1
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
3
|
Caro AA, Deschoemaeker S, Allonsius L, Coosemans A, Laoui D. Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14164037. [PMID: 36011029 PMCID: PMC9406463 DOI: 10.3390/cancers14164037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary With an overall 5-year survival of only 20% for advanced-stage ovarian cancer patients, enduring and effective therapies are a highly unmet clinical need. Current standard-of-care therapies are able to improve progression-free survival; however, patients still relapse. Moreover, immunotherapy has not resulted in clear patient benefits so far. In this situation, dendritic cell vaccines can serve as a potential therapeutic addition against ovarian cancer. In the current review, we provide an overview of the different dendritic cell subsets and the roles they play in ovarian cancer. We focus on the advancements in dendritic cell vaccination against ovarian cancer and highlight the key outcomes and pitfalls associated with currently used strategies. Finally, we address future directions that could be taken to improve the dendritic cell vaccination outcomes in ovarian cancer. Abstract Ovarian cancer (OC) is the deadliest gynecological malignancy in developed countries and is the seventh-highest cause of death in women diagnosed with cancer worldwide. Currently, several therapies are in use against OC, including debulking surgery, chemotherapy, as well as targeted therapies. Even though the current standard-of-care therapies improve survival, a vast majority of OC patients relapse. Additionally, immunotherapies have only resulted in meager patient outcomes, potentially owing to the intricate immunosuppressive nexus within the tumor microenvironment. In this scenario, dendritic cell (DC) vaccination could serve as a potential addition to the therapeutic options available against OC. In this review, we provide an overview of current therapies in OC, focusing on immunotherapies. Next, we highlight the potential of using DC vaccines in OC by underscoring the different DC subsets and their functions in OC. Finally, we provide an overview of the advances and pitfalls of current DC vaccine strategies in OC while providing future perspectives that could improve patient outcomes.
Collapse
Affiliation(s)
- Aarushi Audhut Caro
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lize Allonsius
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-6291969
| |
Collapse
|
4
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Guiding immunotherapy combinations: Who gets what? Adv Drug Deliv Rev 2021; 178:113962. [PMID: 34481029 DOI: 10.1016/j.addr.2021.113962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/27/2023]
Abstract
Although PD-1 and CTLA-4 inhibitors have proven successful in a range of malignancies, there are subsets of patients that do not respond to these agents due to upregulation of adaptive and innate resistance mechanisms by the tumor and its surrounding microenvironment. As new immunotherapeutic strategies are developed, there is a need for rational implementation of novel immunotherapy combinations that target complementary mechanisms of immunotherapy resistance intrinsic to each patient and tumor type. In this short review, we cover mechanisms by which tumors evade the immune system, as well as summarize available clinical data on emerging therapeutic agents that target these defense mechanisms. Rational implementation of combination immunotherapy targeting patient- and malignancy-specific immune evasion mechanisms may thus lead to enhanced response rates and allow immunotherapy to be effective even in tumors that are historically considered poorly responsive to immunotherapy.
Collapse
|
6
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
7
|
Phillips-Chavez C, Watson M, Coward J, Schloss J. A systematic literature review assessing if genetic biomarkers are predictors for platinum-based chemotherapy response in ovarian cancer patients. Eur J Clin Pharmacol 2020; 76:1059-1074. [PMID: 32440721 DOI: 10.1007/s00228-020-02874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ovarian cancer is the deadliest of gynecologic malignancies with the 5-year overall survival rate remaining at approximately 30%, a rate that has not improved over the last three decades. Standard of care for epithelial ovarian cancer patients consists of a platinum compound with a taxane given intravenously following debulking surgery; however, 80% of cases relapse within 2 years of diagnosis. This review sought to identify key underlying biomarkers related to platinum resistance in ovarian cancer to establish possible prognostic biomarkers of chemoresponse. METHODS A systematic literature review was conducted across three databases PubMed, EMBASE and SCOPUS to summarise the evidence for prognostic biomarkers in platinum-resistant ovarian cancer patients. RESULTS Forty-eight human studies were used in the review encompassing 6719 participants in retrospective and prospective study designs. A total of 68 biomarkers were reported that were significantly correlated with chemoresponse and/or survival reporting a p value less than or equal to 0.05. CONCLUSION This review accentuates the pleiotropic phenotypic complexities related to the response to platinum therapy in ovarian cancer. A one-size-fits-all approach may be ineffective in a large portion of patients, emphasising the need for a whole system-based approach and personalised treatment strategies. Identifying key biomarkers to aid clinical decision-making is the first essential step in developing and appropriating therapies for at-risk patients, reducing toxicity and improving quality of life.
Collapse
Affiliation(s)
- Caitlin Phillips-Chavez
- Icon Cancer Centre, Southport, Australia.
- Endeavour College of Natural Health, 105 Scarborough Street, Southport, QLD, 4215, Australia.
| | - Michael Watson
- Endeavour College of Natural Health, 105 Scarborough Street, Southport, QLD, 4215, Australia
| | - Jermaine Coward
- Icon Cancer Centre, South Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Janet Schloss
- Endeavour College of Natural Health, Level 2, 269 Wickham Street, Fortitude Valley, Brisbane, QLD, 4006, Australia
| |
Collapse
|
8
|
Asiri A, Toss MS, Raposo TP, Akhlaq M, Thorpe H, Alfahed A, Asiri A, Ilyas M. Cten promotes Epithelial–Mesenchymal Transition (EMT) in colorectal cancer through stabilisation of Src. Pathol Int 2019; 69:381-391. [DOI: 10.1111/pin.12811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Abdulaziz Asiri
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health SciencesMinistry of National Guard Health Affairs (MNGH) Riyadh Saudi Arabia
| | - Michael S. Toss
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
| | - Teresa Pereira Raposo
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Maham Akhlaq
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
| | - Hannah Thorpe
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Abdulaziz Alfahed
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
- Department of Medical Laboratory, College of Applied Medical SciencesPrince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Abutaleb Asiri
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Mohammad Ilyas
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| |
Collapse
|
9
|
Yan Y, Leontovich AA, Gerdes MJ, Desai K, Dong J, Sood A, Santamaria-Pang A, Mansfield AS, Chadwick C, Zhang R, Nevala WK, Flotte TJ, Ginty F, Markovic SN. Understanding heterogeneous tumor microenvironment in metastatic melanoma. PLoS One 2019; 14:e0216485. [PMID: 31166985 PMCID: PMC6550385 DOI: 10.1371/journal.pone.0216485] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/22/2019] [Indexed: 01/05/2023] Open
Abstract
A systemic analysis of the tumor-immune interactions within the heterogeneous tumor microenvironment is of particular importance for understanding the antitumor immune response. We used multiplexed immunofluorescence to elucidate cellular spatial interactions and T-cell infiltrations in metastatic melanoma tumor microenvironment. We developed two novel computational approaches that enable infiltration clustering and single cell analysis-cell aggregate algorithm and cell neighborhood analysis algorithm-to reveal and to compare the spatial distribution of various immune cells relative to tumor cell in sub-anatomic tumor microenvironment areas. We showed that the heterogeneous tumor human leukocyte antigen-1 expressions differently affect the magnitude of cytotoxic T-cell infiltration and the distributions of CD20+ B cells and CD4+FOXP3+ regulatory T cells within and outside of T-cell infiltrated tumor areas. In a cohort of 166 stage III melanoma samples, high tumor human leukocyte antigen-1 expression is required but not sufficient for high T-cell infiltration, with significantly improved overall survival. Our results demonstrate that tumor cells with heterogeneous properties are associated with differential but predictable distributions of immune cells within heterogeneous tumor microenvironment with various biological features and impacts on clinical outcomes. It establishes tools necessary for systematic analysis of the tumor microenvironment, allowing the elucidation of the "homogeneous patterns" within the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexey A. Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Gerdes
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Keyur Desai
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Jinhong Dong
- Clinical Immunology and Immunotherapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anup Sood
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Alberto Santamaria-Pang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Aaron S. Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chrystal Chadwick
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Rong Zhang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Wendy K. Nevala
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas J. Flotte
- Division of Anatomic Pathology and Division of Dermatopathology and Cutaneous Immunopathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Fiona Ginty
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Svetomir N. Markovic
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Stanske M, Wienert S, Castillo-Tong DC, Kreuzinger C, Vergote I, Lambrechts S, Gabra H, Gourley C, Ganapathi RN, Kolaschinski I, Budczies J, Sehouli J, Ruscito I, Denkert C, Kulbe H, Schmitt W, Jöhrens K, Braicu I, Darb-Esfahani S. Dynamics of the Intratumoral Immune Response during Progression of High-Grade Serous Ovarian Cancer. Neoplasia 2018; 20:280-288. [PMID: 29466768 PMCID: PMC5852388 DOI: 10.1016/j.neo.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TILs) have an established impact on the prognosis of high-grade serous ovarian carcinoma (HGSOC), however, their role in recurrent ovarian cancer is largely unknown. We therefore systematically investigated TIL densities and MHC class I and II (MHC1, 2) expression in the progression of HGSOC. EXPERIMENTAL DESIGN CD3+, CD4+, CD8+ TILs and MHC1, 2 expression were evaluated by immunohistochemistry on tissue microarrays in 113 paired primary and recurrent HGSOC. TILs were quantified by image analysis. All patients had been included to the EU-funded OCTIPS FP7 project. RESULTS CD3+, CD4+, CD8+ TILs and MHC1 and MHC2 expression showed significant correlations between primary and recurrent tumor levels (Spearman rho 0.427, 0.533, 0.361, 0.456, 0.526 respectively; P<.0001 each). Paired testing revealed higher CD4+ densities and MHC1 expression in recurrent tumors (Wilcoxon P=.034 and P=.018). There was also a shift towards higher CD3+ TILs levels in recurrent carcinomas when analyzing platinum-sensitive tumors only (Wilcoxon P=.026) and in pairs with recurrent tumor tissue from first relapse only (Wilcoxon P=.031). High MHC2 expression was the only parameter to be significantly linked to prolonged progression-free survival after first relapse (PFS2, log-rank P=.012). CONCLUSIONS This is the first study that analyzed the development of TILs density and MHC expression in paired primary and recurrent HGSOC. The level of the antitumoral immune response in recurrent tumors was clearly dependent on the one in the primary tumor. Our data contribute to the understanding of temporal heterogeneity of HGSOC immune microenvironment and have implications for selection of samples for biomarker testing in the setting of immune-targeting therapeutics.
Collapse
Affiliation(s)
- Mandy Stanske
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Stephan Wienert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany; VM Scope GmbH, Charitéplatz 1, 10117 Berlin, Germany.
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Caroline Kreuzinger
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Ignace Vergote
- Department of Gynecology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | - Hani Gabra
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, MRC IGMM, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| | - Ram N Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas Health Care System, 1021 Morehead Medical Drive, Charlotte, NC 28204-2839, USA.
| | - Ivonne Kolaschinski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jan Budczies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology, Augustenburger Platz 1, 13353 Berlin, Germany; Tumorbank Ovarian Cancer Network (TOC), Department of Gynecology, Charité University Hospital Berlin, Germany, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Ilary Ruscito
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology, Augustenburger Platz 1, 13353 Berlin, Germany; Tumorbank Ovarian Cancer Network (TOC), Department of Gynecology, Charité University Hospital Berlin, Germany, Augustenburger Platz 1, 13353 Berlin, Germany; UP Cell Therapy and Tumor Immunology, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Carsten Denkert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Hagen Kulbe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Wolfgang Schmitt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Korinna Jöhrens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Ioana Braicu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology, Augustenburger Platz 1, 13353 Berlin, Germany; Tumorbank Ovarian Cancer Network (TOC), Department of Gynecology, Charité University Hospital Berlin, Germany, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Silvia Darb-Esfahani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network (TOC), Department of Gynecology, Charité University Hospital Berlin, Germany, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
12
|
Hirohashi Y, Torigoe T, Mariya T, Kochin V, Saito T, Sato N. HLA class I as a predictor of clinical prognosis and CTL infiltration as a predictor of chemosensitivity in ovarian cancer. Oncoimmunology 2015; 4:e1005507. [PMID: 26155404 DOI: 10.1080/2162402x.2015.1005507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 10/23/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) recognize the human leukocyte antigen (HLA) class I and antigenic peptide complex, and they play a crucial role in cancer immunity. Our recent study revealed that HLA class I downregulation is related to poorer prognosis and a low level of intratumoral CTLs is associated with platinum resistance, indicating the significance of immunological surveillance.
Collapse
Affiliation(s)
- Yoshihiko Hirohashi
- Department of Pathology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| | - Tasuku Mariya
- Department of Pathology; Sapporo Medical University School of Medicine ; Sapporo, Japan ; Department of Obstetrics and Gynecology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology; Sapporo Medical University School of Medicine ; Sapporo, Japan
| |
Collapse
|
13
|
Abstract
Immunotherapy has demonstrated impressive outcomes for some patients with cancer. However, selecting patients who are most likely to respond to immunotherapy remains a clinical challenge. Here, we discuss immune escape mechanisms exploited by cancer and present strategies for applying this knowledge to improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Whitney L Gladney
- Abramson Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Mariya T, Hirohashi Y, Torigoe T, Asano T, Kuroda T, Yasuda K, Mizuuchi M, Sonoda T, Saito T, Sato N. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol Res 2014; 2:1220-9. [PMID: 25324403 DOI: 10.1158/2326-6066.cir-14-0101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most deadly carcinomas in females. Immune systems can recognize EOCs; however, a defect of human leukocyte antigen (HLA) class I expression is known to be a major mechanism for escape from immune systems, resulting in poor prognosis. The purpose of this study is to identify novel correlations between immunologic responses and other clinical factors. We investigated the expression of immunologic components in 122 cases of EOCs for which surgical operations were performed between 2001 and 2011. We immunohistochemically stained EOC specimens using an anti-pan HLA class I monoclonal antibody (EMR8-5) and anti-CD3, -CD4, and -CD8 antibodies, and we analyzed correlations between immunologic parameters and clinical factors. In multivariate analysis that used the Cox proportional hazards model, independent prognostic factors for overall survival in advanced EOCs included low expression level of HLA class I [risk ratio (RR), 1.97; 95% confidence interval (CI), 1.01-3.83; P = 0.046] and loss of intraepithelial cytotoxic T lymphocyte (CTL) infiltration (RR, 2.11; 95% CI, 1.06-4.20; P = 0.033). Interestingly, almost all platinum-resistant cases showed a significantly low rate of intraepithelial CTL infiltration in the χ(2) test (positive vs. negative: 9.0% vs. 97.7%; P < 0.001). Results from a logistic regression model revealed that low CTL infiltration rate was an independent factor of platinum resistance in multivariate analysis (OR, 3.77; 95% CI, 1.08-13.12; P = 0.037). Platinum-resistant EOCs show poor immunologic responses. The immune escape system of EOCs may be one of the mechanisms of platinum resistance.
Collapse
Affiliation(s)
- Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
HLA-G expression is an independent predictor for improved survival in high grade ovarian carcinomas. J Immunol Res 2014; 2014:274584. [PMID: 24987709 PMCID: PMC4058481 DOI: 10.1155/2014/274584] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/28/2014] [Indexed: 01/04/2023] Open
Abstract
Aberrant expression of human leukocyte antigens (HLA) class I has prognostic importance in various cancers. Here, we evaluated the prognostic value of classical (A/B/C) and nonclassical (G/E) HLA expression in 169 high grade epithelial ovarian cancer samples and linked that to clinicopathological characteristics and survival. Expression of HLA-A, -B/C, or -E was not correlated with survival. Survival was prolonged when tumours expressed HLA-G (P = 0.008) and HLA-G was an independent predictor for better survival (P = 0.011). In addition, HLA-G expression was associated with longer progression-free survival (P = 0.036) and response to chemotherapy (P = 0.014). Accordingly, high expression of HLA-G mRNA was associated with prolonged disease-free survival (P = 0.037) in 65 corresponding samples. Elevated serum-soluble HLA-G levels as measured by enzyme-linked immunosorbent assay in 50 matched patients were not correlated to HLA-G protein expression or gene expression nor with survival. During treatment, sHLA-G levels declined (P = 0.038). In conclusion, expression of HLA-G is an independent prognostic factor for improved survival in high grade epithelial ovarian cancer and a predictor for platinum sensitivity.
Collapse
|
16
|
Gujar SA, Clements D, Dielschneider R, Helson E, Marcato P, Lee PWK. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer 2013; 110:83-93. [PMID: 24281006 PMCID: PMC3887295 DOI: 10.1038/bjc.2013.695] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reovirus preferentially infects and kills cancer cells and is currently undergoing clinical trials internationally. While oncolysis is the primary mode of tumour elimination, increasing evidence illustrates that reovirus additionally stimulates anti-tumour immunity with a capacity to target existing and possibly relapsing cancer cells. These virus-induced anti-tumour immune activities largely determine the efficacy of oncotherapy. On the other hand, anti-viral immune responses can negatively affect oncotherapy. Hence, the strategic management of anti-tumour and anti-viral immune responses through complementary therapeutics is crucial to achieve the maximum anti-cancer benefits of oncotherapy. METHODS Intra-peritoneal injection of mouse ovarian surface epithelial cells (ID8 cells) into wild-type C57BL/6 mice was treated with a therapeutic regimen of reovirus and/or gemcitabine and then analysed for prolonged survival, disease pathology, and various immunological parameters. Furthermore, in vitro analyses were conducted to assess apoptosis, viral spread, and viral production during reovirus and/or gemcitabine treatment. RESULTS We demonstrate that reovirus and gemcitabine combination treatment postpones peritoneal carcinomatosis development and prolongs the survival of cancer-bearing hosts. Importantly, these anti-cancer benefits are generated through various immunological mechanisms, including: (1) inhibition of myeloid-derived suppressor cells recruitment to the tumour microenvironment, (2) downmodulation of pro-MDSC factors, and (3) accelerated development of anti-tumour T-cell responses. CONCLUSION The complementation of reovirus with gemcitabine further potentiates virus-initiated anti-cancer immunity and enhances the efficacy of oncotherapy. In the context of ongoing clinical trials, our findings represent clinically relevant information capable of enhancing cancer outcomes.
Collapse
Affiliation(s)
- S A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - D Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R Dielschneider
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - E Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - P Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - P W K Lee
- 1] Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada [2] Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. Mol Ther 2012; 21:338-47. [PMID: 23299799 DOI: 10.1038/mt.2012.228] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immunosuppression associated with ovarian cancer (OC) and resultant peritoneal carcinomatosis (PC) hampers the efficacy of many promising treatment options, including immunotherapies. It is hypothesized that oncolytic virus-based therapies can simultaneously kill OC and mitigate immunosuppression. Currently, reovirus-based anticancer therapy is undergoing phase I/II clinical trials for the treatment of OC. Hence, this study was focused on characterizing the effects of reovirus therapy on OC and associated immune microenvironment. Our data shows that reovirus efficiently killed OC cells and induced higher expression of the molecules involved in antigen presentation including major histocompatibility complex (MHC) class I, β2-microglobulin (β2M), TAP-1, and TAP-2. In addition, in the presence of reovirus, dendritic cells (DCs) overcame the OC-mediated phenotypic suppression and successfully stimulated tumor-specific CD8+ T cells. In animal studies, reovirus targeted local and distal OC, alleviated the severity of PC and significantly prolonged survival. These therapeutic effects were accompanied by decreased frequency of suppressive cells, e.g., Gr1.1+, CD11b+ myeloid derived suppressor cells (MDSCs), and CD4+, CD25+, FOXP3+ Tregs, tumor-infiltration of CD3+ cells and higher expression of Th1 cytokines. Finally, reovirus therapy during early stages of OC also resulted in the postponement of PC development. This report elucidates timely information on a therapeutic approach that can target OC through clinically desired multifaceted mechanisms to better the outcomes.
Collapse
|
18
|
Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H, Masuzaki H, Katabuchi H, Kawakami Y, Okamoto A, Nogawa T, Matsumura N, Udagawa Y, Saito T, Itamochi H, Takano M, Miyagi E, Sudo T, Ushijima K, Iwase H, Seki H, Terao Y, Enomoto T, Mikami M, Akazawa K, Tsuda H, Moriya T, Tajima A, Inoue I, Tanaka K. High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res 2012; 18:1374-85. [PMID: 22241791 DOI: 10.1158/1078-0432.ccr-11-2725] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE High-grade serous ovarian cancers are heterogeneous not only in terms of clinical outcome but also at the molecular level. Our aim was to establish a novel risk classification system based on a gene expression signature for predicting overall survival, leading to suggesting novel therapeutic strategies for high-risk patients. EXPERIMENTAL DESIGN In this large-scale cross-platform study of six microarray data sets consisting of 1,054 ovarian cancer patients, we developed a gene expression signature for predicting overall survival by applying elastic net and 10-fold cross-validation to a Japanese data set A (n = 260) and evaluated the signature in five other data sets. Subsequently, we investigated differences in the biological characteristics between high- and low-risk ovarian cancer groups. RESULTS An elastic net analysis identified a 126-gene expression signature for predicting overall survival in patients with ovarian cancer using the Japanese data set A (multivariate analysis, P = 4 × 10(-20)). We validated its predictive ability with five other data sets using multivariate analysis (Tothill's data set, P = 1 × 10(-5); Bonome's data set, P = 0.0033; Dressman's data set, P = 0.0016; TCGA data set, P = 0.0027; Japanese data set B, P = 0.021). Through gene ontology and pathway analyses, we identified a significant reduction in expression of immune-response-related genes, especially on the antigen presentation pathway, in high-risk ovarian cancer patients. CONCLUSIONS This risk classification based on the 126-gene expression signature is an accurate predictor of clinical outcome in patients with advanced stage high-grade serous ovarian cancer and has the potential to develop new therapeutic strategies for high-grade serous ovarian cancer patients.
Collapse
Affiliation(s)
- Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pellicciotta I, Yang CPH, Goldberg GL, Shahabi S. Epothilone B enhances Class I HLA and HLA-A2 surface molecule expression in ovarian cancer cells. Gynecol Oncol 2011; 122:625-31. [PMID: 21621254 DOI: 10.1016/j.ygyno.2011.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/04/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Ovarian cancer is the leading cause of death from gynecologic cancers in the United States. Epothilone B (EpoB), Taxol and vinblastine are anti-neoplastic agents that interfere with microtubules and arrest the cell cycle in the G2/M phase. EpoB is being evaluated in phase III clinical trials, and its analogs are currently being used in the treatment of taxane-resistant metastatic breast cancer. Little is known about the effect of these drugs on the immune response to tumors. Cancer cells evade immune recognition by down-regulating HLA Class I expression, allowing escape from immune surveillance and destruction. Our data illustrates the effect of microtubule-interacting agents on HLA Class I and HLA-A2 expression as well as the modulation of cytokine expression in ovarian cancer cells. METHODS Ovarian cancer cells were treated with different concentrations of drugs. Cell surface expression and mRNA transcription of HLA Class I molecules and HLA-A2 was examined. IFNα, IL1β, IL12 and IL6 mRNA expression was also evaluated upon EpoB treatment. RESULTS Low-dose EpoB, Taxol and vinblastine greatly increased expression of HLA Class I and HLA-A2 molecules in Hey ovarian cancer cells. EpoB does not modulate HLA expression in drug-resistant ovarian cancer cells. The expression of IFNα, IL1β, IL12 and IL6 is also markedly increased upon EpoB treatment. CONCLUSIONS Nanomolar concentrations of microtubule-interacting agents enhance immune-visibility of ovarian cancer cells by increasing HLA Class I and pro-inflammatory cytokine expression. Immune recognition of tumor cells may be improved.
Collapse
Affiliation(s)
- Ilenia Pellicciotta
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center, the Albert Einstein College of Medicine and the Albert Einstein Cancer Center, Bronx, New York, NY 10461, USA.
| | | | | | | |
Collapse
|