1
|
Yaakub H, Howell A, Margison GP, Povey AC. Development and Application of a Slot-Blot Assay Using the Damage Sensing Protein Atl1 to Detect and Quantify O6-Alkylated Guanine Bases in DNA. TOXICS 2024; 12:649. [PMID: 39330577 PMCID: PMC11435591 DOI: 10.3390/toxics12090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic O6-alkylguanines (O6-AlkGs) in DNA and applied it to human DNA samples. The method exploits the ability of the Schizosaccharomyces pombe alkyltransferase-like protein (Atl1) to recognise and bind to a wide range of O6-AlkGs in DNA. We established an Atl1-based slot-blot (ASB) assay and validated it using calf thymus DNA alkylated in vitro with a range of alkylating agents and both calf thymus and human placental DNA methylated in vitro with temozolomide (TMZ). ASB signals were directly proportional to the levels of O6-meG in these controls. Pre-treatment of DNA with the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) reduced binding of Atl1, confirming its specificity. In addition, MCF 10A cells were treated with 500 μM TMZ and the extracted DNA, analysed using the ASB, was found to contain 1.34 fmoles O6 -meG/μg DNA. Of six human breast tumour DNA samples assessed, five had detectable O6-AlkG levels (mean ± SD 1.24 ± 0.25 O6-meG equivalents/μg DNA. This study shows the potential usefulness of the ASB assay to detect and quantify total O6-AlkGs in human DNA samples.
Collapse
Affiliation(s)
- Hanum Yaakub
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Anthony Howell
- Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester M23 9LT, UK;
- Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4GJ, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey P. Margison
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Andrew C. Povey
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| |
Collapse
|
2
|
Wang M, Zhang X, Yang H, Li Y, Chen W, Yin A. DNA methylation variations of DNA damage response correlate survival and local immune status in melanomas. Immun Inflamm Dis 2024; 12:e1331. [PMID: 39254643 PMCID: PMC11386344 DOI: 10.1002/iid3.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 09/11/2024] Open
Abstract
AIM We aimed to explore the impact of DNA methylation alterations on the DNA damage response (DDR) in melanoma prognosis and immunity. MATERIAL & METHODS: Different melanoma cohorts with molecular and clinical data were included. RESULTS Hierarchical clustering utilizing different combinations of DDR-relevant CpGs yielded distinct melanoma subtypes, which were characteristic of different prognoses, transcriptional function profiles of DDR, and immunity and immunotherapy responses but were associated with similar tumor mutation burdens. We then constructed and validated a clinically applicable 4-CpG risk-score signature for predicting survival and immunotherapy response. CONCLUSION Our study describes the close interrelationship among DNA methylation, DDR machinery, local tumor immune status, melanoma prognosis, and immunotherapy response.
Collapse
Affiliation(s)
- Min Wang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Xiao‐dong Zhang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Han‐qing Yang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Wen‐mei Chen
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - An‐an Yin
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Clinic GeneticsFourth Military Medical UniversityXi'anChina
| |
Collapse
|
3
|
Chen L, Wen A. Unveiling the role of O(6)-methylguanine-DNA methyltransferase in cancer therapy: insights into alkylators, pharmacogenomics, and others. Front Oncol 2024; 14:1424797. [PMID: 39055560 PMCID: PMC11269138 DOI: 10.3389/fonc.2024.1424797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer chemotherapy is advancing as we understand how cellular mechanisms and drugs interact, particularly involving the enzyme MGMT, which repairs DNA damage that can cause cancer. This review examines MGMT's role in DNA repair, its impact on chemotherapy, and its complex interaction with radiation therapy. MGMT activity can both protect against mutations and cause drug resistance. Modulating MGMT could improve treatment efficacy and tailoring therapy to MGMT status may enhance patient outcomes. Understanding MGMT is crucial for developing precise cancer treatments and advancing patient care.
Collapse
Affiliation(s)
- Lizhen Chen
- Department of Pharmacy, The First Hospital of Putian City, Putian, Fujian, China
| | - Alex Wen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Faculty of Synapse Program, Martinos Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Wen T, Zhao S, Stingele J, Ravanat JL, Greenberg MM. Quantification of Intracellular DNA-Protein Cross-Links with N7-Methyl-2'-Deoxyguanosine and Their Contribution to Cytotoxicity. Chem Res Toxicol 2024; 37:814-823. [PMID: 38652696 PMCID: PMC11105979 DOI: 10.1021/acs.chemrestox.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Abdelhady R, Senthong P, Eyers CE, Reamtong O, Cowley E, Cannizzaro L, Stimpson J, Cain K, Wilkinson OJ, Williams NH, Barran PE, Margison GP, Williams DM, Povey AC. Mass Spectrometric Analysis of the Active Site Tryptic Peptide of Recombinant O6-Methylguanine-DNA Methyltransferase Following Incubation with Human Colorectal DNA Reveals the Presence of an O6-Alkylguanine Adductome. Chem Res Toxicol 2023; 36:1921-1929. [PMID: 37983188 PMCID: PMC10731659 DOI: 10.1021/acs.chemrestox.3c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Pattama Senthong
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Claire E. Eyers
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Onrapak Reamtong
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Elizabeth Cowley
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Luca Cannizzaro
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Joanna Stimpson
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Kathleen Cain
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Oliver J. Wilkinson
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Nicholas H. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Perdita E. Barran
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Geoffrey P. Margison
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - David M. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Andrew C. Povey
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
8
|
Yu W, Zhang L, Wei Q, Shao A. O 6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front Oncol 2020; 9:1547. [PMID: 32010632 PMCID: PMC6979006 DOI: 10.3389/fonc.2019.01547] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance has been a significant problem affecting the efficacy of drugs targeting tumors for decades. MGMT, known as O6-methylguanine-DNA methyltransferase, is a DNA repair enzyme that plays an important role in chemoresistance to alkylating agents. Hence, MGMT is considered a promising target for tumor treatment. Several methods are employed to detect MGMT, each with its own advantages and disadvantages. Some of the detection methods are; immunohistochemistry, methylation-specific PCR (MSP), pyrophosphate sequencing, MGMT activity test, and real-time quantitative PCR. Methylation of MGMT promoter is a key predictor of whether alkylating agents can effectively control glioma cells. The prognostic value of MGMT in glioma is currently being explored. The expression of MGMT gene mainly depends on epigenetic modification–methylation of CpG island of MGMT promoter. CpG island covers a length of 762 bp, with 98 CpG sites located at the 5' end of the gene, ranging from 480 to 1,480 nucleotides. The methylation sites and frequencies of CpG islands vary in MGMT-deficient tumor cell lines, xenografts of glioblastoma and in situ glioblastoma. Methylation in some regions of promoter CpG islands is particularly associated with gene expression. The change in the methylation status of the MGMT promoter after chemotherapy, radiotherapy or both is not completely understood, and results from previous studies have been controversial. Several studies have revealed that chemotherapy may enhance MGMT expression in gliomas. This could be through gene induction or selection of high MGMT-expressing cells during chemotherapy. Selective survival of glioma cells with high MGMT expression during alkylating agent therapy may change MGMT status in case of recurrence. Several strategies have been pursued to improve the anti-tumor effects of temozolomide. These include the synthesis of analogs of O6-meG such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl) guanine (O6-BTG), RNAi, and viral proteins. This review describes the regulation of MGMT expression and its role in chemotherapy, especially in glioma. Targeting MGMT seems to be a promising approach to overcome chemoresistance. Further studies exploring new agents targeting MGMT with better curative effect and less toxicity are advocated. We anticipate that these developments will improve the current poor prognosis of glioma patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Lili Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Rare Stochastic Expression of O6-Methylguanine- DNA Methyltransferase (MGMT) in MGMT-Negative Melanoma Cells Determines Immediate Emergence of Drug-Resistant Populations upon Treatment with Temozolomide In Vitro and In Vivo. Cancers (Basel) 2018; 10:cancers10100362. [PMID: 30274152 PMCID: PMC6209933 DOI: 10.3390/cancers10100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/01/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The chemotherapeutic agent temozolomide (TMZ) kills tumor cells preferentially via alkylation of the O6-position of guanine. However, cells that express the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), or harbor deficient DNA mismatch repair (MMR) function, are profoundly resistant to this drug. TMZ is in clinical use for melanoma, but objective response rates are low, even when TMZ is combined with O6-benzylguanine (O6BG), a potent MGMT inhibitor. We used in vitro and in vivo models of melanoma to characterize the early events leading to cellular TMZ resistance. Melanoma cell lines were exposed to a single treatment with TMZ, at physiologically relevant concentrations, in the absence or presence of O6BG. Surviving clones and mass cultures were analyzed by Western blot, colony formation assays, and DNA methylation studies. Mice with melanoma xenografts received TMZ treatment, and tumor tissue was analyzed by immunohistochemistry. We found that MGMT-negative melanoma cell cultures, before any drug treatment, already harbored a small fraction of MGMT-positive cells, which survived TMZ treatment and promptly became the dominant cell type within the surviving population. The MGMT-negative status in individual cells was not stable, as clonal selection of MGMT-negative cells again resulted in a mixed population harboring MGMT-positive, TMZ-resistant cells. Blocking the survival advantage of MGMT via the addition of O6BG still resulted in surviving clones, although at much lower frequency and independent of MGMT, and the resistance mechanism of these clones was based on a common lack of expression of MSH6, a key MMR enzyme. TMZ treatment of mice implanted with MGMT-negative melanoma cells resulted in effective tumor growth delay, but eventually tumor growth resumed, with tumor tissue having become MGMT positive. Altogether, these data reveal stochastic expression of MGMT as a pre-existing, key determinant of TMZ resistance in melanoma cell lines. Although MGMT activity can effectively be eliminated by pharmacologic intervention with O6BG, additional layers of TMZ resistance, although considerably rarer, are present as well and minimize the cytotoxic impact of TMZ/O6BG combination treatment. Our results provide rational explanations regarding clinical observations, where the TMZ/O6BG regimen has yielded mostly disappointing outcomes in melanoma patients.
Collapse
|
10
|
Gutierrez R, Thompson Y, R. O’Connor T. DNA direct repair pathways in cancer. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomics-Enabled Discovery of a Potent and Selective Inhibitor of the DNA Repair Protein MGMT. Angew Chem Int Ed Engl 2016; 55:2911-5. [DOI: 10.1002/anie.201511301] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| |
Collapse
|
12
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomik-vermittelte Entdeckung eines potenten und selektiven Inhibitors des DNA-Reparaturproteins MGMT. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| |
Collapse
|
13
|
Ramcharan R, Aleksic T, Kamdoum WP, Gao S, Pfister SX, Tanner J, Bridges E, Asher R, Watson AJ, Margison GP, Woodcock M, Repapi E, Li JL, Middleton MR, Macaulay VM. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget 2015; 6:39877-90. [PMID: 26497996 PMCID: PMC4741867 DOI: 10.18632/oncotarget.5631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.
Collapse
Affiliation(s)
- Roger Ramcharan
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Shan Gao
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Sophia X. Pfister
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Jordan Tanner
- Biomedical Services, John Radcliffe Hospital, Oxford, UK
| | - Esther Bridges
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Ruth Asher
- Department of Pathology, John Radcliffe Hospital, Oxford, UK
| | - Amanda J. Watson
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Geoffrey P. Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Mick Woodcock
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Ji-Liang Li
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Valentine M. Macaulay
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
- Oxford Cancer Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
14
|
Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics. J Neurooncol 2015; 125:91-102. [PMID: 26311249 DOI: 10.1007/s11060-015-1899-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.
Collapse
|
15
|
A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo. Cancer Lett 2014; 358:144-151. [PMID: 25524552 DOI: 10.1016/j.canlet.2014.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/26/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
Abstract
The alkylating agent temozolomide (TMZ) represents an important component of current melanoma therapy, but overexpression of O6-methyl-guanine DNA methyltransferase (MGMT) in tumor cells confers resistance to TMZ and impairs therapeutic outcome. We investigated a novel perillyl alcohol (POH)-conjugated analog of TMZ, NEO212, for its ability to exert anticancer activity against MGMT-positive melanoma cells. Human melanoma cells with variable MGMT expression levels were treated with NEO212, TMZ, or perillyl alcohol in vitro and in vivo, and markers of DNA damage and apoptosis, and tumor cell growth were investigated. NEO212 displayed substantially greater anticancer activity than any of the other treatments. It reduced colony formation of MGMT-positive cells up to eight times more effectively than TMZ, and much more potently induced DNA damage and cell death. In a nude mouse tumor model, NEO212 showed significant activity against MGMT-positive melanoma, whereas TMZ, or a mix of TMZ plus POH, was ineffective. At the same time, NEO212 was well tolerated. NEO212 may have potential as a more effective therapy for advanced melanoma, and should become particularly suitable for the treatment of patients with MGMT-positive tumors.
Collapse
|
16
|
Progression of O⁶-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research. Mol Biol Rep 2014; 41:6659-65. [PMID: 24990698 DOI: 10.1007/s11033-014-3549-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Temozolomide (TMZ) is an alkylating agent that is widely used in chemotherapy for cancer. A key mechanism of resistance to TMZ is the overexpression of O(6)-methylguanine-DNA methyltransferase (MGMT). MGMT specifically repairs the DNA O(6)-methylation damage induced by TMZ and irreversibly inactivates TMZ. Regulation of MGMT expression and research regarding the mechanism of TMZ resistance will help rationalize the clinical use of TMZ. In this review, we provide an overview of recent advances in the field, with particular emphasis on MGMT structure, function, expression regulation, and the association between MGMT and resistance to TMZ.
Collapse
|
17
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Ugur HC, Taspinar M, Ilgaz S, Sert F, Canpinar H, Rey JA, Castresana JS, Sunguroglu A. Chemotherapeutic resistance in anaplastic astrocytoma cell lines treated with a temozolomide-lomeguatrib combination. Mol Biol Rep 2013; 41:697-703. [PMID: 24368590 DOI: 10.1007/s11033-013-2908-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
The treatment of anaplastic astrocytoma (AA) is controversial. New chemotherapeutic approaches are needed for AA treatment. Temozolomide (TMZ) is one of the chemotherapeutic drugs for the treatment of AA. The cytotoxic effects of TMZ can be removed by the MGMT (O(6)-methylguanine-DNA methyltransferase) enzyme. Then, chemotherapeutic resistance to TMZ occurs. MGMT inhibition by MGMT inactivators (such as lomeguatrib) is an important anticancer therapeutic approach to circumvent TMZ resistance. We aim to investigate the effect of TMZ-lomeguatrib combination on MGMT expression and TMZ sensitivity of SW1783 and GOS-3 AA cell lines. The sensitivity of SW1783 and GOS-3 cell lines to TMZ and to the combination of TMZ and lomeguatrib was determined by a cytotoxicity assay. MGMT methylation was detected by MS-PCR. MGMT and p53 expression were investigated by real-time PCR after drug treatment, and the proportion of apoptotic cells was analyzed by flow cytometry. When the combination of TMZ-lomeguatrib (50 μM) was used in AA cell lines, IC50 values were reduced compared to only using TMZ. MGMT expression was decreased, p53 expression was increased, and the proportion of apoptotic cells was induced in both cell lines. The lomeguatrib-TMZ combination did not have any effect on the cell cycle and caused apoptosis by increasing p53 expression and decreasing MGMT expression. Our study is a pilot study investigating a new therapeutic approach for AA treatment, but further research is needed.
Collapse
Affiliation(s)
- Hasan Caglar Ugur
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 2013; 34:1935-47. [PMID: 23519841 DOI: 10.1007/s13277-013-0738-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022] Open
Abstract
Temozolomide (TMZ) is commonly used in the treatment of glioblastoma (GBM). The MGMT repair enzyme (O (6)-methylguanine-DNA methyltransferase) is an important factor causing chemotherapeutic resistance. MGMT prevents the formation of toxic effects of alkyl adducts by removing them from the DNA. Therefore, MGMT inhibition is an interesting therapeutic approach to circumvent TMZ resistance. The aim of the study was to investigate the effect of the combination of lomeguatrib (an MGMT inactivator) with TMZ, on MGMT expression and methylation. Primary cell cultures were obtained from GBM tumor tissues. The sensitivity of primary GBM cell cultures and GBM cell lines to TMZ, and to the combination of TMZ and lomeguatrib, was determined by a cytotoxicity assay (MTT). MGMT and p53 expression, and MGMT methylation were investigated after drug application. In addition, the proportion of apoptotic cells and DNA fragmentation was analyzed. The combination of TMZ and lomeguatrib in primary GBM cell cultures and glioma cell lines decreased MGMT expression, increased p53 expression, and did not change MGMT methylation. Moreover, apoptosis was induced and DNA fragmentation was increased in cells. In addition, we also showed that lomeguatrib-TMZ combination did not have any effect on the cell cycle. Finally, we determined that the sensitivity of each primary GBM cells and glioma cell lines to the lomeguatrib-TMZ combination was different and significantly associated with the structure of MGMT methylation. Our study suggests that lomeguatrib can be used with TMZ for GBM treatment, although further clinical studies will be needed so as to determine the feasibility of this therapeutic approach.
Collapse
|
20
|
Tawbi HA, Beumer JH, Tarhini AA, Moschos S, Buch SC, Egorin MJ, Lin Y, Christner S, Kirkwood JM. Safety and efficacy of decitabine in combination with temozolomide in metastatic melanoma: a phase I/II study and pharmacokinetic analysis. Ann Oncol 2012; 24:1112-9. [PMID: 23172636 DOI: 10.1093/annonc/mds591] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is widely used for chemotherapy of metastatic melanoma. We hypothesized that epigenetic modulators will reverse chemotherapy resistance, and in this article, we report studies that sought to determine the recommended phase 2 dose (RP2D), safety, and efficacy of decitabine (DAC) combined with TMZ. PATIENTS AND METHODS In phase I, DAC was given at two dose levels: 0.075 and 0.15 mg/kg intravenously daily × 5 days/week for 2 weeks, TMZ orally 75 mg/m(2) qd for weeks 2-5 of a 6-week cycle. The phase II portion used a two-stage Simon design with a primary end point of objective response rate (ORR). RESULTS The RP2D is DAC 0.15 mg/kg and TMZ 75 mg/m(2). The phase II portion enrolled 35 patients, 88% had M1c disease; 42% had history of brain metastases. The best responses were 2 complete response (CR), 4 partial response (PR), 14 stable disease (SD), and 13 progressive disease (PD); 18% ORR and 61% clinical benefit rate (CR + PR + SD). The median overall survival (OS) was 12.4 months; the 1-year OS rate was 56%. Grade 3/4 neutropenia was common but lasted >7 days in six patients. CONCLUSIONS The combination of DAC and TMZ is safe, leads to 18% ORR and 12.4-month median OS, suggesting possible superiority over the historical 1-year OS rate, and warrants further evaluation in a randomized setting.
Collapse
Affiliation(s)
- H A Tawbi
- Department of Medicine/Division of Hematology/Oncology, School of Medicine, University of Pittsburgh, Pittsburgh 15232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Melikishvili M, Fried MG. Lesion-specific DNA-binding and repair activities of human O⁶-alkylguanine DNA alkyltransferase. Nucleic Acids Res 2012; 40:9060-72. [PMID: 22810209 PMCID: PMC3467069 DOI: 10.1093/nar/gks674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accumulation of a 1:1 intermediate. This establishes a role for cooperative interactions in lesion binding. Similar specific complexes could not be detected with single-stranded DNA. The small difference between specific and non-specific binding affinities strongly limits the roles that specific binding can play in the lesion search process. Alkyl-transfer kinetics with a single-stranded substrate indicate that two or more AGT monomers participate in the rate-limiting step, showing for the first time a functional link between cooperative binding and the repair reaction. Alkyl-transfer kinetics with a duplex substrate suggest that two pathways contribute to the formation of the specific 6mG-complex; one at least first order in AGT, we interpret as direct lesion binding. The second, independent of [AGT], is likely to include AGT transfer from distal sites to the lesion in a relatively slow unimolecular step. We propose that transfer between distal and lesion sites is a critical step in the repair process.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
22
|
Latypov VF, Tubbs JL, Watson AJ, Marriott AS, McGown G, Thorncroft M, Wilkinson OJ, Senthong P, Butt A, Arvai AS, Millington CL, Povey AC, Williams DM, Santibanez-Koref MF, Tainer JA, Margison GP. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Mol Cell 2012; 47:50-60. [PMID: 22658721 DOI: 10.1016/j.molcel.2012.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER.
Collapse
Affiliation(s)
- Vitaly F Latypov
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kanai R, Rabkin SD, Yip S, Sgubin D, Zaupa CM, Hirose Y, Louis DN, Wakimoto H, Martuza RL. Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 2011; 104:42-55. [PMID: 22173583 DOI: 10.1093/jnci/djr509] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although both the alkylating agent temozolomide (TMZ) and oncolytic viruses hold promise for treating glioblastoma, which remains uniformly lethal, the effectiveness of combining the two treatments and the mechanism of their interaction on cancer stem cells are unknown. METHODS We investigated the efficacy of combining TMZ and the oncolytic herpes simplex virus (oHSV) G47Δ in killing glioblastoma stem cells (GSCs), using Chou-Talalay combination index analysis, immunocytochemistry and fluorescence microscopy, and neutral comet assay. The role of treatment-induced DNA double-strand breaks, activation of DNA damage responses, and virus replication in the cytotoxic interaction between G47Δ and TMZ was examined with a panel of pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of DNA repair pathways. Comparisons of cell survival and virus replication were performed using a two-sided t test (unpaired). The survival of athymic mice (n = 6-8 mice per group) bearing GSC-derived glioblastoma tumors treated with the combination of G47Δ and TMZ was analyzed by the Kaplan-Meier method and evaluated with a two-sided log-rank test. RESULTS The combination of G47Δ and TMZ acted synergistically in killing GSCs but not neurons, with associated robust induction of DNA damage. Pharmacological and shRNA-mediated knockdown studies suggested that activated ataxia telangiectasia mutated (ATM) is a crucial mediator of synergy. Activated ATM relocalized to HSV DNA replication compartments where it likely enhanced oHSV replication and could not participate in repairing TMZ-induced DNA damage. Sensitivity to TMZ and synergy with G47Δ decreased with O(6)-methylguanine-DNA-methyltransferase (MGMT) expression and MSH6 knockdown. Combined G47Δ and TMZ treatment extended survival of mice bearing GSC-derived intracranial tumors, achieving long-term remission in four of eight mice (median survival = 228 days; G47Δ alone vs G47Δ + TMZ, hazard ratio of survival = 7.1, 95% confidence interval = 1.9 to 26.1, P = .003) at TMZ doses attainable in patients. CONCLUSIONS The combination of G47Δ and TMZ acts synergistically in killing GSCs through oHSV-mediated manipulation of DNA damage responses. This strategy is highly efficacious in representative preclinical models and warrants clinical translation.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Melikishvili M, Rodgers DW, Fried MG. 6-Carboxyfluorescein and structurally similar molecules inhibit DNA binding and repair by O⁶-alkylguanine DNA alkyltransferase. DNA Repair (Amst) 2011; 10:1193-202. [PMID: 21982443 DOI: 10.1016/j.dnarep.2011.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/18/2022]
Abstract
Human O⁶-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O⁶-alkylguanine and O⁴-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-labeled DNAs, AGT reduced the fluorescence intensity by ∼40% at binding saturation, whether the FAM was located at the 5' or the 3' end of the DNA. AGT protected residual fluorescence from quenching, indicating a solute-inaccessible binding site for FAM. Sedimentation equilibrium analyses showed that saturating AGT-stoichiometries were higher with FAM-labeled DNAs than with unlabeled DNAs, suggesting that the FAM provides a protein binding site that is not present in unlabeled DNAs. Additional fluorescence and sedimentation measurements showed that AGT forms a 1:1 complex with free FAM. Active site benzylation experiments and docking calculations support models in which the primary binding site is located in or near the active site of the enzyme. Electrophoretic analyses show that FAM inhibits DNA binding (IC₅₀∼76μM) and repair of DNA containing an O⁶-methylguanine residue (IC₅₀∼63μM). Similar results were obtained with other polycyclic aromatic compounds. These observations demonstrate the existence of a new class of non-covalent AGT-inhibitors. After optimization for binding-affinity, members of this class might be useful in cancer chemotherapy.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536-0509, United States
| | | | | |
Collapse
|
25
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
26
|
Roos WP, Jöst E, Belohlavek C, Nagel G, Fritz G, Kaina B. Intrinsic Anticancer Drug Resistance of Malignant Melanoma Cells Is Abrogated by IFN-β and Valproic Acid. Cancer Res 2011; 71:4150-60. [DOI: 10.1158/0008-5472.can-10-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Khan OA, Gore M, Lorigan P, Stone J, Greystoke A, Burke W, Carmichael J, Watson AJ, McGown G, Thorncroft M, Margison GP, Califano R, Larkin J, Wellman S, Middleton MR. A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br J Cancer 2011; 104:750-5. [PMID: 21326243 PMCID: PMC3048218 DOI: 10.1038/bjc.2011.8] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Poly adenosine diphosphate (ADP)-ribose polymerase (PARP) is essential in cellular processing of DNA damage via the base excision repair pathway (BER). The PARP inhibition can be directly cytotoxic to tumour cells and augments the anti-tumour effects of DNA-damaging agents. This study evaluated the optimally tolerated dose of olaparib (4-(3--4-fluorophenyl) methyl-1(2H)-one; AZD2281, KU0059436), a potent PARP inhibitor, with dacarbazine and assessed safety, toxicity, clinical pharmacokinetics and efficacy of combination treatment. Patients and methods: Patients with advanced cancer received olaparib (20–200 mg PO) on days 1–7 with dacarbazine (600–800 mg m−2 IV) on day 1 (cycle 2, day 2) of a 21-day cycle. An expansion cohort of chemonaive melanoma patients was treated at an optimally tolerated dose. The BER enzyme, methylpurine-DNA glycosylase and its substrate 7-methylguanine were quantified in peripheral blood mononuclear cells. Results: The optimal combination to proceed to phase II was defined as 100 mg bd olaparib with 600 mg m−2 dacarbazine. Dose-limiting toxicities were neutropaenia and thrombocytopaenia. There were two partial responses, both in patients with melanoma. Conclusion: This study defined a tolerable dose of olaparib in combination with dacarbazine, but there were no responses in chemonaive melanoma patients, demonstrating no clinical advantage over single-agent dacarbazine at these doses.
Collapse
Affiliation(s)
- O A Khan
- University of Oxford Department of Oncology, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Many cytotoxic agents used in cancer treatment exert their effects through their ability to directly or indirectly damage DNA and thus resulting in cell death. Major types of DNA damage induced by anticancer treatment include strand breaks (double or single strand), crosslinks (inter-strand, intra-strand, DNA-protein crosslinks), and interference with nucleotide metabolism and DNA synthesis. On the other hand, cancer cells activate various DNA repair pathways and repair DNA damages induced by cytotoxic drugs. The purpose of the current review is to present the major types of DNA damage induced by cytotoxic agents, DNA repair pathways, and their role as predictive agents, as well as evaluate the future perspectives of the novel DNA repair pathways inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Athanasios G Pallis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | | |
Collapse
|
29
|
Kaina B, Margison GP, Christmann M. Targeting O⁶-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 2010; 67:3663-81. [PMID: 20717836 PMCID: PMC11115711 DOI: 10.1007/s00018-010-0491-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
O (6)-methylguanine-DNA methyltransferase (MGMT) repairs the cancer chemotherapy-relevant DNA adducts, O (6)-methylguanine and O (6)-chloroethylguanine, induced by methylating and chloroethylating anticancer drugs, respectively. These adducts are cytotoxic, and given the overwhelming evidence that MGMT is a key factor in resistance, strategies for inactivating MGMT have been pursued. A number of drugs have been shown to inactivate MGMT in cells, human tumour models and cancer patients, and O (6)-benzylguanine and O (6)-[4-bromothenyl]guanine have been used in clinical trials. While these agents show no side effects per se, they also inactivate MGMT in normal tissues and hence exacerbate the toxic side effects of the alkylating drugs, requiring dose reduction. This might explain why, in any of the reported trials, the outcome has not been improved by their inclusion. It is, however, anticipated that, with the availability of tumour targeting strategies and hematopoetic stem cell protection, MGMT inactivators hold promise for enhancing the effectiveness of alkylating agent chemotherapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| | | | | |
Collapse
|
30
|
Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 2010; 16:743-9. [PMID: 20068091 DOI: 10.1158/1078-0432.ccr-09-1389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A major mechanism of resistance to chlorethylnitrosureas and methylating agents involves the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). We sought to determine the dose of oral 6-(4-bromo-2-thienyl) methoxy purin-2-amine (lomeguatrib), a pseudosubstrate inactivator of MGMT, required to render active protein undetectable 12 hours after dosing in prostate, primary central nervous system (CNS), and colorectal cancer patients. EXPERIMENTAL DESIGN Lomeguatrib was administered orally as a single dose (20-160 mg) approximately 12 hours before tumor resection. Dose escalation was projected to continue until grade 2 toxicity or until complete inactivation of tumor MGMT was encountered. Total MGMT protein levels were quantified by ELISA, and active protein levels were quantified by biochemical assay. MGMT promoter methylation was determined in glioblastoma DNA by methylation-specific PCR. RESULTS Thirty-seven patients were dosed with lomeguatrib, and 32 informative tumor samples were obtained. Mean total MGMT level varied between tumor types: 554 +/- 404 fmol/mg protein (+/-SD) for prostate cancer, 87.4 +/- 40.3 fmol/mg protein for CNS tumors, and 244 +/- 181 fmol/mg protein for colorectal cancer. MGMT promoter hypermethylation did not correlate with total protein expression. Consistent total MGMT inactivation required 120 mg of lomeguatrib in prostate and colorectal cancers. Complete consistent inactivation in CNS tumors was observed only at the highest dose of lomeguatrib (160 mg). CONCLUSIONS Total MGMT inactivation can be achieved in prostate, primary CNS, and colorectal cancers with a single administration of 120 or 160 mg lomeguatrib. The dose needed did not correlate with mean total MGMT protein concentrations. One hundred twenty to 160 mg/d of lomeguatrib should be administered to achieve total MGMT inactivation in future studies.
Collapse
Affiliation(s)
- Amanda J Watson
- Cancer Research UK Carcinogenesis Group, University of Manchester, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhu Y, Hu J, Hu Y, Liu W. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev 2009; 35:590-6. [PMID: 19635647 DOI: 10.1016/j.ctrv.2009.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 01/04/2023]
Abstract
Increased chemo-resistance and radio-resistance of cancer cells is a major obstacle in the treatment and management of malignant cancers. An important mechanism that underlies the development of such therapeutic resistance is that cancer cells recognize DNA lesions induced by DNA-damaging agents and by ionizing radiation, and repair these lesions by activating various DNA repair pathways. Therefore, Use of pharmacological agents that can inhibit certain DNA repair pathways in cancer cells has the potential for enhancing the targeted cytotoxicity of anticancer treatments and reversing the associated therapeutic resistance associated with DNA repair; such agents, offering a promising opportunity to achieve better therapeutic efficacy. Here we review the major DNA repair pathways and discuss recent advances in the development of novel inhibitors of DNA repair pathways; many of these agents are under preclinical/clinical investigation.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | |
Collapse
|