1
|
Jin C, Zhou X, Xu M, Okanishi H, Ohgaki R, Kanai Y. Pharmacological and structural insights into nanvuranlat, a selective LAT1 (SLC7A5) inhibitor, and its N-acetyl metabolite with implications for cancer therapy. Sci Rep 2025; 15:2903. [PMID: 39849059 PMCID: PMC11758009 DOI: 10.1038/s41598-025-87522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
L-type amino acid transporter 1 (LAT1, SLC7A5), overexpressed in various cancers, mediates the uptake of essential amino acids crucial for tumor growth. It has emerged as a promising target for cancer therapy. Nanvuranlat (JPH203/KYT-0353), a LAT1 inhibitor, has shown antitumor activity in preclinical studies and efficacy in biliary tract cancer during clinical trials. This study provides a comprehensive pharmacological characterization of nanvuranlat and its N-acetyl metabolite, including structural insights into their LAT1 interactions. Both compounds demonstrated high selectivity for LAT1 over LAT2 and other amino acid transporters. Nanvuranlat acts as a competitive, non-transportable LAT1 inhibitor (Ki = 38.7 nM), while its N-acetyl metabolite retains selectivity but with reduced affinity (Ki = 1.68 µM). Nanvuranlat exhibited a sustained inhibitory effect on LAT1 even after its removal, indicating the potential for prolonged therapeutic effects. Both compounds showed comparable dissociation rates, suggesting that N-acetylation does not affect the interaction responsible for slow dissociation. The U-shaped conformation adopted by nanvuranlat when bound to LAT1 likely contributes to its high affinity, selectivity, sustained inhibitory effect, and non-transportable nature observed in this study. These insights into nanvuranlat's mechanism and metabolic impact provide essential information for understanding its clinical efficacy and advancing LAT1-targeted cancer therapies.
Collapse
Affiliation(s)
- Chunhuan Jin
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Xinyu Zhou
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Metabolic Reprogramming and Signal Regulation, Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Li H, Jiao Y, Zhang Y, Liu J, Huang S. Exploring tumor microenvironment interactions and apoptosis pathways in NSCLC through spatial transcriptomics and machine learning. Cell Oncol (Dordr) 2024; 47:2383-2405. [PMID: 39699801 DOI: 10.1007/s13402-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominent in cancer research in recent years. As such, exploring the role of PCD in NSCLC may help uncover new mechanisms for therapeutic targets. METHODS We utilized the GEO database and TCGA NSCLC gene data to screen for co-expressed genes. To delve deeper, single-cell sequencing combined with spatial transcriptomics was employed to study the intrinsic mechanisms of programmed cell death in cells and their interaction with the tumor microenvironment. Furthermore, Mendelian randomization was applied to screen for causally related genes. Prognostic models were constructed using various machine learning algorithms, and multi-cohort multi-omics analyses were conducted to screen for genes. In vitro experiments were then carried out to reveal the biological functions of the genes and their relationship with apoptosis. RESULTS Cells with high programmed cell death activity primarily activate pathways related to apoptosis, cell migration, and hypoxia, while also exhibiting strong interactions with smooth muscle cells in the tumor microenvironment. Based on a set of programmed cell death genes, the prognostic model NSCLCPCD demonstrates strong predictive capabilities. Moreover, laboratory experiments confirm that SLC7A5 promotes the proliferation of NSCLC cells, and the knockout of SLC7A5 significantly increases tumor cell apoptosis. CONCLUSIONS Our data indicate that programmed cell death is predominantly associated with pathways related to apoptosis, tumor metastasis, and hypoxia. Additionally, it suggests that SLC7A5 is a significant risk indicator for the prognosis of non-small cell lung cancer (NSCLC) and may serve as an effective target for enhancing apoptosis in NSCLC tumor cells.
Collapse
Affiliation(s)
- Huimin Li
- Department of Internal Medicine Residency Training Base, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Yuheng Jiao
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Zhang
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Junzhi Liu
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
| | - Shuixian Huang
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
| |
Collapse
|
3
|
Taguchi R, Kaira K, Miura Y, Umesaki T, Mouri A, Imai H, Kagamu H, Yasuda M, Kanai Y, Nitanda H, Ishida H, Sakaguchi H. Prognostic significance of LAT1 expression in pleural mesothelioma. Heliyon 2024; 10:e37414. [PMID: 39290273 PMCID: PMC11407025 DOI: 10.1016/j.heliyon.2024.e37414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Background The L-type amino acid transporter (LAT1) exhibits significantly increased expression within tumor cells across various neoplasms. However, the clinical significance of LAT1 expression in patients with pleural mesothelioma (PM) remains unclear. Methods Eighty patients diagnosed with PM between June 2007 and August 2022, were eligible for this study. LAT1, alanine-serine-cysteine transporter 2 (ASCT2), Ki-67, and VEGFR2 were evaluated by immunohistochemistry. Inflammatory and nutritional indices were also correlated with different variables, including neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), prognostic nutritional index (PNI), advanced lung cancer inflammation index (ALI), and Glasgow prognostic score (GPS). Results LAT1 was highly expressed in 57.5 % of patients with PM. Among the 80 patients included in this study, 65 (81.3 %) received chemotherapy, either alone or followed by surgical resection, while 15 (18.7 %) opted for best supportive care. The level of LAT1 significantly correlated with cell proliferation and ASCT2. Factors such as performance status, histology, LAT1 expression, PNI, ALI, and GPS were significant prognostic indicators for progression-free survival (PFS), while Ki-67, LAT1, NLR, SII, PNI, ALI, and GPS were identified as significant predictors for overall survival (OS). LAT1 expression emerged as an independent prognostic factor for predicting PFS and OS in all patients, as well as in the subgroup of 65 patients receiving chemotherapy. Notably, high LAT1 expression proved to be a significant predictor of outcome, particularly in the subgroup with high PLR and SII. Conclusion LAT1 was a significant predictor of outcomes in patients with PM and was more predictive of worse outcomes in patients with high inflammatory and low nutritional status.
Collapse
Affiliation(s)
| | | | - Yu Miura
- Department of Respiratory Medicine, Japan
| | | | | | - Hisao Imai
- Department of Respiratory Medicine, Japan
| | | | - Masanori Yasuda
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka City, 350-1298, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
4
|
Fujimoto T, Teraishi F, Kanehira N, Tajima T, Sakurai Y, Kondo N, Yamagami M, Kuwada A, Morihara A, Kitamatsu M, Fujimura A, Suzuki M, Takaguchi Y, Shigeyasu K, Fujiwara T, Michiue H. BNCT pancreatic cancer treatment strategy with glucose-conjugated boron drug. Biomaterials 2024; 309:122605. [PMID: 38754291 DOI: 10.1016/j.biomaterials.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.
Collapse
Affiliation(s)
- Takuya Fujimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan; Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Noriyuki Kanehira
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan; Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental, Life, Natural Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Natsuko Kondo
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Yamagami
- Graduate School of Environmental, Life, Natural Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Atsushi Kuwada
- Graduate School of Environmental, Life, Natural Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Akira Morihara
- Graduate School of Environmental, Life, Natural Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Atsushi Fujimura
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan; Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental, Life, Natural Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan; Department of Material Design and Engineering, Faculty of Sustainable Design, University of Toyama, Toyama, 930-8555, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan.
| |
Collapse
|
5
|
Suehiro JI, Kimura T, Fukutomi T, Naito H, Kanki Y, Wada Y, Kubota Y, Takakura N, Sakurai H. Endothelial cell-specific LAT1 ablation normalizes tumor vasculature. JCI Insight 2024; 9:e171371. [PMID: 39163136 PMCID: PMC11457854 DOI: 10.1172/jci.insight.171371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Some endothelial cells in the tumor vasculature express a system L amino acid transporter, LAT1. To elucidate the role of LAT1 in tumor-related endothelial cells, tumor cells were injected into endothelial cell-specific LAT1 conditional knockout mice (Slc7a5flox/flox; Cdh5-Cre-ERT2), and we found that the shape of the tumor vasculature was normalized and the size and numbers of lung metastasis was reduced. TNF-α-induced expression of VCAM1 and E-selectin at the surface of HUVEC, both of which are responsible for enhanced monocyte attachment and premetastatic niche formation, was reduced in the presence of LAT1 inhibitor, nanvuranlat. Deprivation of tryptophan, a LAT1 substrate, mimicked LAT1 inhibition, which led to activation of MEK1/2-ERK1/2 pathway and subsequent cystathionine γ lyase (CTH) induction. Increased production of hydrogen sulfide (H2S) by CTH was at least partially responsible for tumor vascular normalization, leading to decreased leakiness and enhanced delivery of chemotherapeutic agents to the tumor.
Collapse
Affiliation(s)
- Jun-ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
6
|
Terao A, Ninomiya H, Takeuchi K. Prognostic value of large amino acid transporter type 1 (LAT1) expression in pulmonary adenocarcinoma: A tissue microarray study. Cancer Treat Res Commun 2024; 39:100814. [PMID: 38677033 DOI: 10.1016/j.ctarc.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Large amino acid transporter type 1 (LAT1) provides cancer cells with essential amino acids for both protein synthesis and cell growth and may predict patient prognosis. Additionally, LAT1 inhibition can be a therapeutic target. This study aimed to examine the prognostic significance of LAT1 expression in lung cancer, paying special attention to adenocarcinoma subtypes. METHODS Tissue microarrays (TMA) of 1,560 total cores obtained from surgically resected lung cancer specimens between 1995 and 2008 at our hospital were used. Overall, 795 cases of adenocarcinoma were identified, and 717 underwent further evaluation. Immunohistochemical staining of whole slides and TMA cores were assessed to set H-score cutoff value.. Immunohistochemical expression of LAT1 was examined based on the subtypes of adenocarcinoma. Statistical analyses explored the prognostic significance of LAT1. RESULTS Adenocarcinoma accounted for 71.8% of all cases (n = 795), and 216 cases (27.1%) expressed LAT1. The 795 cases were categorized into five subtypes: lepidic (n = 29, 3.6%), papillary (n = 601, 75.6%), acinar (n = 58, 7.3%), and solid (n = 9, 1.1%); 717 of the 795 cases were further assessed according to the exclusion criteria. The LAT1-positive ratio increased as the architectural grade increased. Notably, in papillary adenocarcinoma, the LAT1-positive group had significantly lower overall survival compared to the negative group (10-year survival: 45.6% vs. 60.8%, p < 0.001). CONCLUSION LAT1 expression was higher in high-grade subtypes of pulmonary adenocarcinoma. Moreover, LAT1 expression is useful for predicting prognosis, particularly in papillary adenocarcinoma, facilitating prognostic stratification of papillary adenocarcinoma.
Collapse
Affiliation(s)
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Japan.
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Japan
| |
Collapse
|
7
|
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, Yang X, Meng J, Li Y, Hu Y, Sun Y, Wen L, Huang F, Sheng Y, Wan C, Yang K. FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res 2024; 43:34. [PMID: 38281999 PMCID: PMC10823633 DOI: 10.1186/s13046-024-02959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3β on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3β kinase to recognize and degrade IGF2BP2. CONCLUSIONS Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Tae K, Kim SJ, Cho SW, Lee H, Cha HS, Choi CY. L-Type Amino Acid Transporter 1 (LAT1) Promotes PMA-Induced Cell Migration through mTORC2 Activation at the Lysosome. Cells 2023; 12:2504. [PMID: 37887348 PMCID: PMC10605051 DOI: 10.3390/cells12202504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The mTOR signaling pathway integrates signaling inputs from nutrients, including glucose and amino acids, which are precisely regulated by transporters depending on nutrient levels. The L-type amino acid transporter 1 (LAT1) affects the activity of mTORC1 through upstream regulators that sense intracellular amino acid levels. While mTORC1 activation by LAT1 has been thoroughly investigated in cultured cells, the effects of LAT1 expression on the activity of mTORC2 has scarcely been studied. Here, we provide evidence that LAT1 recruits and activates mTORC2 on the lysosome for PMA-induced cell migration. LAT1 is translocated to the lysosomes in cells treated with PMA in a dose- and time-dependent manner. Lysosomal LAT1 interacted with mTORC2 through a direct interaction with Rictor, leading to the lysosomal localization of mTORC2. Furthermore, the depletion of LAT1 reduced PMA-induced cell migration in a wound-healing assay. Consistent with these results, the LAT1 N3KR mutant, which is defective in PMA-induced endocytosis and lysosomal localization, did not induce mTORC2 recruitment to the lysosome, with the activation of mTORC2 determined via Akt phosphorylation or the LAT1-mediated promotion of cell migration. Taken together, lysosomal LAT1 recruits and activates the mTORC2 complex and downstream Akt for PMA-mediated cell migration. These results provide insights into the development of therapeutic drugs targeting the LAT1 amino acid transporter to block metastasis, as well as disease progression in various types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheol-Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.T.); (S.-J.K.); (S.-W.C.); (H.L.); (H.-S.C.)
| |
Collapse
|
9
|
Zhong X, He Z, Yin L, Fan Y, Tong Y, Kang Y, Bi Q. Glutamine metabolism in tumor metastasis: Genes, mechanisms and the therapeutic targets. Heliyon 2023; 9:e20656. [PMID: 37829798 PMCID: PMC10565784 DOI: 10.1016/j.heliyon.2023.e20656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer cells frequently change their metabolism from aerobic glycolysis to lipid metabolism and amino acid metabolism to adapt to the malignant biological behaviours of infinite proliferation and distant metastasis. The significance of metabolic substances and patterns in tumour cell metastasis is becoming increasingly prominent. Tumour metastasis involves a series of significant steps such as the shedding of cancer cells from a primary tumour, resistance to apoptosis, and colonisation of metastatic sites. However, the role of glutamine in these processes remains unclear. This review summarises the key enzymes and transporters involved in glutamine metabolism that are related to the pathogenesis of malignant tumour metastasis. We also list the roles of glutamine in resisting oxidative stress and promoting immune escape. Finally, the significance of targeting glutamine metabolism in inhibiting tumour metastasis was proposed, research in this field improving our understanding of amino acid metabolism rewiring and simultaneously bringing about new and exciting therapeutic prospects.
Collapse
Affiliation(s)
- Xugang Zhong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zeju He
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yin
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Fan
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Yao Kang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| |
Collapse
|
10
|
Watabe T, Ose N, Naka S, Fukui E, Kimura T, Kanou T, Funaki S, Sasaki H, Kamiya T, Kurimoto K, Isohashi K, Tatsumi M, Shimosegawa E, Kato H, Ohgaki R, Kanai Y, Shintani Y. Evaluation of LAT1 Expression in Patients With Lung Cancer and Mediastinal Tumors: 18F-FBPA PET Study With Immunohistological Comparison. Clin Nucl Med 2023; 48:853-860. [PMID: 37682600 DOI: 10.1097/rlu.0000000000004816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF THE REPORT L-type amino acid transporter-1 (LAT1) is a tumor-specific transporter expressed in various tumor types, with minimal expression in normal organs. We previously demonstrated 18F-fluoro-borono-phenylalanine (18F-FBPA) as a selective PET probe for LAT1 in a preclinical study. Herein, we evaluated LAT1 expression in preoperative patients with lung or mediastinal tumors using 18F-FBPA PET and immunofluorescence staining. PATIENTS AND METHODS The study population included patients with histopathological diagnosis (n = 55): primary lung cancers (n = 21), lung metastases (n = 6), mediastinal tumors (n = 15), and benign lesion (n = 13). PET scanning was performed 1 hour after the injection of 18F-FBPA (232 ± 32 MBq). Immunofluorescence staining was performed on the resected tumor sections using LAT1 antibody. LAT1 staining was graded on a 4-grade scale and compared with the SUVmax on 18F-FBPA PET. RESULTS A positive correlation was observed between the SUVmax of 18F-FBPA PET and LAT1 expression by immunofluorescence staining (r = 0.611, P < 0.001). The SUVmax of 18F-FBPA was 3.92 ± 1.46 in grade 3, 3.21 ± 1.82 in grade 2, 2.33 ± 0.93 in grade 1, and 1.50 ± 0.39 in grade 0 of LAT1 expression. Although 18F-FBPA PET showed variable uptake in lung cancers and mediastinal tumors, benign lesions showed significantly lower SUVmax than those in malignant lesions (P < 0.01). CONCLUSIONS Uptake on 18F-FBPA PET reflected the expression level of LAT1 in lung and mediastinal tumors. It was suggested that 18F-FBPA PET can be used for the precise characterization of the tumor in pretreatment evaluation.
Collapse
Affiliation(s)
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | | | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | | | | | | | | | | | | | | | - Ryuichi Ohgaki
- Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| |
Collapse
|
11
|
Shi Z, Kaneda-Nakashima K, Ohgaki R, Xu M, Okanishi H, Endou H, Nagamori S, Kanai Y. Inhibition of cancer-type amino acid transporter LAT1 suppresses B16-F10 melanoma metastasis in mouse models. Sci Rep 2023; 13:13943. [PMID: 37626086 PMCID: PMC10457391 DOI: 10.1038/s41598-023-41096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvβ3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvβ3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.
Collapse
Affiliation(s)
- Zitong Shi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuko Kaneda-Nakashima
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Division of Science, Institute for Radiation Sciences, Osaka University, 2-4, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, Kanagawa, 230-0046, Japan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Kawasaki Y, Suzuki H, Miura M, Hatakeyama H, Suzuki S, Yamada T, Suzuki M, Ito A, Omori Y. LAT1 is associated with poor prognosis and radioresistance in head and neck squamous cell carcinoma. Oncol Lett 2023; 25:171. [PMID: 36970606 PMCID: PMC10031290 DOI: 10.3892/ol.2023.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 03/14/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been identified as the sixth most common disease in the world, and its prognosis remains poor. The basic treatment of HNSCC includes a combination of chemoradiation and surgery. With the advent of immune checkpoint inhibitors, the prognosis has improved; however, the efficacy of checkpoint inhibitors is limited. L-type amino acid transporter 1 (LAT1), an amino acid transporter, is highly expressed in a cancer-specific manner. However, to the best of our knowledge, LAT1 expression in HNSCC has not been determined. Therefore, the present study aimed to examine the role of LAT1 expression in HNSCC. A total of three HNSCC cell lines (Sa3, HSC2 and HSC4) were used to investigate the characteristics of LAT1-positive cells, including their ability to form spheroids, and their invasion and migration. The present study also examined LAT1 by immunostaining of biopsy specimens from 174 patients diagnosed, treated and followed-up at Akita University (Akita, Japan) between January 2010 and December 2019, and overall survival, progression-free survival and multivariate analyses were performed. The results demonstrated that LAT1-positive cells in HNSCC were an independent prognostic factor for overall survival and progression-free survival, and were resistant to chemoradiation. Therefore, JPH203, a LAT1 inhibitor, may be effective in treating chemoradiotherapy-resistant HNSCC and may improve the prognosis of patients with HNSCC.
Collapse
Affiliation(s)
- Yohei Kawasaki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Hitomi Suzuki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Masahito Miura
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Haruka Hatakeyama
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Maya Suzuki
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Ayumi Ito
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Akita 010-8543, Japan
| |
Collapse
|
13
|
Furukawa T, Tabata S, Minami K, Yamamoto M, Kawahara K, Tanimoto A. Metabolic reprograming of cancer as a therapeutic target. Biochim Biophys Acta Gen Subj 2023; 1867:130301. [PMID: 36572257 DOI: 10.1016/j.bbagen.2022.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Sho Tabata
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
14
|
Abstract
18F-Labeling methods for the preparation of 18F-labeled molecular probes can be classified into electrophilic fluorination, nucleophilic fluorination, metal-F coordination, and 18F/19F isotope exchange. Isotope exchange-based 18F-labeling methods demonstrate mild conditions featuring water resistance and facile high-performance liquid chromatography-free purification in direct 18F-labeling of substrates. This paper systematically reviews isotope exchange-based 18F-labeling methods sorted by the adjacent atom bonding with F, i.e., carbon and noncarbon atoms (Si, B, P, S, Ga, Fe, etc.). The respective isotope exchange mechanism, radiolabeling condition, radiochemical yield, molar activity, and stability of the 18F-product are mainly discussed for each isotope exchange-based 18F-labeling method as well as the cutting-edge application of the corresponding 18F-labeled molecular probes.
Collapse
Affiliation(s)
- Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengji Lv
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhaobiao Mou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenru Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Taotao Dong
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
15
|
Kantipudi S, Harder D, Fotiadis D. Characterization of substrates and inhibitors of the human heterodimeric transporter 4F2hc-LAT1 using purified protein and the scintillation proximity radioligand binding assay. Front Physiol 2023; 14:1148055. [PMID: 36895635 PMCID: PMC9989278 DOI: 10.3389/fphys.2023.1148055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Amino acids have diverse and essential roles in many cellular functions such as in protein synthesis, metabolism and as precursors of different hormones. Translocation of amino acids and derivatives thereof across biological membranes is mediated by amino acid transporters. 4F2hc-LAT1 is a heterodimeric amino acid transporter that is composed of two subunits belonging to the SLC3 (4F2hc) and SLC7 (LAT1) solute carrier families. The ancillary protein 4F2hc is responsible for the correct trafficking and regulation of the transporter LAT1. Preclinical studies have identified 4F2hc-LAT1 as a valid anticancer target due to its importance in tumor progression. The scintillation proximity assay (SPA) is a valuable radioligand binding assay that allows the identification and characterization of ligands of membrane proteins. Here, we present a SPA ligand binding study using purified recombinant human 4F2hc-LAT1 protein and the radioligand [3H]L-leucine as tracer. Binding affinities of different 4F2hc-LAT1 substrates and inhibitors determined by SPA are comparable with previously reported K m and IC 50 values from 4F2hc-LAT1 cell-based uptake assays. In summary, the SPA is a valuable method for the identification and characterization of ligands of membrane transporters including inhibitors. In contrast to cell-based assays, where the potential interference with other proteins such as endogenous transporters persists, the SPA uses purified protein making target engagement and characterization of ligands highly reliable.
Collapse
Affiliation(s)
- Satish Kantipudi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Roh J, Im M, Chae Y, Kang J, Kim W. The Involvement of Long Non-Coding RNAs in Glutamine-Metabolic Reprogramming and Therapeutic Resistance in Cancer. Int J Mol Sci 2022; 23:ijms232314808. [PMID: 36499136 PMCID: PMC9738059 DOI: 10.3390/ijms232314808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic alterations that support the supply of biosynthetic molecules necessary for rapid and sustained proliferation are characteristic of cancer. Some cancer cells rely on glutamine to maintain their energy requirements for growth. Glutamine is an important metabolite in cells because it not only links to the tricarboxylic acid cycle by producing α-ketoglutarate by glutaminase and glutamate dehydrogenase but also supplies other non-essential amino acids, fatty acids, and components of nucleotide synthesis. Altered glutamine metabolism is associated with cancer cell survival, proliferation, metastasis, and aggression. Furthermore, altered glutamine metabolism is known to be involved in therapeutic resistance. In recent studies, lncRNAs were shown to act on amino acid transporters and glutamine-metabolic enzymes, resulting in the regulation of glutamine metabolism. The lncRNAs involved in the expression of the transporters include the abhydrolase domain containing 11 antisense RNA 1, LINC00857, plasmacytoma variant translocation 1, Myc-induced long non-coding RNA, and opa interacting protein 5 antisense RNA 1, all of which play oncogenic roles. When it comes to the regulation of glutamine-metabolic enzymes, several lncRNAs, including nuclear paraspeckle assembly transcript 1, XLOC_006390, urothelial cancer associated 1, and thymopoietin antisense RNA 1, show oncogenic activities, and others such as antisense lncRNA of glutaminase, lincRNA-p21, and ataxin 8 opposite strand serve as tumor suppressors. In addition, glutamine-dependent cancer cells with lncRNA dysregulation promote cell survival, proliferation, and metastasis by increasing chemo- and radio-resistance. Therefore, understanding the roles of lncRNAs in glutamine metabolism will be helpful for the establishment of therapeutic strategies for glutamine-dependent cancer patients.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
17
|
Synthesis, radiolabeling and evaluation of [99mTc][Tc-HYNIC/EDDA]-Met(O) as a early agent for amino acid metabolic imaging in C6 glioblastoma tumor. Bioorg Chem 2022; 130:106237. [DOI: 10.1016/j.bioorg.2022.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
18
|
Huang H, Dai Y, Duan Y, Yuan Z, Li Y, Zhang M, Zhu W, Yu H, Zhong W, Feng S. Effective prediction of potential ferroptosis critical genes in clinical colorectal cancer. Front Oncol 2022; 12:1033044. [PMID: 36324584 PMCID: PMC9619366 DOI: 10.3389/fonc.2022.1033044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 08/30/2023] Open
Abstract
Background Colon cancer is common worldwide, with high morbidity and poor prognosis. Ferroptosis is a novel form of cell death driven by the accumulation of iron-dependent lipid peroxides, which differs from other programmed cell death mechanisms. Programmed cell death is a cancer hallmark, and ferroptosis is known to participate in various cancers, including colon cancer. Novel ferroptosis markers and targeted colon cancer therapies are urgently needed. To this end, we performed a preliminary exploration of ferroptosis-related genes in colon cancer to enable new treatment strategies. Methods Ferroptosis-related genes in colon cancer were obtained by data mining and screening for differentially expressed genes (DEGs) using bioinformatics analysis tools. We normalized the data across four independent datasets and a ferroptosis-specific database. Identified genes were validated by immunohistochemical analysis of pathological and healthy clinical samples. Results We identified DEGs in colon cancer that are involved in ferroptosis. Among these, five core genes were found: ELAVL1, GPX2, EPAS1, SLC7A5, and HMGB1. Bioinformatics analyses revealed that the expression of all five genes, except for EPAS1, was higher in tumor tissues than in healthy tissues. Conclusions The preliminary exploration of the five core genes revealed that they are differentially expressed in colon cancer, playing an essential role in ferroptosis. This study provides a foundation for subsequent research on ferroptosis in colon cancer.
Collapse
Affiliation(s)
- Hongliang Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuexiang Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Duan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanxuan Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maomao Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Hang Yu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Wenfei Zhong
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Utsugi S, Ogihara K, Naya Y, Sunden Y, Nakamoto Y, Okamoto Y. Expression of L-type amino acid transporter 1 in canine and feline intracranial tumors. J Vet Med Sci 2022; 84:1111-1117. [PMID: 35753782 PMCID: PMC9412071 DOI: 10.1292/jvms.21-0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
L-type amino acid transporter 1 (LAT1) is upregulated in various malignant tumors in humans. LAT1 expression correlates with the grade of cancer and prognosis. LAT1 is responsible for the supply of many essential amino acids to cancer cells. Inhibition of LAT1 reduces the amino acids that enter the cell and inhibits cancer cell growth. Therefore, novel anticancer drugs targeting LAT1 have attracted much attention in recent years. In this study, to explore the applicability of using LAT1 expression in intracranial tumors as a prognostic factor and therapeutic target, we investigated the expression of LAT1 in surgically resected primary and secondary intracranial tumor tissues from dogs and cats. Immunohistochemical analysis of LAT1 was performed on intracranial tumor tissue from 14 dogs and 3 cats. Primary intracranial tumors were seen in 10 dogs and included meningiomas, histiocytic sarcomas, pituitary tumors, and gliomas, and 9 out of 10 cases were positive for LAT1. Primary intracranial tumors were seen in 2 cats and included meningioma and lymphoma; both cases were positive for LAT1. Secondary intracranial tumors were positive for LAT1 in 3 out of 4 cases in dogs and 1 out of 1 in cats. Since the majority of intracranial tumors in dogs and cats were positive for LAT1, immunostaining for LAT1 is expected to be a prognostic indicator and therapeutic target in the future.
Collapse
Affiliation(s)
- Shinichi Utsugi
- The United Graduate School of Veterinary Science, Yamaguchi University.,Department of Neurology, Saitama Animal Medical Center
| | | | - Yuko Naya
- Laboratory of Veterinary Pathology, Azabu University
| | - Yuji Sunden
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University
| | - Yuya Nakamoto
- Neuro Vets Animal Neurology Clinic.,Laboratory of Veterinary Surgery, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Yoshiharu Okamoto
- Laboratory of Veterinary Surgery, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University
| |
Collapse
|
20
|
Kurozumi S, Kaira K, Matsumoto H, Kurosumi M, Yokobori T, Kanai Y, Sekine C, Honda C, Katayama A, Furuya M, Shiino S, Makiguchi T, Mongan NP, Rakha EA, Oyama T, Fujii T, Shirabe K, Horiguchi J. Association of L-type amino acid transporter 1 (LAT1) with the immune system and prognosis in invasive breast cancer. Sci Rep 2022; 12:2742. [PMID: 35177712 PMCID: PMC8854643 DOI: 10.1038/s41598-022-06615-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
L-type amino acid transporter 1 (LAT1), also referred to as SLC7A5, is believed to regulate tumor metabolism and be associated with tumor proliferation. In invasive breast cancer, we clinicopathologically investigated the utility of LAT1 expression. LAT1 expression was evaluated via immunohistochemistry analyses in 250 breast cancer patients undergoing long-term follow-up. We assessed the relationships between LAT1 expression and patient outcomes and clinicopathological factors. Breast cancer-specific survival stratified by LAT1 expression was assessed. Human epidermal growth factor receptor 2 (HER2)-positive patients with metastasis received trastuzumab therapy. The density of tumor-infiltrating lymphocytes (TILs) was evaluated according to the International Working Group guidelines. In the current study, high LAT1 expression was significantly correlated with estrogen receptor (ER) negativity, progesterone receptor negativity, high histological grade, increased TILs, and programmed death ligand 1 positivity. Among the ER-positive and HER2-negative patients, high LAT1 was an independent indicator of poor outcomes (hazard ratio (HR) = 2.97; 95% confidence interval (CI), 1.16-7.62; p = 0.023). Moreover, high LAT1 expression was an independent poor prognostic factor in luminal B-like breast cancer with aggressive features (HR = 3.39; 95% CI 1.35-8.52; p = 0.0094). In conclusion, high LAT1 expression could be used to identify a subgroup of invasive breast cancer characterized by aggressive behavior and high tumor immunoreaction. Our findings suggest that LAT1 might be a candidate therapeutic target for breast cancer patients, particularly those with luminal B-like type breast cancer.
Collapse
Affiliation(s)
- Sasagu Kurozumi
- Department of Breast Surgery, International University of Health and Welfare, 852, Hatakeda, Narita, Chiba, 286-8520, Japan. .,Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Saitama, Japan
| | | | | | - Takehiko Yokobori
- Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Yoshikatsu Kanai
- Division of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Chikako Sekine
- Department of Breast Surgery, International University of Health and Welfare, 852, Hatakeda, Narita, Chiba, 286-8520, Japan
| | - Chikako Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Mio Furuya
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Sho Shiino
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Nigel P Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, 852, Hatakeda, Narita, Chiba, 286-8520, Japan
| |
Collapse
|
21
|
Zhang-Yin JT, Girard A, Bertaux M. What Does PET Imaging Bring to Neuro-Oncology in 2022? A Review. Cancers (Basel) 2022; 14:cancers14040879. [PMID: 35205625 PMCID: PMC8870476 DOI: 10.3390/cancers14040879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Positron emission tomography (PET) imaging is increasingly used to supplement MRI in the management of patient with brain tumors. In this article, we provide a review of the current place and perspectives of PET imaging for the diagnosis and follow-up of from primary brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain metastases. Different PET radiotracers targeting different biological processes are used to accurately depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or neo-angiogenesis are currently being studied for brain tumors imaging. Abstract PET imaging is being increasingly used to supplement MRI in the clinical management of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiolabeled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This review aims at addressing the current place and perspectives of brain PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus is given to the following: radiolabeled amino acids PET imaging for tumor characterization and follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before targeted radiotherapy.
Collapse
Affiliation(s)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
22
|
Minamimoto R. Amino Acid and Proliferation PET/CT for the Diagnosis of Multiple Myeloma. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 1:796357. [PMID: 39355641 PMCID: PMC11440849 DOI: 10.3389/fnume.2021.796357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 10/03/2024]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by infiltration of monoclonal plasma cells in the bone marrow (BM). The standard examination performed for the assessment of bone lesions has progressed from radiographic skeletal survey to the more advanced imaging modalities of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT). The Durie-Salmon PLUS staging system (upgraded from the Durie-Salmon staging system) applies 2-[18F]-fluoro-2-deoxy-glucose (18F-FDG) PET/CT, and MRI findings to the staging of MM, and 18F-FDG PET/CT has been incorporated into the International Myeloma Working Group (IMWG) guidelines for the diagnosis and staging of MM. However, 18F-FDG PET/CT has significant limitations in the assessment of diffuse BM infiltration and in the differentiation of MM lesions from inflammatory or infectious lesions. The potential of several new PET tracers that exploit the underlying disease mechanism of MM has been evaluated in terms of improving the diagnosis. L-type amino acid transporter 1 (LAT1), a membrane protein that transports neutral amino acids, is associated with cell proliferation and has strong ability to represent the status of MM. This review evaluates the potential of amino acid and proliferation PET tracers for diagnosis and compares the characteristics and accuracy of non-FDG tracers in the management of patients with MM.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
24
|
Vettermann FJ, Diekmann C, Weidner L, Unterrainer M, Suchorska B, Ruf V, Dorostkar M, Wenter V, Herms J, Tonn JC, Bartenstein P, Riemenschneider MJ, Albert NL. L-type amino acid transporter (LAT) 1 expression in 18F-FET-negative gliomas. EJNMMI Res 2021; 11:124. [PMID: 34905134 PMCID: PMC8671595 DOI: 10.1186/s13550-021-00865-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) is a highly sensitive PET tracer for glioma imaging, and its uptake is suggested to be driven by an overexpression of the L-type amino-acid transporter 1 (LAT1). However, 30% of low- and 5% of high-grade gliomas do not present enhanced 18F-FET uptake at primary diagnosis (“18F-FET-negative gliomas”) and the pathophysiologic basis for this phenomenon remains unclear. The aim of this study was to determine the expression of LAT1 in a homogeneous group of newly diagnosed 18F-FET-negative gliomas and to compare them to a matched group of 18F-FET-positive gliomas. Forty newly diagnosed IDH-mutant astrocytomas without 1p/19q codeletion were evaluated (n = 20 18F-FET-negative (tumour-to-background ratio (TBR) < 1.6), n = 20 18F-FET-positive gliomas (TBR > 1.6)). LAT1 immunohistochemistry (IHC) was performed using SLC7A5/LAT1 antibody. The percentage of LAT1-positive tumour cells (%) and the staining intensity (range 0–2) were multiplied to an overall score (H-score; range 0–200) and correlated to PET findings as well as progression-free survival (PFS). Results IHC staining of LAT1 expression was positive in both, 18F-FET-positive as well as 18F-FET-negative gliomas. No differences were found between the 18F-FET-negative and 18F-FET-positive group with regard to percentage of LAT1-positive tumour cells, staining intensity or H-score. Interestingly, the LAT1 expression showed a significant negative correlation with the PFS (p = 0.031), whereas no significant correlation was found for TBRmax, neither in the overall group nor in the 18F-FET-positive group only (p = 0.651 and p = 0.140). Conclusion Although LAT1 is reported to mediate the uptake of 18F-FET into tumour cells, the levels of LAT1 expression do not correlate with the levels of 18F-FET uptake in IDH-mutant astrocytomas. In particular, the lack of tracer uptake in 18F-FET-negative gliomas cannot be explained by a reduced LAT1 expression. A higher LAT1 expression in IDH-mutant astrocytomas seems to be associated with a short PFS. Further studies regarding mechanisms influencing the uptake of 18F-FET are necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00865-9.
Collapse
Affiliation(s)
- Franziska J Vettermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
| | - Caroline Diekmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Viktoria Ruf
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mario Dorostkar
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Jigjidkhorloo N, Kanekura K, Matsubayashi J, Akahane D, Fujita K, Oikawa K, Kurata A, Takanashi M, Endou H, Nagao T, Gotoh A, Norov O, Kuroda M. Expression of L-type amino acid transporter 1 is a poor prognostic factor for Non-Hodgkin's lymphoma. Sci Rep 2021; 11:21638. [PMID: 34737339 PMCID: PMC8569019 DOI: 10.1038/s41598-021-00811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023] Open
Abstract
L-type neutral amino acid transporter 1 (LAT1) is a heterodimeric membrane transport protein involved in neutral amino acid transport. LAT1 is highly expressed in various malignant solid tumors and plays an essential role in cell proliferation. However, its role in malignant lymphoma remains unknown. Here, we evaluated LAT1 expression level in tissues from 138 patients with Non-Hodgkin lymphoma (NHL). Overexpression of LAT1 was confirmed in all types of NHL and we found that there is a significant correlation between the level of LAT1 expression and lymphoma grade. The LAT1 expression was higher in aggressive types of lymphomas when compared with static types of lymphomas, suggesting that active tumor proliferation requires nutrient uptake via LAT1. The expression level of LAT1 was inversely correlated with patients’ survival span. Furthermore, pharmacological inhibition of LAT1 by a specific inhibitor JPH203 inhibits lymphoma cell growth. In conclusion, our study demonstrated that LAT1 expression can be used as a prognostic marker for patients with NHL and targeting LAT1 by JPH203 can be a novel therapeutic modality for NHL.
Collapse
Affiliation(s)
- Narangerel Jigjidkhorloo
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.,Center of Hematology and Blood & Marrow Transplantation, The First Central Hospital of Mongolia, Ulaanbaatar, 14210, Mongolia
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Jun Matsubayashi
- Department of Anatomical Pathology, Tokyo Medical University Hospital, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University Hospital, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0046, Japan
| | - Toshitaka Nagao
- Department of Anatomical Pathology, Tokyo Medical University Hospital, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University Hospital, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Oyundelger Norov
- Center of Hematology and Blood & Marrow Transplantation, The First Central Hospital of Mongolia, Ulaanbaatar, 14210, Mongolia
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
26
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
27
|
Zhang C, Xu J, Xue S, Ye J. Prognostic Value of L-Type Amino Acid Transporter 1 (LAT1) in Various Cancers: A Meta-Analysis. Mol Diagn Ther 2021; 24:523-536. [PMID: 32410110 DOI: 10.1007/s40291-020-00470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The L-type amino acid transporter 1 (LAT1, SLC7A5) is overexpressed in various types of cancer and has been thought to assist cancer progression through its uptake of neutral amino acids. However, the prognostic role of LAT1 in human cancers remains uncharacterized. Therefore, we conducted this meta-analysis to determine the prognostic significance of LAT1 in various cancers. METHODS We systematically searched the PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure, and WanFang databases to collect relevant cohort studies investigating the prognostic value of LAT1 expression in patients with cancer. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to clarify the association between the LAT1 expression and the survival of patients with cancer. Odds ratios (ORs) with 95% CIs were calculated to appraise the correlation between LAT1 and the clinicopathological characteristics in patients with cancer. RESULTS A total of 32 eligible articles, including 34 cohorts and 6410 patients, were enrolled in this meta-analysis. Our results demonstrated that high LAT1 expression was significantly associated with poor overall survival (HR = 1.66, 95% CI 1.41-1.96, P < 0.001), cancer-specific survival (HR = 1.64, 95% CI 1.31-2.05, P < 0.001), disease-free survival (HR = 1.55, 95% CI 1.31-1.83, P < 0.001), and progression-free survival (HR = 1.18, 95% CI 1.02-1.37, P = 0.026) in patients with cancer. In addition, we found that the elevated expression level of LAT1 was significantly related to certain phenotypes of tumor aggressiveness, such as tumor size, clinical stage, T stage, lymphatic invasion, vascular invasion, tumor differentiation, Ki-67, CD34, CD98, p53, and system ASC amino acid transporter-2. CONCLUSIONS Elevated expression of LAT1 is associated with poor prognosis in human cancers and may serve as a potential prognostic marker and therapeutic target for patients with malignancies.
Collapse
Affiliation(s)
- Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China.
| |
Collapse
|
28
|
Kowalczyk T, Kisluk J, Pietrowska K, Godzien J, Kozlowski M, Reszeć J, Sierko E, Naumnik W, Mróz R, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. The Ability of Metabolomics to Discriminate Non-Small-Cell Lung Cancer Subtypes Depends on the Stage of the Disease and the Type of Material Studied. Cancers (Basel) 2021; 13:cancers13133314. [PMID: 34282765 PMCID: PMC8268630 DOI: 10.3390/cancers13133314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland; (J.K.); (J.N.)
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Patomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Ogrodowa 12, 15-027 Bialystok, Poland;
| | - Wojciech Naumnik
- 1st Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Żurawia 14, 15-540 Bialystok, Poland;
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Żurawia 14, 15-540 Bialystok, Poland;
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland;
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland; (J.K.); (J.N.)
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
- Correspondence:
| |
Collapse
|
29
|
Horita Y, Kaira K, Kawasaki T, Mihara Y, Sakuramoto S, Yamaguchi S, Okamoto K, Ryozawa S, Kanai Y, Yasuda M, Hamaguchi T. Expression of LAT1 and 4F2hc in Gastroenteropancreatic Neuroendocrine Neoplasms. In Vivo 2021; 35:2425-2432. [PMID: 34182526 DOI: 10.21873/invivo.12520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIM Little is known about the expression of L-type amino acid transporter 1 (LAT1) and 4F2hc in gastroenteropancreatic-neuroendocrine neoplasms (GEP-NENs). Hence, we conducted a study to verify the clinicopathological significance of LAT1 and 4F2hc. PATIENTS AND METHODS Tissues from 126 patients with GEP-NENs were collected between August 2007 and August 2019 at our institution. We evaluated LAT1 and 4F2hc expression by immunohistochemistry, and examined their clinical significance. RESULTS No statistically significant associations were observed between LAT1 expression and the different NENs. Expression of 4F2hc was significantly different between neuroendocrine tumour (NET)-G1, NET-G2, and NET-G3 (p=0.029), and was significantly associated with vascular invasion (p=0.044) and the Ki-67 index (p=0.042). CONCLUSION No association between LAT1 expression and malignant features in GEP-NENs was observed. However, an association between 4F2hc expression and the potential of malignancy in GEP-NENs was evident.
Collapse
Affiliation(s)
- Yosuke Horita
- Department of Gastroenterological Oncology, International Medical Center, Saitama Medical University, Saitama, Japan;
| | - Kyoichi Kaira
- Department of Respiratory Medicine, International Medical Center, Saitama Medical University, Saitama, Japan;
| | - Tomonori Kawasaki
- Department of Pathology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshiaki Mihara
- Department of Gastroenterological Oncology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Shinichi Sakuramoto
- Department of Gastroenterological Surgery, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Shigeki Yamaguchi
- Department of Gastroenterological Surgery, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Kojun Okamoto
- Department of Gastroenterological Surgery, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masanori Yasuda
- Department of Pathology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Tetsuya Hamaguchi
- Department of Gastroenterological Oncology, International Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
30
|
Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5. Oncol Lett 2021; 22:578. [PMID: 34122629 PMCID: PMC8190780 DOI: 10.3892/ol.2021.12839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignances in humans. Hence, it is of great significance to identify regulatory molecules in CRC progression. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are involved in cancer malignancy. It has been reported that long intergenic non-protein coding RNA 857 (LINC00857) acts as a vital oncogene in many types of cancer by promoting cell proliferation and migration. However, the role of LINC00857 in CRC remains unclear. In the present study, LINC00857 was upregulated in CRC tissue samples and cells. Next, in vitro loss-of-function experiments demonstrated that LINC00857 knockdown suppressed CRC cell viability, proliferation and migration, as well as epithelial-mesenchymal transition and increased cell apoptosis. Mechanistically, LINC00857 abundantly interacted with the RNA-binding protein YTH domain containing 1 (YTHDC1). YTHDC1 ultimately combined with solute carrier family 7 member 5 (SLC7A5) and increased SLC7A5 mRNA stability. Finally, a series of rescue experiments indicated that LINC00857 promoted the proliferation and migration of CRC cells by regulating mRNA stability. Thus, the present findings illustrated that LINC00857 functions as an oncogene in CRC cells via the YTHDC1/SLC7A5 axis.
Collapse
Affiliation(s)
- Shu Tang
- Department of Internal Medicine-Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Qi Liu
- Hospital Medical Department, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Ming Xu
- Department of Gastrointestinal Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
31
|
Kärkkäinen J, Laitinen T, Markowicz-Piasecka M, Montaser A, Lehtonen M, Rautio J, Gynther M, Poso A, Huttunen KM. Molecular characteristics supporting l-Type amino acid transporter 1 (LAT1)-mediated translocation. Bioorg Chem 2021; 112:104921. [PMID: 33933805 DOI: 10.1016/j.bioorg.2021.104921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.
Collapse
Affiliation(s)
- Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Pharmacy, Kuopio University Hospital, Finland, P.O. Box 100, FI-70029, KYS, Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
32
|
Li Z, Kong Z, Chen J, Li J, Li N, Yang Z, Wang Y, Liu Z. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur J Nucl Med Mol Imaging 2021; 48:3113-3121. [PMID: 33590273 DOI: 10.1007/s00259-021-05212-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE In this work, the safety, biodistribution, and radiation dosimetry of large neutral amino acid transporter type-1 (LAT-1) targeting PET tracer 18F-trifluorobborate-derived tyrosine (denoted as 18F-FBY) has been investigated. It is designed as a first-in-human study in healthy volunteers and to assay LAT-1 expression level in glioma patients. METHODS Six healthy volunteers (3 M, 3 F) underwent whole-body PET acquisitions at multiple time points after bolus injection of 18F-FBY. Regions of interest (ROIs) were mapped manually on major organs, and then the time-activity curves (TACs) were obtained. Dosimetry was calculated with the OLINDA/EXM software. Thirteen patients who were suspected of glioma were scanned with PET/CT at 30 min after 18F-FBY injection. Within 7 days after PET/CT, the tumor was removed surgically, and LAT-1 immunohistochemical staining for LAT-1 was performed on tumor samples and correlated with 18F-FBY PET imaging. RESULTS 18F-FBY was well tolerated by all healthy volunteers, and no adverse symptoms were observed or reported. 18F-FBY is rapidly cleared from the blood circulation and excreted mainly through the kidneys and urinary tract. The effective dose (ED) was 0.0039 ± 0.0006 mSv/MBq. In 14 surgical confirmed gliomas (one of the patiens had two gliomas), 18F-FBY uptake increased consistently with tumor grade, with maximum standard uptake values (SUVmax) of 0.28 ± 0.14 and 2.84 ± 0.46 and tumor-to-normal contralateral activity (T/N) ratio of 2.30 ± 1.26 and 24.56 ± 6.32 in low- and high-grade tumors, respectively. In addition to the significant difference in the uptakes between low- and high-grade gliomas (P < 0.001), the immunohistochemical staining confirmed the positive correlations between the SUVmax, LAT-1 expression (r2 = 0.80, P < 0.001), and Ki-67 labeling index (r2 = 0.79, P < 0.001). CONCLUSION 18F-FBY is a PET tracer with favorable dosimetry profile and pharmacokinetics. It has the potential to assay LAT-1 expression in glioma patients and may provide imaging guidance for further boron neutron capture therapy of gliomas. TRIAL REGISTRATION clinicaltrials.gov (NCT03980431).
Collapse
Affiliation(s)
- Zhu Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of nuclear medicine, Peking University Cancer Hospital & Institute, Beijing, 100871, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Chen
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nan Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of nuclear medicine, Peking University Cancer Hospital & Institute, Beijing, 100871, China
| | - Zhi Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of nuclear medicine, Peking University Cancer Hospital & Institute, Beijing, 100871, China.
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Peking University-Tsinghua University Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
33
|
Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Cancers (Basel) 2021; 13:E203. [PMID: 33429909 PMCID: PMC7828050 DOI: 10.3390/cancers13020203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their clinical significance. Overall, both proteins have been associated with cell death resistance through dysregulation of caspases and sustainment of proliferative signaling through mTOR activation. Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1 expression is associated with angiogenesis and invasion and metastasis activation. The molecular impact of these proteins on the hallmarks of cancer translates into various clinical applications and both transporters have been identified as prognostic factors in many types of cancer. Concerning their role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis, the development and testing of novel inhibitors for these transporters that could be evaluated in clinical trials represents a promising approach to cancer prognosis improvement.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Research Department of the Portuguese League Against Cancer—North (LPCC-NRNorte), Estrada da Circunvalação, 4200-177 Porto, Portugal
| |
Collapse
|
34
|
The Harmonious Interplay of Amino Acid and Monocarboxylate Transporters Induces the Robustness of Cancer Cells. Metabolites 2021; 11:metabo11010027. [PMID: 33401672 PMCID: PMC7823946 DOI: 10.3390/metabo11010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence that metabolic reprogramming contributes to the acquisition and maintenance of robustness associated with malignancy. The fine regulation of expression levels of amino acid and monocarboxylate transporters enables cancer cells to exhibit the metabolic reprogramming that is responsible for therapeutic resistance. Amino acid transporters characterized by xCT (SLC7A11), ASCT2 (SLC1A5), and LAT1 (SLC7A5) function in the uptake and export of amino acids such as cystine and glutamine, thereby regulating glutathione synthesis, autophagy, and glutaminolysis. CD44 variant, a cancer stem-like cell marker, stabilizes the xCT antiporter at the cellular membrane, and tumor cells positive for xCT and/or ASCT2 are susceptible to sulfasalazine, a system Xc(-) inhibitor. Inhibiting the interaction between LAT1 and CD98 heavy chain prevents activation of the mammalian target of rapamycin (mTOR) complex 1 by glutamine and leucine. mTOR signaling regulated by LAT1 is a sensor of dynamic alterations in the nutrient tumor microenvironment. LAT1 is overexpressed in various malignancies and positively correlated with poor clinical outcome. Metabolic reprogramming of glutamine occurs often in cancer cells and manifests as ASCT2-mediated glutamine addiction. Monocarboxylate transporters (MCTs) mediate metabolic symbiosis, by which lactate in cancer cells under hypoxia is exported through MCT4 and imported by MCT1 in less hypoxic regions, where it is used as an oxidative metabolite. Differential expression patterns of transporters cause functional intratumoral heterogeneity leading to the therapeutic resistance. Therefore, metabolic reprogramming based on these transporters may be a promising therapeutic target. This review highlights the pathological function and therapeutic targets of transporters including xCT, ASCT2, LAT1, and MCT.
Collapse
|
35
|
Zheng Y, Huang W, Zhang X, Lu C, Fu C, Li S, Lin G. A Noninvasive Assessment of Tumor Proliferation in Lung cancer Patients using Intravoxel Incoherent Motion Magnetic Resonance Imaging. J Cancer 2021; 12:190-197. [PMID: 33391415 PMCID: PMC7738818 DOI: 10.7150/jca.48589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Ki-67 is a nuclear antigen widely used in routine pathologic analyses as a tumor cell proliferation marker for lung cancer. However, Ki-67 expression analyses using immunohistochemistry (IHC) are invasive and frequently influenced by tissue sampling quality. In this study, we assessed the feasibility of noninvasive magnetic resonance imaging (MRI) in predicting the Ki-67 labeling indices (LIs). A total of 51 lung cancer patients, including 42 non-small cell lung cancer (NSCLC) cases and nine small cell lung cancer (SCLC) cases, were enrolled in this study. Quantitative MRI parameters from conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) were obtained, and their correlations with tumor tissue Ki-67 expression were analyzed. We found that the true diffusion coefficient (D value) from IVIM was negatively correlated with Ki-67 expression (Spearman r = -0.76, P < 0.001). The D values in the high Ki-67 group were significantly lower than those in the low Ki-67 group (0.90 ± 0.21 × 10-3 mm2/s vs. 1.22 ± 0.30 × 10-3 mm2/s). Among three MRI techniques used, D values from IVIM showed the best performance for distinguishing the high Ki-67 group from low Ki-67 group in receiver operating characteristic (ROC) analysis with an area under the ROC curve (AUROC) of 0.85 (95% CI: 0.73-0.97, P < 0.05). Moreover, D values performed well for differentiating SCLC from NSCLC with an AUROC of 0.82 (95% CI: 0.68-0.90), Youden index of 0.72, and F1 score of 0.81. In conclusion, D values were negatively correlated with Ki-67 expression in lung cancer tissues and can be used to distinguish high from low proliferation statuses, as well as SCLC from NSCLC.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Wenjun Huang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Chen Lu
- Department of Pathology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong Province, 518057, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| |
Collapse
|
36
|
Okanishi H, Ohgaki R, Okuda S, Endou H, Kanai Y. Proteomics and phosphoproteomics reveal key regulators associated with cytostatic effect of amino acid transporter LAT1 inhibitor. Cancer Sci 2020; 112:871-883. [PMID: 33264461 PMCID: PMC7893994 DOI: 10.1111/cas.14756] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
L‐type amino acid transporter 1 (LAT1) is highly expressed in various cancers and plays important roles not only in the amino acid uptake necessary for cancer growth but also in cellular signaling. Recent research studies have reported anticancer effects of LAT1 inhibitors and demonstrated their potential for cancer therapy. Here, we characterized the proteome and phosphoproteome in LAT1‐inhibited cancer cells. We used JPH203, a selective LAT1 inhibitor, and performed tandem mass tag–based quantitative proteomics and phosphoproteomics on four biliary tract cancer cell lines sensitive to JPH203. Our analysis identified hundreds to thousands of differentially expressed proteins and phosphorylated sites, demonstrating the broad influence of LAT1 inhibition. Our findings showed various functional pathways altered by LAT1 inhibition, and provided possible regulators and key kinases in LAT1‐inhibited cells. Comparison of these changes among cell lines provides insights into general pathways and regulators associated with LAT1 inhibition and particularly suggests the importance of cell cycle–related pathways and kinases. Moreover, we evaluated the anticancer effects of the combinations of JPH203 with cell cycle–related kinase inhibitors and demonstrated their potential for cancer therapy. This is the first study providing the proteome‐wide scope of both protein expression and phosphorylation signaling perturbed by LAT1 inhibition in cancer cells.
Collapse
Affiliation(s)
- Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Incidental Detection of Lung Adenocarcinoma Presenting as an Anterior Mediastinal Mass on 18F-Fluciclovine PET/CT in a Patient With Primary Prostate Cancer. Clin Nucl Med 2020; 45:e525-e527. [PMID: 32701811 DOI: 10.1097/rlu.0000000000003207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
F-fluciclovine is a PET radiotracer approved for detection of recurrent prostate cancer, with utility in other malignancies being investigated. We present the case of a 71-year-old man with high-risk primary prostate cancer (Gleason score 9, prostate-specific antigen 34 ng/mL) and newly diagnosed lung adenocarcinoma. As part of a clinical trial (NCT03081884), preoperative F-fluciclovine PET/CT showed localized abnormal uptake in the prostate gland with extracapsular extension. Additionally, an incidental anterior mediastinal mass measuring 2.2 × 1.8 cm demonstrated abnormal radiotracer uptake. Biopsy of the mediastinal mass confirmed invasive lung adenocarcinoma with solid and acinar patterns and high programmed death 1 ligand expression.
Collapse
|
38
|
Quan L, Ohgaki R, Hara S, Okuda S, Wei L, Okanishi H, Nagamori S, Endou H, Kanai Y. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:266. [PMID: 33256804 PMCID: PMC7702703 DOI: 10.1186/s13046-020-01762-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. METHODS Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. RESULTS LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. CONCLUSIONS These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.
Collapse
Affiliation(s)
- Lili Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Saori Hara
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ling Wei
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.,Present address: School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Minato-ku, 634-8521, Tokyo, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, 230-0046, Kanagawa, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
39
|
Luo W, Zhang H, Zhang Y, Liang P, Wang X, Ma J, Tan D, Tan Y, Song J, Ji P, Zhao T. L-type amino acid transporter 1 promotes proliferation and invasion of human chorionic trophoblast and choriocarcinoma cells through mTORC1. Am J Transl Res 2020; 12:6665-6681. [PMID: 33194063 PMCID: PMC7653574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
L-type amino acid transporter 1 (LAT1) is a neutral amino acid transporter expressed in trophoblast giant cells onembryonic day 8 in mice. LAT1 is responsible for metabolism in blastocysts and cancer cells. Despite research concerning the aberrant high expression and indispensable function of LAT1 in various cancers, little is known about the role of LAT1 in regulating the behaviors of human trophoblast cells under different physiological and pathological conditions. The HTR8-SVneo human trophoblast cell line and JEG-3 and JAR choriocarcinoma cell lines are used as models for trophoblast cell biological research. The proliferation and apoptosis of these cells were assayed using the CCK-8 assay and flow cytometry, respectively. Transwell-chambers were used to observed migration and invasion of the cells. Immunofluorescent staining, western blot, and RT-PCR assays were used to determine the possible mechanism of LAT1 on human trophoblast cell behaviors with small interfering RNA or signal agonists and antagonist treatments. LAT1 was expressed in the trophoblast and choriocarcinoma cells. LAT1 was involved in regulating behaviors of these cells, such as cell proliferation, apoptosis, migration, and invasion. Detailed results suggested that LAT1 modulated trophoblast cell functions by mediation of mTORC1 signaling pathways. Our results implicate LAT1 as a very important regulator in human trophoblast cell behaviors at the maternal-fetal interface.
Collapse
Affiliation(s)
- Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Stomatological Hospital of Chongqing Medical University426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Stomatological Hospital of Chongqing Medical University426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Xiaojie Wang
- Laboratory Animal Center, Chongqing Medical University1 Medical College Road, Chongqing 400016, China
| | - Jing Ma
- Laboratory Animal Center, Chongqing Medical University1 Medical College Road, Chongqing 400016, China
- Key Laboratory of Family Planning and Health Birth, National Health and Family Planning Commission, Hebei Research Institute for Family PlanningShijiazhuang 050071, Hebei, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University1 Medical College Road, Chongqing 400016, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University1 Medical College Road, Chongqing 400016, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| |
Collapse
|
40
|
Zaugg J, Huang X, Ziegler F, Rubin M, Graff J, Müller J, Moser-Hässig R, Powell T, Gertsch J, Altmann KH, Albrecht C. Small molecule inhibitors provide insights into the relevance of LAT1 and LAT2 in materno-foetal amino acid transport. J Cell Mol Med 2020; 24:12681-12693. [PMID: 33001560 PMCID: PMC7687008 DOI: 10.1111/jcmm.15840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The placenta supplies the foetus with critical nutrients such as essential amino acids (AA, eg leucine) for development and growth. It also represents a cellular barrier which is formed by a polarized, differentiated syncytiotrophoblast (STB) monolayer. Active Na+‐independent leucine transport across the placenta is mainly attributed to the System L transporters LAT1/SLC7A5 and LAT2/SLC7A8. This study explored the influence of trophoblast differentiation on the activity of LAT1/LAT2 and the relevance of LAT1/LAT2 in leucine uptake and transfer in trophoblasts by applying specific small molecule inhibitors (JPH203/JG336/JX009). L‐leucine uptake (total dose = 167 μmol/L) was sensitive to LAT1‐specific inhibition by JPH203 (EC50 = 2.55 µmol/L). The inhibition efficiency of JPH203 was increased by an additional methoxy group in the JPH203‐derivate JG336 (EC50 = 1.99 µmol/L). Interestingly, JX009 showed efficient System L inhibition (EC50 = 2.35 µmol/L) and was the most potent inhibitor of leucine uptake in trophoblasts. The application of JPH203 and JX009 in Transwell®‐based leucine transfer revealed LAT1 as the major accumulative transporter at the apical membrane, but other System L transporters such as LAT2 as rate‐limiting for leucine efflux across the basal membrane. Therefore, differential specificity of the applied inhibitors allowed for estimation of the contribution of LAT1 and LAT2 in materno‐foetal AA transfer and their potential impact in pregnancy diseases associated with impaired foetal growth.
Collapse
Affiliation(s)
- Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Fabian Ziegler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Matthias Rubin
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Julien Graff
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jennifer Müller
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ruedi Moser-Hässig
- Division of Gynecology and Obstetrics, Lindenhofgruppe, Bern, Switzerland
| | - Theresa Powell
- Department of Pediatrics, Neonatology Section, University of Colorado, Denver, CO, USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Karl-Heinz Altmann
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Emanuelli G, Nassehzadeh-Tabriz N, Morrell NW, Marciniak SJ. The integrated stress response in pulmonary disease. Eur Respir Rev 2020; 29:29/157/200184. [PMID: 33004527 PMCID: PMC7116220 DOI: 10.1183/16000617.0184-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The respiratory tract and its resident immune cells face daily exposure
to stress, both from without and from within. Inhaled pathogens, including
severe acute respiratory syndrome coronavirus 2, and toxins from pollution
trigger a cellular defence system that reduces protein synthesis to minimise
viral replication or the accumulation of misfolded proteins. Simultaneously, a
gene expression programme enhances antioxidant and protein folding machineries
in the lung. Four kinases (PERK, PKR, GCN2 and HRI) sense a diverse range of
stresses to trigger this “integrated stress response”. Here we review recent
advances identifying the integrated stress response as a critical pathway in the
pathogenesis of pulmonary diseases, including pneumonias, thoracic malignancy,
pulmonary fibrosis and pulmonary hypertension. Understanding the integrated
stress response provides novel targets for the development of therapies.
Collapse
Affiliation(s)
- Giulia Emanuelli
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nikou Nassehzadeh-Tabriz
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nick W Morrell
- Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK .,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2020; 21:585-595. [PMID: 30615138 DOI: 10.1093/neuonc/noz003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Brain metastases (BM) from extracranial cancer are associated with significant morbidity and mortality. Effective local treatment options are stereotactic radiotherapy, including radiosurgery or fractionated external beam radiotherapy, and surgical resection. The use of systemic treatment for intracranial disease control also is improving. BM diagnosis, treatment planning, and follow-up is most often based on contrast-enhanced magnetic resonance imaging (MRI). However, anatomic imaging modalities including standard MRI have limitations in accurately characterizing posttherapeutic reactive changes and treatment response. Molecular imaging techniques such as positron emission tomography (PET) characterize specific metabolic and cellular features of metastases, potentially providing clinically relevant information supplementing anatomic MRI. Here, the Response Assessment in Neuro-Oncology working group provides recommendations for the use of PET imaging in the clinical management of patients with BM based on evidence from studies validated by histology and/or clinical outcome.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Marc Chamberlain
- Departments of Neurology and Neurological Surgery, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Julian Schwarting
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Forsyth
- Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
| | - Whitney Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California , USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| |
Collapse
|
43
|
Enomoto K, Hotomi M. Amino Acid Transporters as Potential Therapeutic Targets in Thyroid Cancer. Endocrinol Metab (Seoul) 2020; 35:227-236. [PMID: 32615707 PMCID: PMC7386108 DOI: 10.3803/enm.2020.35.2.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Thyroid cancer cells have a high amino acid demand for proliferation, invasion, and metastasis. Amino acids are taken up by thyroid cancer cells, both thyroid follicular cell and thyroid parafollicular cells (commonly called "C-cells"), via amino acid transporters. Amino acid transporters up-regulate in many cancers, and their expression level associate with clinical aggressiveness and prognosis. This is the review to discuss the therapeutic potential of amino acid transporters and as molecular targets in thyroid cancer.
Collapse
Affiliation(s)
- Keisuke Enomoto
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
44
|
Prognostic value of LAT-1 status in solid cancer: A systematic review and meta-analysis. PLoS One 2020; 15:e0233629. [PMID: 32469987 PMCID: PMC7259771 DOI: 10.1371/journal.pone.0233629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background The expression of the L-type amino acid transporter 1 (LAT1) plays a significant role in tumor progression. However, it remains unclear whether high LAT1 expression correlates with poor prognosis of solid tumor patients. Here, we conducted a meta-analysis to assess the potential of LAT1 in predicting the prognosis of tumor patients. Methods and findings A total of 4,579 cases were analyzed from 35 qualified studies. In patients with solid tumors, elevated expression of LAT1 is associated with poor prognosis (overall survival [OS]: pooled hazard ratio (HR) = 1.848, 95% confidence interval (CI) = 1.620–2.108, P < 0.001; disease free survival [DFS]: pooled HR = 1.923, 95% CI = 1.585–2.333, P < 0.001; progression free survival [PFS]: pooled HR = 1.345, 95% CI = 1.133–1.597, P = 0.001). Furthermore, in subgroup analysis, we found an association between high LAT1 expression and poor OS in non-small cell lung cancer (HR = 1.554, 95% CI = 1.345–1.794, P < 0.001), pancreatic cancer (HR = 2.052, 95% CI = 1.613–2.724, P < 0.001) and biliary tract cancer (HR = 2.253, 95% CI = 1.562–3.227, P < 0.001). Conclusion The results of this meta-analysis indicate the reliability and potential of using LAT1 expression as a predictive biomarker in solid cancers prior to treatment. However, further studies with larger sample sizes would be beneficial for fully evaluating the predictive value of LAT1 expression for clinical applications.
Collapse
|
45
|
Sakata T, Hana K, Mikami T, Yoshida T, Endou H, Okayasu I. Positive correlation of expression of L-type amino-acid transporter 1 with colorectal tumor progression and prognosis: Higher expression in sporadic colorectal tumors compared with ulcerative colitis-associated neoplasia. Pathol Res Pract 2020; 216:152972. [PMID: 32359697 DOI: 10.1016/j.prp.2020.152972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/04/2020] [Accepted: 04/11/2020] [Indexed: 01/06/2023]
Abstract
The role of L-type amino-acid transporter 1 (LAT1), an oncofetal protein, in tumor progression is not well known, although it is important for the survival and proliferation of cancer cells. LAT1 expression was immunohistochemically analyzed and compared in sporadic (conventional) colorectal tumors and ulcerative colitis (UC)-associated neoplasia development and progression. LAT1 expression showed a significant stepwise increase in the order: conventional low-grade tubular adenoma, high-grade tubular adenoma, and invasive adenocarcinoma. Similarly, the same increasing trend in LAT1 expression was found in UC-associated low-grade dysplasia, high-grade dysplasia, and adenocarcinoma, whereas expression was significantly lower compared with that in an adenoma-adenocarcinoma series. LAT1 expression was predominant in the upper half of mucosal lesions in low-grade adenoma. This localized difference in LAT1 expression between the upper and lower halves of mucosal lesions disappeared in conventional high-grade adenoma and adenocarcinoma. LAT1 expression in the colorectal mucosa was significantly increased in the order: nontumor mucosa, quiescent phase of UC, and active phase of UC. Considering the histological pattern of Ki-67 labeling, LAT1 expression appeared partly related to cell proliferation, but this was not significant. In relation to the prognosis of patients with sporadic phase IV colorectal adenocarcinoma, this was significantly poorer in the group with high LAT1 expression compared with that with low LAT1 expression. This suggests LAT1 expression may be used as a companion biomarker for anti-cancer therapy targeting the LAT1 molecule in colorectal cancers.
Collapse
Affiliation(s)
| | | | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Tutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Nutrition, Faculty of Health Care, Kiryu University, Midori, Japan.
| |
Collapse
|
46
|
Okano N, Naruge D, Kawai K, Kobayashi T, Nagashima F, Endou H, Furuse J. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest New Drugs 2020; 38:1495-1506. [PMID: 32198649 DOI: 10.1007/s10637-020-00924-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 11/28/2022]
Abstract
This open-label first-in-human study evaluated JPH203, which is a novel selective L-type amino acid transporter 1 inhibitor. We also evaluated the association between the N-acetyltransferase 2 phenotype and outcomes. Japanese patients with advanced solid tumors received daily intravenous JPH203 treatment for 7 days, followed by a 21-day rest period, at escalating doses of 12-85 mg/m2. Dose-limiting toxicities were evaluated during the first cycle using a 3 + 3 design. The study enrolled 17 patients, although grade 3 liver dysfunction was detected in one of six patients receiving 60 mg/m2 and in the first patient to receive 85 mg/m2. Further enrollment was terminated and the maximum tolerated dose was defined as 60 mg/m2. The AUC∞ increased between 12 mg/m2 and 25 mg/m2, although no differences were observed at 25-40 mg/m2. Partial response was observed for one patient with biliary tract cancer (BTC) at the 12 mg/m2 dose, and disease control was achieved by 3 of 6 patients at the 12 mg/m2 and 25 mg/m2 dose levels. Based on these results, we recommend a phase II dose of 25 mg/m2. The disease control rate for BTC was 60%. Two patients with grade 3 liver dysfunction had the rapid N-acetyltransferase 2 phenotype, and disease control was more common for the non-rapid phenotype (50% vs. 12.5%). It appears that JPH203 was well-tolerated and provided promising activity against BTC. The N-acetyltransferase 2 phenotype might help predict the safety and efficacy of JPH203. Clinical trial registration: UMIN000016546.
Collapse
Affiliation(s)
- Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| | - Daisuke Naruge
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Kirio Kawai
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Takaaki Kobayashi
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Fumio Nagashima
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | | | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| |
Collapse
|
47
|
Correlation of high LAT1 expression with the prognosis of endometrioid carcinoma of the uterine corpus. Virchows Arch 2020; 477:421-427. [PMID: 32144539 DOI: 10.1007/s00428-020-02781-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 01/29/2023]
Abstract
The expression of L-type amino acid transporter 1 (LAT1) has been described to play essential roles in cancer cell growth and survival. To determine the significance of LAT1 in the prognosis of endometrial endometrioid carcinoma, we investigated LAT1 expression in 353 endometrioid carcinoma patients by immunohistochemical analysis using tissue microarray. The tumors in which stained tumor cells made up more than 25% of the tumor were graded as high expression. High expression of LAT1 was detected in 29 (8.2%) of patients. The ratio of high LAT1 expression did not significantly differ by age (< 60 vs. ≥ 60), FIGO stage (stage I/II vs. III/IV), histological grade (grade 1 vs. grade 2/3), or lymph node metastasis (positive vs. negative). However, high LAT1 expression in endometrioid carcinoma was associated with a poorer progression-free survival and overall survival, as per the results of the log-rank test (P = 0.0263 and 0.0404, respectively). Cox univariate and multivariate analyses revealed that high LAT1 expression is an independent marker of poor progression-free survival (hazard ratio = 2.598, P = 0.0137), in addition to a higher age (≥ 60 years vs. < 60 years), FIGO stage (stage III/IV vs. I/II), and histological grade (grade 2/3 vs. grade 1). In conclusion, we demonstrate that LAT1 is associated with a poor prognosis of endometrioid carcinoma of the uterine corpus.
Collapse
|
48
|
Co-Expression Effect of SLC7A5/SLC3A2 to Predict Response to Endocrine Therapy in Oestrogen-Receptor-Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21041407. [PMID: 32093034 PMCID: PMC7073058 DOI: 10.3390/ijms21041407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
The majority of breast cancers are oestrogen-receptor-positive (ER+) and are subject to endocrine therapy; however, an unpredictable subgroup of patients will develop resistance to endocrine therapy. The SLC7A5/SLC3A2 complex is a major route for the transport of large neutral essential amino acids through the plasma membrane. Alterations in the expression and function of those amino-acid transporters lead to metabolic reprogramming, which contributes to the tumorigenesis and drug resistance. This study aims to assess the effects and roles of SLC7A5/SLC3A2 co-expression in predicting responses to endocrine therapy in patients with ER+ breast cancer. The biological and clinical impact of SLC7A5/SLC3A2 co-expression was assessed in large annotated cohorts of ER+/HER2− breast cancer with long-term follow-up at the mRNA and protein levels. In vitro experiments were conducted to investigate the effect of SLC7A5/SLC3A2 knockdown in the proliferation of cancer cells and to the sensitivity to tamoxifen. We found that proliferation-related genes are highly expressed in a subgroup of patients with high SLC7A5/SLC3A2, and knockdown of SLC7A5/SLC3A2 decreased proliferation of ER+ breast cancer cells. In patients treated with endocrine therapy, high SLC7A5/SLC3A2 co-expression was associated with poor patient outcome, and depletion of SLC7A5/SLC3A2 using siRNA increased the sensitivity of breast cancer cells to tamoxifen. On the basis of our findings, SLC7A5/SLC3A2 co-expression has the potential of identifying a subgroup of ER+/HER2− breast cancer patients who fail to benefit from endocrine therapy and could guide the choice of other alternative therapies.
Collapse
|
49
|
Extraprostatic Uptake of 18F-Fluciclovine: Differentiation of Nonprostatic Neoplasms From Metastatic Prostate Cancer. AJR Am J Roentgenol 2020; 214:641-648. [PMID: 31939697 DOI: 10.2214/ajr.19.21894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. Fluciclovine is a synthetic radiolabeled amino acid analog used for imaging of biochemical recurrent prostate cancer. Uptake of fluciclovine is mediated by several amino acid transporters, including alanine-serine-cysteine transporter 2 and large neutral amino acid transporters, which are known to be overexpressed in other malignancies. CONCLUSION. Knowledge of the common patterns of prostate cancer recurrence, in addition to what other neoplasms can show uptake, is critical for accurate study interpretation.
Collapse
|
50
|
Sakurai R, Kaira K, Miura Y, Sunaga N, Saito R, Oyama T, Hisada T, Yamada M. Clinical significance of topoisomerase-II expression in patients with advanced non-small cell lung cancer treated with amrubicin. Thorac Cancer 2020; 11:426-435. [PMID: 31901017 PMCID: PMC6997014 DOI: 10.1111/1759-7714.13289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 11/11/2022] Open
Abstract
Background Amrubicin chemotherapy is a treatment option for patients with non‐small cell lung cancer (NSCLC) after third‐line treatment in Japan. Although topoisomerase‐II (Topo‐II), a target of amrubicin, has been reported to be a prognostic or predictive marker for chemosensitivity and clinical outcomes in various types of malignancies, its effects in the Japanese population remain unknown. Methods Data regarding 44 patients with advanced NSCLC treated with amrubicin between April 2004 and May 2014 were retrospectively analyzed. We evaluated the expression levels of Topo‐II by immunohistochemical staining of tumor specimens obtained via biopsy or surgical resection. Results The majority of enrolled patients were men (68%) with a median age of 67 (range, 43–78) years. The most common histological type was adenocarcinoma (70%). High Topo‐II expression was observed in 13 (30%) of the 44 patients. The median progression‐free survival and overall survival (OS) durations were 1.8 and 8.8 months, respectively. While there was no significant association between Topo‐II expression and progression‐free survival, patients with low Topo‐II expression had significantly longer OS than did those with high Topo‐II expression. Good performance status and low expression of Topo‐II were all significantly associated with a favorable OS. Conclusion Low expression of Topo‐II was identified as an independent prognostic factor for longer survival in patients with NSCLC receiving amrubicin, a Topo‐II inhibitor. Key points
Collapse
Affiliation(s)
- Reiko Sakurai
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Yosuke Miura
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, Maebashi, Japan
| | - Noriaki Sunaga
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, Maebashi, Japan
| | - Ryusei Saito
- Departments of Respiratory Medicine, National Hospital Organization Shibukawa Medical Center, Shibukawa, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Science, Maebashi, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|