-seq, indicating that mitochondria became active during differentiation. Supporting this notion, the production of adenosine triphosphate (ATP) and reactive oxygen species (ROS) was increased as well. Functionally, we utilized chemicals and genome editing techniques, which could interfere with mitochondrial homeostasis, to determine the role of mitochondria in human endoderm differentiation. Treatment with mitochondrial inhibitors, or genetic depletion of mitochondrial transcription factor A (TFAM), significantly reduced the differentiation efficiency of definitive endoderm. In addition, the defect in endoderm differentiation due to dysfunctional mitochondria could be restored to some extent by the addition of ATP. Moreover, the clearance of excessive ROS due to dysfunctional mitochondria by N-acetylcysteine (NAC) improved the differentiation as well. We further found that ATP and NAC could partially replace the growth factor activin A for definitive endoderm differentiation. Our study illustrates the essential role of mitochondria during human endoderm differentiation through providing ATP and regulating ROS levels, which may provide new insight for metabolic regulation of cell fate determination.
Collapse
Affiliation(s)
- Jing Lv
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liming Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
15
|
Li X, Wang Y, Li M, Wang H, Dong X. Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. Molecules 2021; 27:148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhui Wang
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Man Li
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Huipeng Wang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| |
Collapse
|
16
|
Reactive Oxygen Species in Acute Lymphoblastic Leukaemia: Reducing Radicals to Refine Responses. Antioxidants (Basel) 2021; 10:antiox10101616. [PMID: 34679751 PMCID: PMC8533157 DOI: 10.3390/antiox10101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer diagnosed in children and adolescents. Approximately 70% of patients survive >5-years following diagnosis, however, for those that fail upfront therapies, survival is poor. Reactive oxygen species (ROS) are elevated in a range of cancers and are emerging as significant contributors to the leukaemogenesis of ALL. ROS modulate the function of signalling proteins through oxidation of cysteine residues, as well as promote genomic instability by damaging DNA, to promote chemotherapy resistance. Current therapeutic approaches exploit the pro-oxidant intracellular environment of malignant B and T lymphoblasts to cause irreversible DNA damage and cell death, however these strategies impact normal haematopoiesis and lead to long lasting side-effects. Therapies suppressing ROS production, especially those targeting ROS producing enzymes such as the NADPH oxidases (NOXs), are emerging alternatives to treat cancers and may be exploited to improve the ALL treatment. Here, we discuss the roles that ROS play in normal haematopoiesis and in ALL. We explore the molecular mechanisms underpinning overproduction of ROS in ALL, and their roles in disease progression and drug resistance. Finally, we examine strategies to target ROS production, with a specific focus on the NOX enzymes, to improve the treatment of ALL.
Collapse
|
17
|
Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, Qi J, Chen YS, Gao Z, Casey KM, Bazhin AA, Chen M, Hu L, Xie J, Fang M, Zhang C, Zhu Q, Wang Z, Giaccia AJ, Gambhir SS, Zhu W, Felsher DW, Pegram MD, Goun EA, Le A, Rao J. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol 2021; 39:357-367. [PMID: 33077961 PMCID: PMC7956242 DOI: 10.1038/s41587-020-0707-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
Depletion of mitochondrial copper, which shifts metabolism from respiration to glycolysis and reduces energy production, is known to be effective against cancer types that depend on oxidative phosphorylation. However, existing copper chelators are too toxic or ineffective for cancer treatment. Here we develop a safe, mitochondria-targeted, copper-depleting nanoparticle (CDN) and test it against triple-negative breast cancer (TNBC). We show that CDNs decrease oxygen consumption and oxidative phosphorylation, cause a metabolic switch to glycolysis and reduce ATP production in TNBC cells. This energy deficiency, together with compromised mitochondrial membrane potential and elevated oxidative stress, results in apoptosis. CDNs should be less toxic than existing copper chelators because they favorably deprive copper in the mitochondria in cancer cells instead of systemic depletion. Indeed, we demonstrate low toxicity of CDNs in healthy mice. In three mouse models of TNBC, CDN administration inhibits tumor growth and substantially improves survival. The efficacy and safety of CDNs suggest the potential clinical relevance of this approach.
Collapse
Affiliation(s)
- Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Arvin M Gouw
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shenghao Guo
- Departments of Pathology and Oncology, and ChemBE, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nabeel Attarwala
- Departments of Pathology and Oncology, and ChemBE, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yao Tang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Ji Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Yun-Sheng Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhou Gao
- Genetics Bioinformatics Service Center, Stanford University, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arkadiy A Bazhin
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Leeann Hu
- Salk Institute for Biological Studies, San Diego, CA, USA
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxi Fang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Cissy Zhang
- Departments of Pathology and Oncology, and ChemBE, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihua Zhu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhiyuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark D Pegram
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena A Goun
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Anne Le
- Departments of Pathology and Oncology, and ChemBE, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Subcellular Location of Tirapazamine Reduction Dramatically Affects Aerobic but Not Anoxic Cytotoxicity. Molecules 2020; 25:molecules25214888. [PMID: 33105798 PMCID: PMC7660101 DOI: 10.3390/molecules25214888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is an adverse prognostic feature of solid cancers that may be overcome with hypoxia-activated prodrugs (HAPs). Tirapazamine (TPZ) is a HAP which has undergone extensive clinical evaluation in this context and stimulated development of optimized analogues. However the subcellular localization of the oxidoreductases responsible for mediating TPZ-dependent DNA damage remains unclear. Some studies conclude only nuclear-localized oxidoreductases can give rise to radical-mediated DNA damage and thus cytotoxicity, whereas others identify a broader role for endoplasmic reticulum and cytosolic oxidoreductases, indicating the subcellular location of TPZ radical formation is not a critical requirement for DNA damage. To explore this question in intact cells we engineered MDA-231 breast cancer cells to express the TPZ reductase human NADPH: cytochrome P450 oxidoreductase (POR) harboring various subcellular localization sequences to guide this flavoenzyme to the nucleus, endoplasmic reticulum, cytosol or inner surface of the plasma membrane. We show that all POR variants are functional, with differences in rates of metabolism reflecting enzyme expression levels rather than intracellular TPZ concentration gradients. Under anoxic conditions, POR expression in all subcellular compartments increased the sensitivity of the cells to TPZ, but with a fall in cytotoxicity per unit of metabolism (termed ‘metabolic efficiency’) when POR is expressed further from the nucleus. However, under aerobic conditions a much larger increase in cytotoxicity was observed when POR was directed to the nucleus, indicating very high metabolic efficiency. Consequently, nuclear metabolism results in collapse of hypoxic selectivity of TPZ, which was further magnified to the point of reversing O2 dependence (oxic > hypoxic sensitivity) by employing a DNA-affinic TPZ analogue. This aerobic hypersensitivity phenotype was partially rescued by cellular copper depletion, suggesting the possible involvement of Fenton-like chemistry in generating short-range effects mediated by the hydroxyl radical. In addition, the data suggest that under aerobic conditions reoxidation strictly limits the TPZ radical diffusion range resulting in site-specific cytotoxicity. Collectively these novel findings challenge the purported role of intra-nuclear reductases in orchestrating the hypoxia selectivity of TPZ.
Collapse
|
19
|
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103917] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Torrente L, Prieto-Farigua N, Falzone A, Elkins CM, Boothman DA, Haura EB, DeNicola GM. Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone. Redox Biol 2020; 30:101440. [PMID: 32007910 PMCID: PMC6997906 DOI: 10.1016/j.redox.2020.101440] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of β-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to β-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to β-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to β-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to β-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.
Collapse
Affiliation(s)
- Laura Torrente
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Cody M Elkins
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, Simon Cancer Center Indiana, University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Li X, Chen Y, Zhao J, Shi J, Wang M, Qiu S, Hu Y, Xu Y, Cui Y, Liu C, Liu C. The Specific Inhibition of SOD1 Selectively Promotes Apoptosis of Cancer Cells via Regulation of the ROS Signaling Network. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9706792. [PMID: 30911355 PMCID: PMC6398008 DOI: 10.1155/2019/9706792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022]
Abstract
Multiple signaling pathways including ERK, PI3K-Akt, and NF-κB, which are essential for onset and development of cancer, can be activated by intracellularly sustained high levels of H2O2 provided by elevated activity and expression of copper/zinc superoxide dismutase (SOD1) that catalyzes the dismutation of O2 •- into H2O2. Here, tests performed by the utilization of our designed specific SOD1 inhibitor LD100 on cancer and normal cells reveal that the signaling pathways and their crosstalk to support cancer cell growth are repressed, but the signaling pathways to promote cancer cell cycle arrest and apoptosis are stimulated by specific SOD1 inhibition-mediated ROS changes. These regulated pathways constitute an ROS signaling network that determines the fate of cancer cells. This ROS signaling network is also regulated in SOD1 knockdown cells. These findings might facilitate disclosure of action mechanisms by copper-chelating anticancer agents and design of SOD1-targeting and ROS signaling pathway-interfering anticancer small molecules.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yuanyuan Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Jidong Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Mingfang Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Shuang Qiu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yinghui Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yulin Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079 Hubei, China
| |
Collapse
|
22
|
Lewandowski Ł, Kepinska M, Milnerowicz H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:105-113. [PMID: 29310006 DOI: 10.1016/j.etap.2017.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The function of Cu,Zn-SOD is to dismutate superoxide into hydrogen peroxide and oxygen. This task is fulfilled due to structural nuances of the enzyme. Many environmental xenobiotics have been proved to inhibit Cu,Zn-SOD. Those compounds could be found not only in industrial sewage, cigarettes and various chemical agents - some of them are used as drugs, drug production substrates or are the product of drug biotransformation. Cu,Zn-SOD exposition to these compounds leads to inhibition due to: copper ion chelation, unfolding the structure of the enzyme, affecting residues vital for activity maintenance. This review covers a selection of Cu,Zn-SOD inhibitors, referring to in vivo and in vitro study.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
23
|
Gomes SE, Pereira DM, Roma-Rodrigues C, Fernandes AR, Borralho PM, Rodrigues CMP. Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells. PLoS One 2018; 13:e0191607. [PMID: 29360852 PMCID: PMC5779689 DOI: 10.1371/journal.pone.0191607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.
Collapse
Affiliation(s)
- Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculty of Sciences and Technology, New University of Lisbon, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculty of Sciences and Technology, New University of Lisbon, Caparica, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Dong X, Zhang Z, Zhao J, Lei J, Chen Y, Li X, Chen H, Tian J, Zhang D, Liu C, Liu C. The rational design of specific SOD1 inhibitors via copper coordination and their application in ROS signaling research. Chem Sci 2016; 7:6251-6262. [PMID: 30034766 PMCID: PMC6024207 DOI: 10.1039/c6sc01272h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022] Open
Abstract
Efficient methods for the regulation of intracellular O2˙- and H2O2 levels, without altering intracellular processes, are urgently required for the rapidly growing interest in ROS signaling, as ROS signaling has been confirmed to be involved in a series of basic cellular processes including proliferation, differentiation, growth and migration. Intracellular H2O2 is formed mainly via the catalytic dismutation of O2˙- by SODs including SOD1, SOD2 and SOD3. Thus, the intracellular levels of O2˙- and H2O2 can directly be controlled through regulating SOD1 activity. Here, based on the active site structure and catalytic mechanism of SOD1, we developed a new type of efficient and specific SOD1 inhibitors which can directly change the intracellular levels of H2O2 and O2˙-. These inhibitors inactivate intracellular SOD1 via localization into the SOD1 active site, thereby coordinating to the Cu2+ in the active site of SOD1, blocking the access of O2˙- to Cu2+, and breaking the Cu2+/Cu+ catalytic cycle essential for O2˙- dismutation. The reduced ERK1/2 phosphorylation induced by the specific SOD1 inactivation-mediated decrease of intracellular H2O2 levels reveals the potential of these specific SOD1 inhibitors in understanding and regulating ROS signaling. Furthermore, these specific SOD1 inhibitors also lead to selectively elevated cancer cell apoptosis, indicating that these kinds of SOD1 inhibitors might be candidates for lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Xiongwei Dong
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Zhe Zhang
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Jidong Zhao
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Juan Lei
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Yuanyuan Chen
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Xiang Li
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Huanhuan Chen
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Junli Tian
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Dan Zhang
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE For a healthy cell to turn into a cancer cell and grow out to become a tumor, it needs to undergo a series of complex changes and acquire certain traits, summarized as "The Hallmarks of Cancer." These hallmarks can all be regarded as the result of altered signal transduction cascades and an understanding of these cascades is essential for cancer treatment. RECENT ADVANCES Redox signaling is a long overlooked form of signal transduction that proceeds through the reversible oxidation of cysteines in proteins and that uses hydrogen peroxide as a second messenger. CRITICAL ISSUES In this article, we provide examples that show that redox signaling is involved in the regulation of proteins and signaling cascades that play roles in every hallmark of cancer. FUTURE DIRECTIONS An understanding of how redox signaling and "classical" signal transduction are intertwined could hold promising strategies for cancer therapy in the future. Antioxid. Redox Signal. 25, 300-325.
Collapse
Affiliation(s)
- Marten Hornsveld
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Tobias B Dansen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
26
|
Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovačević Z, Huang MLH, Kalinowski DS, Richardson DR. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016; 8:874-86. [PMID: 27334916 DOI: 10.1039/c6mt00105j] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
28
|
ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:15008. [PMID: 27119105 PMCID: PMC4782961 DOI: 10.1038/mto.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide, and the 5-year survival rates are among the worst of the major cancers. Oncolytic herpes simplex viruses (oHSV) have the potential to make a significant impact in the targeted treatment of these patients. Here, we tested antitumor efficacy of RAMBO, an oHSV armed with the antiangiogenic Vstat120, alone and in conjunction with ATN-224, a copper chelator against HNSCC in vitro and in vivo animal models. We found that all tested HNSCC cells responded well to virus treatment and were sensitive to RAMBO-mediated oncolytic destruction. In vivo, RAMBO had a significant antiangiogenic and antitumorigenic effect. Physiologic levels of copper inhibited viral replication and HNSCC cell killing. Chelation of copper using ATN-224 treatment significantly improved serum stability of RAMBO and permitted systemic delivery in HNSCC tumor xenografts models. Furthermore, our results show that the combination of ATN-224 and RAMBO strongly inhibits lung metastases in a mouse model of HNSCC. These findings suggest that combining ATN-224 with RAMBO has potential for clinical trials in both early and advanced HNSCC patients.
Collapse
|
29
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
30
|
Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol 2014; 92:90-101. [DOI: 10.1016/j.bcp.2014.07.017] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
|
31
|
Abstract
SIGNIFICANCE Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. RECENT ADVANCES SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. CRITICAL ISSUES Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. FUTURE DIRECTIONS To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Delira Robbins
- 1 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
32
|
Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS. Targeting SOD1 reduces experimental non–small-cell lung cancer. J Clin Invest 2014; 124:117-28. [PMID: 24292713 DOI: 10.1172/jci71714] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Approximately 85% of lung cancers are non–small-cell lung cancers (NSCLCs), which are often diagnosed at an advanced stage and associated with poor prognosis. Currently, there are very few therapies available for NSCLCs due to the recalcitrant nature of this cancer. Mutations that activate the small GTPase KRAS are found in 20% to 30% of NSCLCs. Here, we report that inhibition of superoxide dismutase 1 (SOD1) by the small molecule ATN-224 induced cell death in various NSCLC cells, including those harboring KRAS mutations. ATN-224–dependent SOD1 inhibition increased superoxide, which diminished enzyme activity of the antioxidant glutathione peroxidase, leading to an increase in intracellular hydrogen peroxide (H(2)O(2)) levels. We found that ATN-224–induced cell death was mediated through H(2)O(2)-dependent activation of P38 MAPK and that P38 activation led to a decrease in the antiapoptotic factor MCL1, which is often upregulated in NSCLC. Treatment with both ATN-224 and ABT-263, an inhibitor of the apoptosis regulators BCL2/BCLXL, augmented cell death. Furthermore, we demonstrate that ATN-224 reduced tumor burden in a mouse model of NSCLC. Our results indicate that antioxidant inhibition by ATN-224 has potential clinical applications as a single agent, or in combination with other drugs, for the treatment of patients with various forms of NSCLC, including KRAS-driven cancers.
Collapse
|
33
|
Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics 2013; 195:757-67. [PMID: 24002644 PMCID: PMC3813862 DOI: 10.1534/genetics.113.156836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synthetic lethality is a rational approach to identify candidate drug targets for selective killing of cancer cells harboring somatic mutations that cause chromosome instability (CIN). To identify a set of the most highly connected synthetic lethal partner genes in yeast for subsequent testing in mammalian cells, we used the entire set of 692 yeast CIN genes to query the genome-wide synthetic lethal datasets. Hierarchical clustering revealed a highly connected set of synthetic lethal partners of yeast genes whose human orthologs are somatically mutated in colorectal cancer. Testing of a small matrix of synthetic lethal gene pairs in mammalian cells suggested that members of a pathway that remove reactive oxygen species that cause DNA damage would be excellent candidates for further testing. We show that the synthetic lethal interaction between budding yeast rad54 and sod1 is conserved within a human colorectal cancer context. Specifically, we demonstrate RAD54B-deficient cells are selectively killed relative to controls via siRNA-based silencing and chemical inhibition and further demonstrate that this interaction is conserved in an unrelated cell type. We further show that the DNA double strand breaks, resulting from increased reactive oxygen species following SOD1 inhibition, persist within the RAD54B-deficient cells and result in apoptosis. Collectively, these data identify SOD1 as a novel candidate cancer drug target and suggest that SOD1 inhibition may have broad-spectrum applicability in a variety of tumor types exhibiting RAD54B deficiencies.
Collapse
|
34
|
Lin J, Zahurak M, Beer TM, Ryan CJ, Wilding G, Mathew P, Morris M, Callahan JA, Gordon G, Reich SD, Carducci MA, Antonarakis ES. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naïve prostate cancer. Urol Oncol 2013; 31:581-8. [PMID: 21816640 PMCID: PMC3227793 DOI: 10.1016/j.urolonc.2011.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/20/2011] [Accepted: 04/23/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE ATN-224 (choline tetrathiomolybdate) is an oral Cu(2+)/Zn(2+)-superoxide dismutase 1 (SOD1) inhibitor with preclinical antitumor activity. We hypothesized that ATN-224 may induce antitumor effects as an antiangiogenic agent at low dose-levels while possessing direct antitumor activity at higher dose-levels. The objective of this study was to screen its clinical activity in patients with biochemically recurrent hormone-naïve prostate cancer. METHODS Biochemically-recurrent prostate cancer patients with prostate specific antigen doubling times (PSADT) < 12 months, no radiographic evidence of metastasis, and no hormonal therapy within 6 months (with serum testosterone levels > 150 ng/dl) were eligible. ATN-224 was administered at 2 dose-levels, 300 mg (n = 23) or 30 mg (n = 24) daily, by way of randomization. PSA progression was defined as a ≥ 50% increase (and >5 ng/ml) in PSA from baseline or post-treatment nadir. Endpoints included the proportion of patients who were free of PSA progression at 24 weeks, changes in PSA slope/PSADT, and safety. The study was not powered to detect differences between the 2 treatment groups. RESULTS At 24 weeks, 59% (95% CI 33%-82%) of men in the low-dose arm and 45% (95% CI 17%-77%) in the high-dose arm were PSA progression-free. Median PSA progression-free survival was 30 weeks (95% CI 21-40(+)) and 26 weeks (95% CI 24-39(+)) in the low-dose and high-dose groups, respectively. Pre- and on-treatment PSA kinetics analyses showed a significant mean PSA slope decrease (P = 0.006) and a significant mean PSADT increase (P = 0.032) in the low-dose arm only. Serum ceruloplasmin levels, a biomarker for ATN-224 activity, were lowered in the high-dose group, but did not correlate with PSA changes. CONCLUSIONS Low-dose ATN-224 (30 mg daily) may have biologic activity in men with biochemically-recurrent prostate cancer, as suggested by an improvement in PSA kinetics. However, the clinical significance of PSA kinetics changes in this patient population remains uncertain. The absence of a dose-response effect also reduces enthusiasm, and there are currently no plans to further develop this agent in prostate cancer.
Collapse
Affiliation(s)
- Jianqing Lin
- Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee K, Briehl MM, Mazar AP, Batinic-Haberle I, Reboucas JS, Glinsmann-Gibson B, Rimsza LM, Tome ME. The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies. Free Radic Biol Med 2013; 60:157-67. [PMID: 23416365 PMCID: PMC3654089 DOI: 10.1016/j.freeradbiomed.2013.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 01/16/2023]
Abstract
Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death. ATN-224 also targets the mitochondria, decreasing both cytochrome c oxidase (CcOX) activity and mitochondrial membrane potential. The concentration of ATN-224 required to induce cell death is proportional to SOD1 levels, but independent of Bcl-2 status. In combination with doxorubicin, ATN-224 enhances cell death. In primary B-cell acute lymphoblastic leukemia patient samples, ATN-224 decreases the viable cell number. Our findings suggest that ATN-224's dual targeting of SOD1 and CcOX is a promising approach for treatment of hematological malignancies either as an adjuvant or as a single agent.
Collapse
Affiliation(s)
- Kristy Lee
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Andrew P. Mazar
- Chemistry of Life Processes Institute. Northwestern University, Evanston, IL 60201, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| | - Julio S. Reboucas
- Departmento de Química CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58051-970, Brazil
| | | | - Lisa M. Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Margaret E. Tome
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
36
|
Jain S, Cohen J, Ward MM, Kornhauser N, Chuang E, Cigler T, Moore A, Donovan D, Lam C, Cobham MV, Schneider S, Hurtado Rúa SM, Benkert S, Mathijsen Greenwood C, Zelkowitz R, Warren JD, Lane ME, Mittal V, Rafii S, Vahdat LT. Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann Oncol 2013; 24:1491-8. [PMID: 23406736 DOI: 10.1093/annonc/mds654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bone marrow-derived endothelial progenitor cells (EPCs) are critical for metastatic progression. This study explores the effect of tetrathiomolybdate (TM), an anti-angiogenic copper chelator, on EPCs in patients at high risk for breast cancer recurrence. PATIENTS AND METHODS This phase 2 study enrolled breast cancer patients with stage 3 and stage 4 without evidence of disease (NED), and stage 2 if triple-negative. TM 100 mg orally was administered to maintain ceruloplasmin <17 mg/dl for 2 years or until relapse. The primary end point was change in EPCs. RESULTS Forty patients (28 stage 2/3, 12 stage 4 NED) were enrolled. Seventy-five percent patients achieved the copper depletion target by 1 month. Ninety-one percent of triple-negative patients copper-depleted compared with 41% luminal subtypes. In copper-depleted patients only, there was a significant reduction in EPCs/ml by 27 (P = 0.04). Six patients relapsed while on study, of which only one patient had EPCs maintained below baseline. The 10-month relapse-free survival was 85.0% (95% CI 74.6%-96.8%). Only grade 3/4 toxicity was hematologic: neutropenia (3.1% of cycles), febrile neutropenia (0.2%), and anemia (0.2%). CONCLUSIONS TM is safe and appears to maintain EPCs below baseline in copper-depleted patients. TM may promote tumor dormancy and ultimately prevent relapse.
Collapse
Affiliation(s)
- S Jain
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen-free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson's disease, tumor growth, inflammatory diseases, and Alzheimer's disease have created unexpected common ground. The incidence of pre-hemolytic copper poisoning in specific pathogen-free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the "copper cost" of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question "can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?" A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates.
Collapse
|
38
|
Tominaga T, Hachiya M, Shibata T, Sakamoto Y, Taki K, Akashi M. Exogenously-added copper/zinc superoxide dismutase rescues damage of endothelial cells from lethal irradiation. J Clin Biochem Nutr 2011; 50:78-83. [PMID: 22247605 PMCID: PMC3246187 DOI: 10.3164/jcbn.11-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/13/2011] [Indexed: 01/27/2023] Open
Abstract
The vascular endothelium is important for the early and late effects observed in lethally irradiated tissue and organs. We examined the effects of exogenously added superoxide dismutase on cell survival and angiogenesis in lethally irradiated human primary umbilical vein endothelial cells. Cell survival was significantly improved in superoxide dismutase-treated cells; the addition of superoxide dismutase to cells after irradiation was also effective for increased survival, as it was before irradiation. Moreover, treatment of cells with superoxide dismutase enhanced the phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases 1 and 2 in human primary umbilical vein endothelial cells. The addition of superoxide dismutase to cells after irradiation attenuated the reduction of angiogenesis by irradiation, and inhibition of the mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases signaling pathway abrogated the rescue effect of superoxide dismutase. Our results suggest that superoxide dismutase rescues human primary umbilical vein endothelial cells from endothelial dysfunction caused by irradiation via a pathway requiring activation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases 1 and 2.
Collapse
Affiliation(s)
- Takako Tominaga
- Department of Radiation Emergency Medicine, The Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, Li J, Liu R, Zhang T, Xie N, Nai HS, Wu H, Dong Q, Zhao X, Nice EC, Huang C, Wei Y. Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics 2011; 10:M110.005397. [PMID: 21622897 PMCID: PMC3205852 DOI: 10.1074/mcp.m110.005397] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/26/2011] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.
Collapse
Affiliation(s)
- Yunlong Lei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Kai Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Cong Gao
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Quek Choon Lau
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hua Pan
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Ke Xie
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Jingyi Li
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rui Liu
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Na Xie
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Huey Shan Nai
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hong Wu
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiang Dong
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xia Zhao
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Edouard C. Nice
- **Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuquan Wei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
40
|
Wei H, Frei B, Beckman JS, Zhang WJ. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am J Physiol Heart Circ Physiol 2011; 301:H712-20. [PMID: 21724870 DOI: 10.1152/ajpheart.01299.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an important role in vascular inflammation, and TTM may have value as an anti-inflammatory or anti-atherogenic agent.
Collapse
Affiliation(s)
- Hao Wei
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
41
|
Lau KH, Christlieb M, Schröder M, Sheldon H, Harris AL, Grovenor CRM. Development of a new bimodal imaging methodology: a combination of fluorescence microscopy and high-resolution secondary ion mass spectrometry. J Microsc 2011; 240:21-31. [PMID: 21050210 DOI: 10.1111/j.1365-2818.2010.03380.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present a new experimental methodology to combine mass spectrometry (NanoSIMS) with fluorescence microscopy to provide subcellular information on the location of small molecules in cultured cells. We demonstrate this by comparing the distribution of 5-bromo-2-deoxyuridine in the same cells given by both NanoSIMS analysis and by fluorescence immunohistochemistry. Fiducial markers in the substrates ensured that the images formed by SIMS mapping of bromine ions could be co-registered exactly with images from fluorescence microscopy. The NanoSIMS was shown to faithfully reproduce the information from fluorescence microscopy, but at a much higher spatial resolution. We then show preliminary SIMS images on the distribution of ATN-224, a therapeutic copper chelator for which there is no fluorescent marker, co-registered with conventional Lysotracker and Hoechst stains on the same cells.
Collapse
Affiliation(s)
- K H Lau
- Department of Materials Science, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
42
|
Cabello CM, Lamore SD, Bair WB, Davis AL, Azimian SM, Wondrak GT. DCPIP (2,6-dichlorophenolindophenol) as a genotype-directed redox chemotherapeutic targeting NQO1*2 breast carcinoma. Free Radic Res 2010; 45:276-92. [PMID: 21034357 DOI: 10.3109/10715762.2010.526766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulative experimental evidence suggests feasibility of chemotherapeutic intervention targeting human cancer cells by pharmacological modulation of cellular oxidative stress. Current efforts aim at personalization of redox chemotherapy through identification of predictive tumour genotypes and redox biomarkers. Based on earlier research demonstrating that anti-melanoma activity of the pro-oxidant 2,6-dichlorophenolindophenol (DCPIP) is antagonized by cellular NAD(P)H:quinone oxidoreductase (NQO1) expression, this study tested DCPIP as a genotype-directed redox chemotherapeutic targeting homozygous NQO1*2 breast carcinoma, a common missense genotype [rs1800566 polymorphism; NP_000894.1:p.Pro187Ser] encoding a functionally impaired NQO1 protein. In a panel of cultured breast carcinoma cell lines and NQO1-transfectants with differential NQO1 expression levels, homozygous NQO1*2 MDA-MB231 cells were hypersensitive to DCPIP-induced caspase-independent cell death that occurred after early onset of oxidative stress with glutathione depletion and loss of genomic integrity. Array analysis revealed upregulated expression of oxidative (GSTM3, HMOX1, EGR1), heat shock (HSPA6, HSPA1A, CRYAB) and genotoxic stress response (GADD45A, CDKN1A) genes confirmed by immunoblot detection of HO-1, Hsp70, Hsp70B', p21 and phospho-p53 (Ser15). In a murine xenograft model of human homozygous NQO1*2-breast carcinoma, systemic administration of DCPIP displayed significant anti-tumour activity, suggesting feasibility of redox chemotherapeutic intervention targeting the NQO1*2 genotype.
Collapse
Affiliation(s)
- Christopher M Cabello
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hour TC, Lai YL, Kuan CI, Chou CK, Wang JM, Tu HY, Hu HT, Lin CS, Wu WJ, Pu YS, Sterneck E, Huang AM. Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol 2010; 80:325-34. [PMID: 20385105 PMCID: PMC3586239 DOI: 10.1016/j.bcp.2010.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 02/04/2023]
Abstract
Bladder cancer is the fourth most common type of cancer in men (ninth in women) in the United States. Cisplatin is an effective agent against the most common subtype, urothelial carcinoma. However, the development of chemotherapy resistance is a severe clinical problem for the successful treatment of this and other cancers. A better understanding of the cellular and molecular events in response to cisplatin treatment and the development of resistance are critical to improve the therapeutic options for patients. Here, we report that expression of the CCAAT/enhancer binding protein delta (CEBPD, C/EBPdelta, NF-IL6beta) is induced by cisplatin in the human bladder urothelial carcinoma NTUB1 cell line and is specifically elevated in a cisplatin resistant subline. Expression of CEBPD reduced cisplatin-induced reactive oxygen species (ROS) and apoptosis in NTUB1 cells by inducing the expression of Cu/Zn-superoxide dismutase (SOD1) via direct promoter transactivation. Several reports have implicated CEBPD as a tumor suppressor gene. This study reveals a novel role for CEBPD in conferring drug resistance, suggesting that it can also be pro-oncogenic. Furthermore, our data suggest that SOD inhibitors, which are already used as anti-angiogenic agents, may be suitable for combinatorial chemotherapy to prevent or treat cisplatin resistance in bladder and possibly other cancers.
Collapse
Affiliation(s)
- Tzyh-Chyuan Hour
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Liang Lai
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Kuan
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Kung Chou
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Ju-Ming Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Yao Tu
- Department of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Ting Hu
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Department of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - A-Mei Huang
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Joimel U, Gest C, Soria J, Pritchard LL, Alexandre J, Laurent M, Blot E, Cazin L, Vannier JP, Varin R, Li H, Soria C. Stimulation of angiogenesis resulting from cooperation between macrophages and MDA-MB-231 breast cancer cells: proposed molecular mechanism and effect of tetrathiomolybdate. BMC Cancer 2010; 10:375. [PMID: 20637124 PMCID: PMC2918575 DOI: 10.1186/1471-2407-10-375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 07/17/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Infiltration by macrophages (Mphi) indicates a poor prognosis in breast cancers, in particular by inducing angiogenesis. Our study aimed 1) to investigate the mechanism by which cooperation between Mphi and aggressive breast cancer cells (MDA-MB-231) induces angiogenesis; 2) to examine the effect of tetrathiomolybdate (TM) on this angiogenic activity. METHODS Mphi coincubated with MDA-MB-231 were used as a model to mimic the inflammatory microenvironment. Angiogenesis induced by the culture media was tested in the chick chorioallantoic membrane (CAM). Mphi phenotype was evaluated by 1) expression of the M1 marker CD80, and secretion of interleukin 10 (IL-10), an M2 marker; 2) capacity to secrete Tumour Necrosis Factor alpha (TNFalpha) when stimulated by lipopolysaccharide/interferon gamma (LPS/IFNgamma); 3) ability to induce MDA-MB-231 apoptosis. To explore the molecular mechanisms involved, cytokine profiles of conditioned media from MDA-MB-231, Mphi and the coculture were characterised by an antibody cytokine array. All experiments were carried out both in presence and in absence of TM. RESULTS Incubation of Mphi with MDA-MB-231 induced a pro-angiogenic effect in the CAM. It emerged that the angiogenic activity of the coculture is due to the capacity of Mphi to switch from M1 Mphi towards M2, probably due to an increase in Macrophage Colony Stimulating Factor. This M1-M2 switch was shown by a decreased expression of CD80 upon LPS/IFNgamma stimulation, an increased secretion of IL-10, a decreased secretion of TNFalpha in response to LPS/IFNgamma and an inability to potentiate apoptosis. At the molecular level, the angiogenic activity of the coculture medium can be explained by the secretion of CXC chemokines/ELR+ and CC chemokines. Although TM did not modify either the M2 phenotype in the coculture or the profile of the secreted chemokines, it did decrease the angiogenic activity of the coculture medium, suggesting that TM inhibited angiogenic activity by interfering with the endothelial cell signalling induced by these chemokines. CONCLUSIONS Cooperation between Mphi and MDA-MB-231 transformed M1 Mphi to an angiogenic, M2 phenotype, attested by secretion of CXC chemokines/ELR+ and CC chemokines. TM inhibited this coculture-induced increase in angiogenic activity, without affecting either Mphi phenotype or cytokine secretion profiles.
Collapse
Affiliation(s)
- Ulrich Joimel
- Laboratoire M,E,R,C,I - EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, 76183 Rouen cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bagley RG. Endosialin: from vascular target to biomarker for human sarcomas. Biomark Med 2010; 3:589-604. [PMID: 20477527 DOI: 10.2217/bmm.09.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biomarkers have been the focus of investigations to diagnose disease, track response to therapy and predict prognosis. Meanwhile, the identification of new targets for therapeutic intervention is an ongoing quest in the field of oncology. The recognition of endosialin as an antigen that is selectively overexpressed in human tumor tissues offers new strategies for treating cancer. Not only do the tumor vasculature and stromal compartments upregulate endosialin but, importantly, the malignant cells of sarcomas strongly express endosialin as well. A diagnostic assay that measures the intensity of endosialin expression in malignant tissues would assist in selecting patients that could benefit from an antiendosialin therapy. Thus, endosialin holds potential value both as a therapeutic target and as a biomarker for certain human cancers.
Collapse
Affiliation(s)
- Rebecca G Bagley
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01710-9322, USA.
| |
Collapse
|
46
|
Abstract
Redox dysregulation originating from metabolic alterations and dependence on mitogenic and survival signaling through reactive oxygen species represents a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. This review will present an update on drug discovery, target identification, and mechanisms of action of experimental redox chemotherapeutics with a focus on pro- and antioxidant redox modulators now in advanced phases of preclinal and clinical development. Recent research indicates that numerous oncogenes and tumor suppressor genes exert their functions in part through redox mechanisms amenable to pharmacological intervention by redox chemotherapeutics. The pleiotropic action of many redox chemotherapeutics that involves simultaneous modulation of multiple redox sensitive targets can overcome cancer cell drug resistance originating from redundancy of oncogenic signaling and rapid mutation.Moreover, some redox chemotherapeutics may function according to the concept of synthetic lethality (i.e., drug cytotoxicity is confined to cancer cells that display loss of function mutations in tumor suppressor genes or upregulation of oncogene expression). The impressive number of ongoing clinical trials that examine therapeutic performance of novel redox drugs in cancer patients demonstrates that redox chemotherapy has made the crucial transition from bench to bedside.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
47
|
|
48
|
Fruehauf JP, Trapp V. Reactive oxygen species: an Achilles' heel of melanoma? Expert Rev Anticancer Ther 2009; 8:1751-7. [PMID: 18983235 DOI: 10.1586/14737140.8.11.1751] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The successful treatment of melanoma has been hampered by the unique biology of this cancer. Fortunately, research to further our understanding of how melanoma cells differ from normal tissues has led to the discovery of potential new avenues of attack. One promising strategy relates to targeting the excess free radicals produced by melanomas. Melanocyte transformation into cancer is associated with significant structural alterations in the melanosome. In addition to pigment production, melanosomes also protect the cell by scavenging free radicals generated by sunlight and cellular metabolism. In melanoma, the disrupted and disorganized melanosome structure reverses this process. Melanosomes found in melanoma produce free radicals, such as hydrogen peroxide, furthering DNA damage. Melanosome generation of reactive oxygen species (ROS), in tandem with those generated by cancer metabolism, activate cellular signal transduction pathways that prevent cell death. ROS activation of proto-oncogene pathways in melanoma contributes to their resistance to chemotherapy. Fortunately, it may be possible to target these free radicals, just as Paris was able to successfully target Achilles' heel. The use of agents that block ROS scavenging, such as ATN-224 and disulfiram, have been explored clinically. A recent randomized Phase II trial with elesclomol, an agent that generates ROS, in combination with paclitaxel led to improved patient survival, suggesting that this may be a viable approach to advance the treatment of melanoma.
Collapse
Affiliation(s)
- John P Fruehauf
- University of California Irvine, Chao Family Comprehensive Cancer Center, CA, USA.
| | | |
Collapse
|
49
|
Khan G, Merajver S. Copper chelation in cancer therapy using tetrathiomolybdate: an evolving paradigm. Expert Opin Investig Drugs 2009; 18:541-8. [DOI: 10.1517/13543780902845622] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Gazala Khan
- University of Michigan, 1500E Medical Center Drive, C409 MIB SPC 5848, Ann Arbor, Michigan, USA ;
| | - Sofia Merajver
- University of Michigan, 1500E Medical Center Drive, C409 MIB SPC 5848, Ann Arbor, Michigan, USA ;
| |
Collapse
|
50
|
Lowndes SA, Sheldon HV, Cai S, Taylor JM, Harris AL. Copper chelator ATN-224 inhibits endothelial function by multiple mechanisms. Microvasc Res 2009; 77:314-26. [PMID: 19323979 DOI: 10.1016/j.mvr.2009.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/19/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
Copper is required for the proliferation of endothelial cells and copper-lowering therapy reduces tumour growth in animal models. It has been reported that ATN-224, a novel copper chelator, potently inhibits the activity of the copper-dependent enzyme superoxide dismutase 1 (SOD1) in endothelial cells. We performed microarray analysis of gene expression in endothelial cells exposed to ATN-224 which revealed upregulation of stress response genes including heme-oxygenase 1 (HO-1) and differential regulation of several genes previously implicated in angiogenesis including CXCR4, ANGP2, PGES2, RHAMM, ITB4 and AQP1 (p<0.01). These changes were confirmed on qPCR. Treatment of HUVEC with ATN-224 caused increased superoxide levels, phospho-ERK signalling, nuclear NRF1 expression, HO-1 expression and induction of the anti-apoptotic proteins P21, BCL2 and BCLXL. There was also nuclear translocation of SOD1. SOD1 RNA interference replicated the effects of ATN-224 on endothelial cell function but did not cause upregulation of HO-1 or PGES2, suggesting additional mechanisms of action of ATN-224. Downregulation of AQP1, which has been shown to have a role in angiogenesis, was seen with both ATN-224 and SOD1 siRNA. AQP1 expression could be rescued after ATN-224 by added copper. RNA interference to AQP1 inhibited endothelial proliferation and migration, confirming the role of AQP1 in endothelial cell function. Therefore regulation of AQP1 may represent an important action of copper chelation therapy.
Collapse
Affiliation(s)
- Sarah A Lowndes
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|