1
|
Wu Z, Dai J, Li J, Zhang Z, Shen X. Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:319-327. [PMID: 39167167 DOI: 10.1007/s00210-024-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Gastrointestinal (GI) cancer is a prevalent disease and is recognized as the primary cause of cancer-related mortality globally. Therefore, there is an urgent need for novel diagnostic and treatment approaches for GC. The methylation of the O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter is a significant factor in the development of colorectal cancer (CRC), namely in roughly 30-40% of cases where the cancer has spread. MGMT plays a role in the repair of DNA damage caused by methylating drugs like temozolomide (TMZ) and chloroethylating compounds like carmustine. As a result, it contributes to the resistance of chemotherapy when these agents are utilized. Although MGMT's role in the development of CRC is well established, its prognostic significance remains a subject of debate. Only a limited number of research have been conducted to examine the prognostic significance of MGMT methylation, yielding varying outcomes. This review explores the structural functions and repair processes of MGMT, focusing on the putative structural and functional significance of the N-terminal domain of MGMT. It also investigates the advancement of cancer treatment techniques that specifically target MGMT.
Collapse
Affiliation(s)
- Ziming Wu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Dai
- Anqing 116 Hospital, Anqing, 246001, Anhui, China
| | - Jie Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhengyu Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zheijiang, China
| | - Xbing Shen
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. Epigenetic Activation of TUSC3 Sensitizes Glioblastoma to Temozolomide Independent of MGMT Promoter Methylation Status. Int J Mol Sci 2023; 24:15179. [PMID: 37894860 PMCID: PMC10606804 DOI: 10.3390/ijms242015179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Sae-Khow K, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Boonmee A, Benjaskulluecha S, Palaga T, Leelahavanichkul A. Less Severe Polymicrobial Sepsis in Conditional mgmt-Deleted Mice Using LysM-Cre System, Impacts of DNA Methylation and MGMT Inhibitor in Sepsis. Int J Mol Sci 2023; 24:10175. [PMID: 37373325 DOI: 10.3390/ijms241210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme that might be important during sepsis but has never been explored. Then, the proteomic analysis of lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins and reduced oxidative phosphorylation proteins compared with control, possibly related to cell injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and other parameters compared with sepsis in the littermate control. The mgmt null protective effect was lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA methylation and repair in macrophages during sepsis.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Saisorn W, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Sae-Khow K, Boonmee A, Benjaskulluecha S, Nita-Lazar A, Palaga T, Leelahavanichkul A. Less Severe Lipopolysaccharide-Induced Inflammation in Conditional mgmt-Deleted Mice with LysM-Cre System: The Loss of DNA Repair in Macrophages. Int J Mol Sci 2023; 24:10139. [PMID: 37373287 DOI: 10.3390/ijms241210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the known influence of DNA methylation from lipopolysaccharide (LPS) activation, data on the O6-methylguanine-DNA methyltransferase (MGMT, a DNA suicide repair enzyme) in macrophages is still lacking. The transcriptomic profiling of epigenetic enzymes from wild-type macrophages after single and double LPS stimulation, representing acute inflammation and LPS tolerance, respectively, was performed. Small interfering RNA (siRNA) silencing of mgmt in the macrophage cell line (RAW264.7) and mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated lower secretion of TNF-α and IL-6 and lower expression of pro-inflammatory genes (iNOS and IL-1β) compared with the control. Macrophage injury after a single LPS dose and LPS tolerance was demonstrated by reduced cell viability and increased oxidative stress (dihydroethidium) compared with the activated macrophages from littermate control mice (mgmtflox/flox; LysM-Cre-/-). Additionally, a single LPS dose and LPS tolerance also caused mitochondrial toxicity, as indicated by reduced maximal respiratory capacity (extracellular flux analysis) in the macrophages of both mgmt null and control mice. However, LPS upregulated mgmt only in LPS-tolerant macrophages but not after the single LPS stimulation. In mice, the mgmt null group demonstrated lower serum TNF-α, IL-6, and IL-10 than control mice after either single or double LPS stimulation. Suppressed cytokine production resulting from an absence of mgmt in macrophages caused less severe LPS-induced inflammation but might worsen LPS tolerance.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
8
|
Svec RL, McKee SA, Berry MR, Kelly AM, Fan TM, Hergenrother PJ. Novel Imidazotetrazine Evades Known Resistance Mechanisms and Is Effective against Temozolomide-Resistant Brain Cancer in Cell Culture. ACS Chem Biol 2022; 17:299-313. [PMID: 35119837 DOI: 10.1021/acschembio.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. Currently, frontline treatment for primary GBM includes the DNA-methylating drug temozolomide (TMZ, of the imidazotetrazine class), while the optimal treatment for recurrent GBM remains under investigation. Despite its widespread use, a majority of GBM patients do not respond to TMZ therapy; expression of the O6-methylguanine DNA methyltransferase (MGMT) enzyme and loss of mismatch repair (MMR) function as the principal clinical modes of resistance to TMZ. Here, we describe a novel imidazotetrazine designed to evade resistance by MGMT while retaining suitable hydrolytic stability, allowing for effective prodrug activation and biodistribution. This dual-substituted compound, called CPZ, exhibits activity against cancer cells irrespective of MGMT expression and MMR status. CPZ has greater blood-brain barrier penetrance and comparable hematological toxicity relative to TMZ, while also matching its maximum tolerated dose in mice when dosed once-per-day over five days. The activity of CPZ is independent of the two principal mechanisms suppressing the effectiveness of TMZ, making it a promising new candidate for the treatment of GBM, especially those that are TMZ-resistant.
Collapse
Affiliation(s)
- Riley L. Svec
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A. McKee
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R. Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aya M. Kelly
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
10
|
Basu S, Mak T, Ulferts R, Wu M, Deegan T, Fujisawa R, Tan KW, Lim CT, Basier C, Canal B, Curran JF, Drury LS, McClure AW, Roberts EL, Weissmann F, Zeisner TU, Beale R, Cowling VH, Howell M, Labib K, Diffley JFX. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Biochem J 2021; 478:2481-2497. [PMID: 34198328 PMCID: PMC8286817 DOI: 10.1042/bcj20210219] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.
Collapse
Affiliation(s)
- Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tiffany Mak
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F Curran
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Allison W McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
11
|
Duwa R, Banstola A, Emami F, Jeong JH, Lee S, Yook S. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Yap TA, Plummer R, Azad NS, Helleday T. The DNA Damaging Revolution: PARP Inhibitors and Beyond. Am Soc Clin Oncol Educ Book 2019; 39:185-195. [PMID: 31099635 DOI: 10.1200/edbk_238473] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer-specific DNA repair defects are abundant in malignant tissue and present an opportunity to capitalize on these aberrations for therapeutic benefit. Early preclinical data demonstrated the concept of synthetic lethality between BRCA genetic defects and pharmacologic PARP inhibition, suggesting that there may be monotherapy activity with this class of agents and supporting the early trial testing of this molecularly driven approach. Although the first foray into the clinic for PARP inhibitors was in combination with DNA-damaging cytotoxic agents, clinical development was limited by the more-than-additive toxicity, in particular dose-limiting myelosuppression. As more tolerable single agents, PARP inhibitors are now approved for the treatment of ovarian cancer in different settings and BRCA-mutant breast cancers. Beyond PARP inhibitors, there is now a large armamentarium of potent and relatively selective inhibitors in clinical trial testing against key targets involved in the DNA damage response (DDR), including ATR, ATM, CHK1/2, WEE1, and DNA-PK. These agents are being developed for patients with molecularly selected tumors and in rational combinations with other molecularly targeted agents and immune checkpoint inhibitors. We detail the clinical progress made in the development of PARP inhibitors, review rational combinations, and discuss the development of emerging inhibitors against novel DDR targets, including DNA repair proteins, DNA damage signaling, and DNA metabolism.
Collapse
Affiliation(s)
- Timothy A Yap
- 1 Departments of Investigational Cancer Therapeutics (Phase I Program) and Thoracic/Head and Neck Medical Oncology, Institute for Applied Cancer Science, Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruth Plummer
- 2 Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nilofer S Azad
- 3 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas Helleday
- 4 Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,5 Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Sun G, Zhao L, Zhong R, Peng Y. The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
14
|
Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Crit Rev Oncol Hematol 2018; 126:168-185. [PMID: 29759559 DOI: 10.1016/j.critrevonc.2018.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third major cause of cancer-related deaths worldwide. However, despite the scientific efforts to provide a molecular classification to improve CRC clinical practice management, prognosis and therapeutic decision are still strongly dependent on the TNM staging system. Mismatch repair system deficiencies can occur in many organs, but it is mainly a hallmark of CRC influencing clinical outcomes and response to therapy. This review will discuss the effect of the modulation of other DNA repair pathways (direct, excision and double strand break repairs) in the clinical and pathological aspects of colorectal cancer and its potential as prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Gustavo A Laporte
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia M Leguisamo
- Institute of Cardiology/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Antonio N Kalil
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Pishvaian MJ, Slack RS, Jiang W, He AR, Hwang JJ, Hankin A, Dorsch-Vogel K, Kukadiya D, Weiner LM, Marshall JL, Brody JR. A phase 2 study of the PARP inhibitor veliparib plus temozolomide in patients with heavily pretreated metastatic colorectal cancer. Cancer 2018; 124:2337-2346. [PMID: 29579325 DOI: 10.1002/cncr.31309] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/23/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors such as veliparib are potent sensitizing agents and have been safely combined with DNA-damaging agents such as temozolomide. The sensitizing effects of PARP inhibitors are magnified when cells harbor DNA repair defects. METHODS A single-arm, open-label, phase 2 study was performed to investigate the disease control rate (DCR) after 2 cycles of veliparib plus temozolomide in patients with metastatic colorectal cancer (mCRC) refractory to all standard therapies. Fifty patients received temozolomide (150 mg/m2 /d) on days 1 to 5 and veliparib (40 mg twice daily) on days 1 to 7 of each 28-day cycle. Another 5 patients with mismatch repair-deficient (dMMR) tumors were also enrolled. Twenty additional patients were then treated with temozolomide at 200 mg/m2 /d. Archived tumor specimens were used for immunohistochemistry to assess mismatch repair, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and O(6)-methylguanine-DNA methyltransferase (MGMT) protein expression levels. RESULTS The combination was well tolerated, although some patients required dose reductions for myelosuppression. The primary endpoint was successfully met with a DCR of 24% and 2 confirmed partial responses. The median progression-free survival was 1.8 months, and the median overall survival was 6.6 months. PTEN protein expression and MGMT protein expression were not predictors of DCR. There was also a suggestion of worse outcomes for patients with dMMR tumors. CONCLUSIONS In this heavily pretreated mCRC population, a combination of veliparib and temozolomide was well tolerated with temozolomide doses up to 200 mg/m2 /d, and it was clinically active. PARP inhibitor-based therapy merits further exploration in patients with mCRC. Cancer 2018;124:2337-46. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Rebecca S Slack
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Jiang
- Carolinas Medical Center, Charlotte, North Carolina
| | - A Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | | | - Amy Hankin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Karen Dorsch-Vogel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Divyesh Kukadiya
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - John L Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Jonathan R Brody
- Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Signorell RD, Papachristodoulou A, Xiao J, Arpagaus B, Casalini T, Grandjean J, Thamm J, Steiniger F, Luciani P, Brambilla D, Werner B, Martin E, Weller M, Roth P, Leroux JC. Preparation of PEGylated liposomes incorporating lipophilic lomeguatrib derivatives for the sensitization of chemo-resistant gliomas. Int J Pharm 2017; 536:388-396. [PMID: 29198811 DOI: 10.1016/j.ijpharm.2017.11.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
Abstract
Liposomal delivery is a well-established approach to increase the therapeutic index of drugs, mainly in the field of cancer chemotherapy. Here, we report the preparation and characterization of a new liposomal formulation of a derivative of lomeguatrib, a potent O6-methylguanine-DNA methyltransferase (MGMT) inactivator. The drug had been tested in clinical trials to revert chemoresistance, but was associated with a low therapeutic index. A series of lomeguatrib conjugates with distinct alkyl chain lengths - i.e. C12, C14, C16, and C18 - was synthesized, and the MGMT depleting activity as well as cytotoxicity were determined on relevant mouse and human glioma cell lines. Drug-containing liposomes were prepared and characterized in terms of loading and in vitro release kinetics. The lipophilic lomeguatrib conjugates did not exert cytotoxic effects at 5 μM in the mouse glioma cell line and exhibited a similar MGMT depleting activity pattern as lomeguatrib. Overall, drug loading could be improved by up to 50-fold with the lipophilic conjugates, and the slowest leakage was achieved with the C18 derivative. The present data show the applicability of lipophilic lomeguatrib derivatization for incorporation into liposomes, and identify the C18 derivative as the lead compound for in vivo studies.
Collapse
Affiliation(s)
- Rea D Signorell
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Jiawen Xiao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Bianca Arpagaus
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland; Institute of Mechanical Engineering and Material Technology, Department of Innovative Technology, SUPSI, 6928, Manno, Switzerland
| | - Joanes Grandjean
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University and ETH Zurich, 8093, Zurich, Switzerland
| | - Jana Thamm
- Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Frank Steiniger
- Electron Microscopy Center, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Paola Luciani
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland; Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Davide Brambilla
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, 8032, Zurich, Switzerland
| | - Ernst Martin
- Center for MR-Research, University Children's Hospital, 8032, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Mukherjee S, Kumar G, Patnaik R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somniferaphytochemicals for combating neurotoxicity: A structure-based in-silicostudy. JOURNAL OF THEORETICAL AND COMPUTATIONAL CHEMISTRY 2017; 16:1750062. [DOI: 10.1142/s0219633617500626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) reverses DNA damage by repairing DNA nicks and breaks in the normal cellular environment. However, during abnormal conditions like stroke and other neurological disorders, overactivation of PARP-1 leads to neuronal cell death via a caspase-independent programmed cell death pathway. Strategies involving inhibition or knockout of PARP-1 have proved beneficial in combating neuro-cytotoxicity. In this study, we performed in-silico analysis of 27 phytochemicals of Withania somnifera (Ashwagandha), to investigate their inhibition efficiency against PARP-1. Out of 27 phytochemicals, we report 12 phytochemicals binding to the catalytic domain of PARP-1 with an affinity higher than FR257517, PJ34 and Talazoparib (highly potent inhibitors of the enzyme). Among these 12 compounds, five phytochemicals namely Stigmasterol, Withacnistin, Withaferin A, Withanolide G and Withanolide B show an exceptionally high binding affinity for the catalytic domain of PARP-1 and bind to the enzyme with similar hydrogen bond formation and hydrophobic interaction pattern as their inhibitors. All of these phytochemicals are BBB permeable so that they can be further developed into potential future neuro-therapeutic drugs against neurodegenerative disorders involving neuronal cell death.
Collapse
Affiliation(s)
- Sumedha Mukherjee
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Gaurav Kumar
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ranjana Patnaik
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
18
|
Erice O, Smith MP, White R, Goicoechea I, Barriuso J, Jones C, Margison GP, Acosta JC, Wellbrock C, Arozarena I. MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide. Mol Cancer Ther 2015; 14:1236-46. [PMID: 25777962 DOI: 10.1158/1535-7163.mct-14-0810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomide resistance, but cotargeting MGMT has proven difficult due to dose-limiting toxicities. Here, we show that the MGMT-mediated resistance of cancer cells is profoundly dependent on the DNA repair enzyme PARP. Both in vitro and in vivo, we observe that MGMT-positive cancer cells strongly respond to the combination of temozolomide and PARP inhibitors (PARPi), whereas MGMT-deficient cells do not. In melanoma cells, temozolomide induced an antiproliferative senescent response, which was greatly enhanced by PARPi in MGMT-positive cells. In summary, we provide compelling evidence to suggest that the stratification of patients with cancer upon the MGMT status would enhance the success of combination treatments using temozolomide and PARPi.
Collapse
Affiliation(s)
- Oihane Erice
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Michael P Smith
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Rachel White
- Edinburgh Cancer Research UK Centre and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Ibai Goicoechea
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Jorge Barriuso
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Sutton, United Kingdom
| | - Geoffrey P Margison
- Centre for Occupational and Environmental Health, The University of Manchester, Stopford Building, Manchester, United Kingdom
| | - Juan C Acosta
- Edinburgh Cancer Research UK Centre and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| | - Imanol Arozarena
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
19
|
Jaiswal AS, Panda H, Law BK, Sharma J, Jani J, Hromas R, Narayan S. NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells. PLoS One 2015; 10:e0123808. [PMID: 25933036 PMCID: PMC4416822 DOI: 10.1371/journal.pone.0123808] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/07/2015] [Indexed: 01/29/2023] Open
Abstract
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.
Collapse
Affiliation(s)
- Aruna S. Jaiswal
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, 32610, United States of America
| | - Harekrushna Panda
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, 32610, United States of America
| | - Brian K. Law
- Department of Pharmacology and Experimental Therapeutics, University of Florida, Gainesville, Florida, 32610, United States of America
| | - Jay Sharma
- Celprogen Inc., Torrance, California, 90503, United States of America
| | - Jitesh Jani
- Celprogen Inc., Torrance, California, 90503, United States of America
| | - Robert Hromas
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, 32610, United States of America
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, 32610, United States of America
- * E-mail:
| |
Collapse
|
20
|
Smith MA, Reynolds CP, Kang MH, Kolb EA, Gorlick R, Carol H, Lock RB, Keir ST, Maris JM, Billups CA, Lyalin D, Kurmasheva RT, Houghton PJ. Synergistic activity of PARP inhibition by talazoparib (BMN 673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program. Clin Cancer Res 2015; 21:819-32. [PMID: 25500058 PMCID: PMC4587665 DOI: 10.1158/1078-0432.ccr-14-2572] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Inhibitors of PARP, an enzyme involved in base excision repair, have demonstrated single-agent activity against tumors deficient in homologous repair processes. Ewing sarcoma cells are also sensitive to PARP inhibitors, although the mechanism is not understood. Here, we evaluated the stereo-selective PARP inhibitor, talazoparib (BMN 673), combined with temozolomide or topotecan. EXPERIMENTAL DESIGN Talazoparib was tested in vitro in combination with temozolomide (0.3-1,000 μmol/L) or topotecan (0.03-100 nmol/L) and in vivo at a dose of 0.1 mg/kg administered twice daily for 5 days combined with temozolomide (30 mg/kg/daily x 5; combination A) or 0.25 mg/kg administered twice daily for 5 days combined with temozolomide (12 mg/kg/daily x 5; combination B). Pharmacodynamic studies were undertaken after 1 or 5 days of treatment. RESULTS In vitro talazoparib potentiated the toxicity of temozolomide up to 85-fold, with marked potentiation in Ewing sarcoma and leukemia lines (30-50-fold). There was less potentiation for topotecan. In vivo, talazoparib potentiated the toxicity of temozolomide, and combination A and combination B represent the MTDs when combined with low-dose or high-dose talazoparib, respectively. Both combinations demonstrated significant synergism against 5 of 10 Ewing sarcoma xenografts. The combination demonstrated modest activity against most other xenograft models. Pharmacodynamic studies showed a treatment-induced complete loss of PARP only in tumor models sensitive to either talazoparib alone or talazoparib plus temozolomide. CONCLUSIONS The high level of activity observed for talazoparib plus temozolomide in Ewing sarcoma xenografts makes this an interesting combination to consider for pediatric evaluation.
Collapse
Affiliation(s)
| | | | - Min H Kang
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - E Anders Kolb
- A.I. duPont Hospital for Children, Wilmington, Delaware
| | | | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | | | - John M Maris
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
21
|
Inno A, Fanetti G, Bartolomeo MD, Gori S, Maggi C, Cirillo M, Iacovelli R, Nichetti F, Martinetti A, Braud FD, Bossi I, Pietrantonio F. Role of MGMT as biomarker in colorectal cancer. World J Clin Cases 2014; 2:835-839. [PMID: 25516857 PMCID: PMC4266830 DOI: 10.12998/wjcc.v2.i12.835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
O6-methylguanine DNA methyltransferase (MGMT) gene promoter methylation plays an important role in colorectal carcinogenesis, occurring in about 30%-40% of metastatic colorectal cancer. Its prognostic role has not been defined yet, but loss of expression of MGMT, which is secondary to gene promoter methylation, results in an interesting high response to alkylating agents such as dacarbazine and temozolomide. In a phase 2 study on heavily pre-treated patients with MGMT methylated metastatic colorectal cancer, temozolomide achieved about 30% of disease control rate. Activating mutations of RAS or BRAF genes as well as mismatch repair deficiency may represent mechanisms of resistance to alkylating agents, but a dose-dense schedule of temozolomide may potentially restore sensitivity in RAS-mutant patients. Further development of temozolomide in MGMT methylated colorectal cancer includes investigation of synergic combinations with other agents such as fluoropyrimidines and research for additional biomarkers, in order to better define the role of temozolomide in the treatment of individual patients.
Collapse
|
22
|
Curtin NJ. Inhibiting the DNA damage response as a therapeutic manoeuvre in cancer. Br J Pharmacol 2014; 169:1745-65. [PMID: 23682925 DOI: 10.1111/bph.12244] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The DNA damage response (DDR), consisting of an orchestrated network of proteins effecting repair and signalling to cell cycle arrest, to allow time to repair, is essential for cell viability and to prevent DNA damage being passed on to daughter cells. The DDR is dysregulated in cancer with some pathways up-regulated and others down-regulated or lost. Up-regulated pathways can confer resistance to anti-cancer DNA damaging agents. Therefore, inhibitors of key components of these pathways have the potential to prevent this therapeutic resistance. Conversely, defects in a particular DDR pathway may lead to dependence on a complementary pathway. Inhibition of this complementary pathway may result in tumour-specific cell killing. Thus, inhibitors of the DDR have the potential to increase the efficacy of DNA damaging chemotherapy and radiotherapy and have single-agent activity against tumours with a specific DDR defect. This review describes the compounds that have been designed to inhibit specific DDR targets and summarizes the pre-clinical and clinical evaluation of these inhibitors of DNA damage signalling and repair. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- N J Curtin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Pietrantonio F, Perrone F, de Braud F, Castano A, Maggi C, Bossi I, Gevorgyan A, Biondani P, Pacifici M, Busico A, Gariboldi M, Festinese F, Tamborini E, Di Bartolomeo M. Activity of temozolomide in patients with advanced chemorefractory colorectal cancer and MGMT promoter methylation. Ann Oncol 2013; 25:404-8. [PMID: 24379162 DOI: 10.1093/annonc/mdt547] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND No evidence-based treatment options are available for patients with advanced colorectal cancer (CRC) progressing after standard therapies. MGMT is involved in repair of DNA damage and MGMT promoter methylation may predict benefit from alkylating agents such as temozolomide. The aim of our study was to evaluate the activity of temozolomide in terms of response rate in patients with metastatic CRC and MGMT methylation, after failure of approved treatments. PATIENTS AND METHODS Patients were enrolled in a monocentre, open-label, phase II study and treated with temozolomide at a dose of 150 mg/m2/day for 5 consecutive days in 4-weekly cycles. The treatment was continued for at least six cycles or until progressive disease. RESULTS Thirty-two patients were enrolled from August 2012 to July 2013. Treatment was well tolerated with one grade 4 thrombocytopenia and no other grade≥3 toxicities. No complete response occurred. The objective response rate was 12%, reaching the pre-specified level for promising activity. Median progression-free survival and overall survival were 1.8 and 8.4 months, respectively. Patients with KRAS, BRAF and NRAS wild-type CRC showed significantly higher response when compared with those with any RAS or BRAF mutation (44% versus 0%; P=0.004). TP53 status had no influence on the primary end point. CONCLUSIONS Temozolomide is tolerable and active in heavily pre-treated patients with advanced CRC and MGMT promoter methylation. Further studies in biomolecularly enriched populations or in a randomized setting are necessary to demonstrate the efficacy of temozolomide after failure of standard treatments.
Collapse
|
25
|
Ugur HC, Taspinar M, Ilgaz S, Sert F, Canpinar H, Rey JA, Castresana JS, Sunguroglu A. Chemotherapeutic resistance in anaplastic astrocytoma cell lines treated with a temozolomide-lomeguatrib combination. Mol Biol Rep 2013; 41:697-703. [PMID: 24368590 DOI: 10.1007/s11033-013-2908-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
The treatment of anaplastic astrocytoma (AA) is controversial. New chemotherapeutic approaches are needed for AA treatment. Temozolomide (TMZ) is one of the chemotherapeutic drugs for the treatment of AA. The cytotoxic effects of TMZ can be removed by the MGMT (O(6)-methylguanine-DNA methyltransferase) enzyme. Then, chemotherapeutic resistance to TMZ occurs. MGMT inhibition by MGMT inactivators (such as lomeguatrib) is an important anticancer therapeutic approach to circumvent TMZ resistance. We aim to investigate the effect of TMZ-lomeguatrib combination on MGMT expression and TMZ sensitivity of SW1783 and GOS-3 AA cell lines. The sensitivity of SW1783 and GOS-3 cell lines to TMZ and to the combination of TMZ and lomeguatrib was determined by a cytotoxicity assay. MGMT methylation was detected by MS-PCR. MGMT and p53 expression were investigated by real-time PCR after drug treatment, and the proportion of apoptotic cells was analyzed by flow cytometry. When the combination of TMZ-lomeguatrib (50 μM) was used in AA cell lines, IC50 values were reduced compared to only using TMZ. MGMT expression was decreased, p53 expression was increased, and the proportion of apoptotic cells was induced in both cell lines. The lomeguatrib-TMZ combination did not have any effect on the cell cycle and caused apoptosis by increasing p53 expression and decreasing MGMT expression. Our study is a pilot study investigating a new therapeutic approach for AA treatment, but further research is needed.
Collapse
Affiliation(s)
- Hasan Caglar Ugur
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fahrer J, Kaina B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis 2013; 34:2435-42. [PMID: 23929436 DOI: 10.1093/carcin/bgt275] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer death worldwide, involving multiple dietary and non-dietary risk factors. A growing body of evidence suggests that N-nitroso compounds (NOC) play a pivotal role in the etiology of CRC. NOC are present in food and are also formed endogenously in the large intestine. Upon metabolic activation and also spontaneously, they form electrophilic species that methylate the DNA, producing N-methylated purines and O(6)-methylguanine, the latter of which bears high mutagenic and carcinogenic potential. Methylated DNA bases are removed by base excision repair initiated by the alkyladenine-DNA glycosylase, the family of AlkB homologs proteins, and the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is the main focus of this review. We present animal models with a deficiency of MGMT that display a tremendously enhanced sensitivity toward alkylation-induced colorectal carcinogenesis, highlighting its role in the protection against the cytotoxic and mutagenic effects of alkylating agents. In line with these studies, MGMT was linked to the formation of human sporadic CRC. Colorectal tumors and precursor lesions frequently display epigenetic inactivation of MGMT resulting from promoter hypermethylation, which is tightly associated with the occurrence of G:C to A:T transition mutations in the KRAS oncogene. We also discuss clinical data, which identified the MGMT status of CRC patients as promising parameter for the treatment of metastasized CRC using alkylating anticancer drugs such as temozolomide.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | |
Collapse
|
27
|
Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 2013; 34:1935-47. [PMID: 23519841 DOI: 10.1007/s13277-013-0738-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022] Open
Abstract
Temozolomide (TMZ) is commonly used in the treatment of glioblastoma (GBM). The MGMT repair enzyme (O (6)-methylguanine-DNA methyltransferase) is an important factor causing chemotherapeutic resistance. MGMT prevents the formation of toxic effects of alkyl adducts by removing them from the DNA. Therefore, MGMT inhibition is an interesting therapeutic approach to circumvent TMZ resistance. The aim of the study was to investigate the effect of the combination of lomeguatrib (an MGMT inactivator) with TMZ, on MGMT expression and methylation. Primary cell cultures were obtained from GBM tumor tissues. The sensitivity of primary GBM cell cultures and GBM cell lines to TMZ, and to the combination of TMZ and lomeguatrib, was determined by a cytotoxicity assay (MTT). MGMT and p53 expression, and MGMT methylation were investigated after drug application. In addition, the proportion of apoptotic cells and DNA fragmentation was analyzed. The combination of TMZ and lomeguatrib in primary GBM cell cultures and glioma cell lines decreased MGMT expression, increased p53 expression, and did not change MGMT methylation. Moreover, apoptosis was induced and DNA fragmentation was increased in cells. In addition, we also showed that lomeguatrib-TMZ combination did not have any effect on the cell cycle. Finally, we determined that the sensitivity of each primary GBM cells and glioma cell lines to the lomeguatrib-TMZ combination was different and significantly associated with the structure of MGMT methylation. Our study suggests that lomeguatrib can be used with TMZ for GBM treatment, although further clinical studies will be needed so as to determine the feasibility of this therapeutic approach.
Collapse
|
28
|
Amatu A, Sartore-Bianchi A, Moutinho C, Belotti A, Bencardino K, Chirico G, Cassingena A, Rusconi F, Esposito A, Nichelatti M, Esteller M, Siena S. Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin Cancer Res 2013; 19:2265-72. [PMID: 23422094 DOI: 10.1158/1078-0432.ccr-12-3518] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE O(6)-methylguanine-DNA-methyltransferase (MGMT) is a DNA repair protein removing mutagenic and cytotoxic adducts from O(6)-guanine in DNA. Approximately 40% of colorectal cancers (CRC) display MGMT deficiency due to the promoter hypermethylation leading to silencing of the gene. Alkylating agents, such as dacarbazine, exert their antitumor activity by DNA methylation at the O(6)-guanine site, inducing base pair mismatch; therefore, activity of dacarbazine could be enhanced in CRCs lacking MGMT. We conducted a phase II study with dacarbazine in CRCs who had failed standard therapies (oxaliplatin, irinotecan, fluoropyrimidines, and cetuximab or panitumumab if KRAS wild-type). EXPERIMENTAL DESIGN All patients had tumor tissue assessed for MGMT as promoter hypermethylation in double-blind for treatment outcome. Patients received dacarbazine 250 mg/m(2) intravenously every day for four consecutive days, every 21 days, until progressive disease or intolerable toxicity. We used a Simon two-stage design to determine whether the overall response rate would be 10% or more. Secondary endpoints included association of response, progression-free survival, and disease control rate with MGMT status. RESULTS Sixty-eight patients were enrolled from May 2011 to March 2012. Patients received a median of three cycles of dacarbazine (range 1-12). Grades 3 and 4 toxicities included: fatigue (41%), nausea/vomiting (29%), constipation (25%), platelet count decrease (19%), and anemia (18%). Overall, two patients (3%) achieved partial response and eight patients (12%) had stable disease. Disease control rate (partial response + stable disease) was significantly associated with MGMT promoter hypermethylation in the corresponding tumors. CONCLUSION Objective clinical responses to dacarbazine in patients with metastatic CRC are confined to those tumors harboring epigenetic inactivation of the DNA repair enzyme MGMT.
Collapse
Affiliation(s)
- Alessio Amatu
- Department of Hematology and Oncology, Ospedale Niguarda Ca' Granda, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med Chem 2012; 4:1093-111. [PMID: 22709253 DOI: 10.4155/fmc.12.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major challenge in the future development of cancer therapeutics is the identification of biological targets and pathways, and the subsequent design of molecules to combat the drug-resistant cells hiding in virtually all cancers. This therapeutic approach is justified based upon the limited advances in cancer cures over the past 30 years, despite the development of many novel chemotherapies and earlier detection, which often fail due to drug resistance. Among the various targets to overcome tumor resistance are the DNA repair systems that can reverse the cytotoxicity of many clinically used DNA-damaging agents. Some progress has already been made but much remains to be done. We explore some components of the DNA-repair process, which are involved in repair of alkylation damage of DNA, as targets for the development of novel and effective molecules designed to improve the efficacy of existing anticancer drugs.
Collapse
|
30
|
Abstract
Many cytotoxic agents used in cancer treatment exert their effects through their ability to directly or indirectly damage DNA and thus resulting in cell death. Major types of DNA damage induced by anticancer treatment include strand breaks (double or single strand), crosslinks (inter-strand, intra-strand, DNA-protein crosslinks), and interference with nucleotide metabolism and DNA synthesis. On the other hand, cancer cells activate various DNA repair pathways and repair DNA damages induced by cytotoxic drugs. The purpose of the current review is to present the major types of DNA damage induced by cytotoxic agents, DNA repair pathways, and their role as predictive agents, as well as evaluate the future perspectives of the novel DNA repair pathways inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Athanasios G Pallis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | | |
Collapse
|
31
|
Jaiswal AS, Banerjee S, Aneja R, Sarkar FH, Ostrov DA, Narayan S. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS One 2011; 6:e16691. [PMID: 21311763 PMCID: PMC3032781 DOI: 10.1371/journal.pone.0016691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 01/22/2023] Open
Abstract
Chemoprevention presents a major strategy for the medical management of colorectal cancer. Most drugs used for colorectal cancer therapy induce DNA-alkylation damage, which is primarily repaired by the base excision repair (BER) pathway. Thus, blockade of BER pathway is an attractive option to inhibit the spread of colorectal cancer. Using an in silico approach, we performed a structure-based screen by docking small-molecules onto DNA polymerase β (Pol-β) and identified a potent anti-Pol-β compound, NSC-124854. Our goal was to examine whether NSC-124854 could enhance the therapeutic efficacy of DNA-alkylating agent, Temozolomide (TMZ), by blocking BER. First, we determined the specificity of NSC-124854 for Pol-β by examining in vitro activities of APE1, Fen1, DNA ligase I, and Pol-β-directed single nucleotide (SN)- and long-patch (LP)-BER. Second, we investigated the effect of NSC-124854 on the efficacy of TMZ to inhibit the growth of mismatch repair (MMR)-deficient and MMR-proficient colon cancer cell lines using in vitro clonogenic assays. Third, we explored the effect of NSC-124854 on TMZ-induced in vivo tumor growth inhibition of MMR-deficient and MMR-proficient colonic xenografts implanted in female homozygous SCID mice. Our data showed that NSC-124854 has high specificity to Pol-β and blocked Pol-β-directed SN- and LP-BER activities in in vitro reconstituted system. Furthermore, NSC-124854 effectively induced the sensitivity of TMZ to MMR-deficient and MMR-proficient colon cancer cells both in vitro cell culture and in vivo xenograft models. Our findings suggest a potential novel strategy for the development of highly specific structure-based inhibitor for the prevention of colonic tumor progression.
Collapse
Affiliation(s)
- Aruna S. Jaiswal
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sanjeev Banerjee
- Barbara Ann Karmanos Cancer Institute, Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Fazlul H. Sarkar
- Barbara Ann Karmanos Cancer Institute, Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kaina B, Margison GP, Christmann M. Targeting O⁶-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 2010; 67:3663-81. [PMID: 20717836 PMCID: PMC11115711 DOI: 10.1007/s00018-010-0491-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
O (6)-methylguanine-DNA methyltransferase (MGMT) repairs the cancer chemotherapy-relevant DNA adducts, O (6)-methylguanine and O (6)-chloroethylguanine, induced by methylating and chloroethylating anticancer drugs, respectively. These adducts are cytotoxic, and given the overwhelming evidence that MGMT is a key factor in resistance, strategies for inactivating MGMT have been pursued. A number of drugs have been shown to inactivate MGMT in cells, human tumour models and cancer patients, and O (6)-benzylguanine and O (6)-[4-bromothenyl]guanine have been used in clinical trials. While these agents show no side effects per se, they also inactivate MGMT in normal tissues and hence exacerbate the toxic side effects of the alkylating drugs, requiring dose reduction. This might explain why, in any of the reported trials, the outcome has not been improved by their inclusion. It is, however, anticipated that, with the availability of tumour targeting strategies and hematopoetic stem cell protection, MGMT inactivators hold promise for enhancing the effectiveness of alkylating agent chemotherapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| | | | | |
Collapse
|
33
|
Syro LV, Ortiz LD, Scheithauer BW, Lloyd R, Lau Q, Gonzalez R, Uribe H, Cusimano M, Kovacs K, Horvath E. Treatment of pituitary neoplasms with temozolomide: a review. Cancer 2010; 117:454-62. [PMID: 20845485 DOI: 10.1002/cncr.25413] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/10/2010] [Accepted: 04/07/2010] [Indexed: 11/10/2022]
Abstract
Temozolomide, an orally administered alkylating agent, is used to treat malignant gliomas. Recent reports also have documented its efficacy in the treatment of pituitary adenomas and carcinomas. Temozolomide methylates DNA and thereby exhibits an antitumor effect. O⁶-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylating adducts induced by temozolomide, counteracting its effects. The authors of this review conducted a Medline database search regarding temozolomide in the treatment of pituitary tumors. Demographic characteristics, tumor types, and therapeutic responses were noted in all patients. Data regarding MGMT immunoexpression, which was documented in some studies, were correlated with information regarding clinical and radiologic responses. To date, there have been 19 reported cases of adenohypophyseal tumors treated with temozolomide, including 13 adenomas and 6 carcinomas. Ten of those 13 adenomas responded favorably, and 2 nonresponsive tumors had high-level MGMT immunoexpression. All 6 carcinomas responded to therapy, but data regarding MGMT expression were available for only 3 patients, and each had low MGMT expression. In 2 adenomas, morphologic studies were performed both before and after the patients received temozolomide. The responsive tumor had necrosis, hemorrhage, fibrosis, and neuronal differentiation. The nonresponsive tumor had no changes. There have been no reported complications attributable to temozolomide. The current results indicated that temozolomide is efficacious in the treatment of aggressive pituitary adenomas and pituitary carcinomas. Evidence indicated that low-level MGMT immunoexpression is correlated with a favorable response. A significant proportion of pituitary adenomas and carcinomas had low MGMT immunoexpression.
Collapse
Affiliation(s)
- Luis V Syro
- Department of Neurosurgery, Pablo Tobon Uribe Hospital and Medellin Clinic, Medellin, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Navarro-Alvarez N, Kondo E, Kawamoto H, Hassan W, Yuasa T, Kubota Y, Seita M, Nakahara H, Hayashi T, Nishikawa Y, Hassan RARA, Javed SM, Noguchi H, Matsumoto S, Nakaji S, Tanaka N, Kobayashi N, Soto-Gutierrez A. Isolation and propagation of a human CD133(-) colon tumor-derived cell line with tumorigenic and angiogenic properties. Cell Transplant 2010; 19:865-877. [PMID: 20587145 PMCID: PMC2957535 DOI: 10.3727/096368910x508997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been proposed in human colorectal cancers (CRC) a minority subset of cancer cells within tumors able to initiate tumor growth, defined as cancer stem cells (CSC). Solid human primary colonic and its ovarian metastatic cancer tissues were collected from fresh surgical samples and subsequent xenografts were established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. The resulting tumors were disaggregated into single-cell suspensions and a CD133(-) cell line (NANK) was newly established and analyzed by flow cytometry. Surface markers of progenitor cells were immunophenotypically analyzed, and expression of stem cell and cancer-related genes was characterized. Secreted angiogenesis-associated molecules were investigated by proteomic array technology. Finally, different numbers of NANK were implanted and their tumor-initiating properties were investigated in NOD/SCID mice. Intraperitoneal injection of NANK in NOD/SCID mice induced tumors with developing progressive peritoneal dissemination and ascites. NANK cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Noticeably, NANK lacked the expression of conventional CSC markers CD133 and CD44, self-renewal genes Oct-4 and Nanog, but showed the expression of an important gastrointestinal development marker CDX-2 and BMI-1 that is essential in regulating the proliferative activity of normal and leukemic stem cells. In addition, NANK secreted high amounts of important angiogenic cytokines. These results provide a novel and extensive model in human CSC for studying the generation and maintenance of phenotypic heterogeneity in CRC.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Eisaku Kondo
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hironobu Kawamoto
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Wael Hassan
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Takeshi Yuasa
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Yasuhiro Kubota
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masayuki Seita
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Nakahara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Takahiro Hayashi
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Yuriko Nishikawa
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Reham ARA Hassan
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Shahid M Javed
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Baylor Research Institute, Baylor Institution for Immunology Research, Islet Cell Transplantation Laboratory, 3434 Live Oak Dallas, TX 75204, USA
| | - Shinichi Matsumoto
- Baylor Research Institute, Baylor Institution for Immunology Research, Islet Cell Transplantation Laboratory, 3434 Live Oak Dallas, TX 75204, USA
| | - Shuhei Nakaji
- Department of Biomedical Engineering, School of Engineering, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Alejandro Soto-Gutierrez
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children’s Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 2010; 16:743-9. [PMID: 20068091 DOI: 10.1158/1078-0432.ccr-09-1389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A major mechanism of resistance to chlorethylnitrosureas and methylating agents involves the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). We sought to determine the dose of oral 6-(4-bromo-2-thienyl) methoxy purin-2-amine (lomeguatrib), a pseudosubstrate inactivator of MGMT, required to render active protein undetectable 12 hours after dosing in prostate, primary central nervous system (CNS), and colorectal cancer patients. EXPERIMENTAL DESIGN Lomeguatrib was administered orally as a single dose (20-160 mg) approximately 12 hours before tumor resection. Dose escalation was projected to continue until grade 2 toxicity or until complete inactivation of tumor MGMT was encountered. Total MGMT protein levels were quantified by ELISA, and active protein levels were quantified by biochemical assay. MGMT promoter methylation was determined in glioblastoma DNA by methylation-specific PCR. RESULTS Thirty-seven patients were dosed with lomeguatrib, and 32 informative tumor samples were obtained. Mean total MGMT level varied between tumor types: 554 +/- 404 fmol/mg protein (+/-SD) for prostate cancer, 87.4 +/- 40.3 fmol/mg protein for CNS tumors, and 244 +/- 181 fmol/mg protein for colorectal cancer. MGMT promoter hypermethylation did not correlate with total protein expression. Consistent total MGMT inactivation required 120 mg of lomeguatrib in prostate and colorectal cancers. Complete consistent inactivation in CNS tumors was observed only at the highest dose of lomeguatrib (160 mg). CONCLUSIONS Total MGMT inactivation can be achieved in prostate, primary CNS, and colorectal cancers with a single administration of 120 or 160 mg lomeguatrib. The dose needed did not correlate with mean total MGMT protein concentrations. One hundred twenty to 160 mg/d of lomeguatrib should be administered to achieve total MGMT inactivation in future studies.
Collapse
Affiliation(s)
- Amanda J Watson
- Cancer Research UK Carcinogenesis Group, University of Manchester, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sabharwal A, Corrie PG, Midgley RS, Palmer C, Brady J, Mortimer P, Watson AJ, Margison GP, Middleton MR. A phase I trial of lomeguatrib and irinotecan in metastatic colorectal cancer. Cancer Chemother Pharmacol 2009; 66:829-35. [DOI: 10.1007/s00280-009-1225-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/13/2009] [Indexed: 11/24/2022]
|
37
|
Jaiswal AS, Banerjee S, Panda H, Bulkin CD, Izumi T, Sarkar FH, Ostrov DA, Narayan S. A novel inhibitor of DNA polymerase beta enhances the ability of temozolomide to impair the growth of colon cancer cells. Mol Cancer Res 2009; 7:1973-83. [PMID: 19996303 DOI: 10.1158/1541-7786.mcr-09-0309] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The recent emerging concept to sensitize cancer cells to DNA-alkylating drugs is by inhibiting various proteins in the base excision repair (BER) pathway. In the present study, we used structure-based molecular docking of DNA polymerase beta (Pol-beta) and identified a potent small molecular weight inhibitor, NSC-666715. We determined the specificity of this small molecular weight inhibitor for Pol-beta by using in vitro activities of APE1, Fen1, DNA ligase I, and Pol-beta-directed single-nucleotide and long-patch BER. The binding specificity of NSC-666715 with Pol-beta was also determined by using fluorescence anisotropy. The effect of NSC-666715 on the cytotoxicity of the DNA-alkylating drug temozolomide (TMZ) to colon cancer cells was determined by in vitro clonogenic and in vivo xenograft assays. The reduction in tumor growth was higher in the combination treatment relative to untreated or monotherapy treatment. NSC-666715 showed a high specificity for blocking Pol-beta activity. It blocked Pol-beta-directed single-nucleotide and long-patch BER without affecting the activity of APE1, Fen1, and DNA ligase I. Fluorescence anisotropy data suggested that NSC-666715 directly and specifically interacts with Pol-beta and interferes with binding to damaged DNA. NSC-666715 drastically induces the sensitivity of TMZ to colon cancer cells both in in vitro and in vivo assays. The results further suggest that the disruption of BER by NSC-666715 negates its contribution to drug resistance and bypasses other resistance factors, such as mismatch repair defects. Our findings provide the "proof-of-concept" for the development of highly specific and thus safer structure-based inhibitors for the prevention of tumor progression and/or treatment of colorectal cancer.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology and University of Florida Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhu Y, Hu J, Hu Y, Liu W. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev 2009; 35:590-6. [PMID: 19635647 DOI: 10.1016/j.ctrv.2009.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 01/04/2023]
Abstract
Increased chemo-resistance and radio-resistance of cancer cells is a major obstacle in the treatment and management of malignant cancers. An important mechanism that underlies the development of such therapeutic resistance is that cancer cells recognize DNA lesions induced by DNA-damaging agents and by ionizing radiation, and repair these lesions by activating various DNA repair pathways. Therefore, Use of pharmacological agents that can inhibit certain DNA repair pathways in cancer cells has the potential for enhancing the targeted cytotoxicity of anticancer treatments and reversing the associated therapeutic resistance associated with DNA repair; such agents, offering a promising opportunity to achieve better therapeutic efficacy. Here we review the major DNA repair pathways and discuss recent advances in the development of novel inhibitors of DNA repair pathways; many of these agents are under preclinical/clinical investigation.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | |
Collapse
|
39
|
Villano JL, Seery TE, Bressler LR. Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 2009; 64:647-55. [DOI: 10.1007/s00280-009-1050-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/02/2009] [Indexed: 12/29/2022]
|
40
|
Clinical importance of DNA repair inhibitors in cancer therapy. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2009. [DOI: 10.1007/s12254-008-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|