1
|
Ding H, Yang Q, Mao Y, Qin D, Yao Z, Wang R, Qin T, Li S. Serum Amyloid a Predicts Prognosis and Chemotherapy Efficacy in Patients with Advanced Pancreatic Cancer. J Inflamm Res 2023; 16:1297-1310. [PMID: 36998322 PMCID: PMC10045337 DOI: 10.2147/jir.s404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose There is an urgent need to discover a predictive biomarker to help patients with advanced pancreatic cancer (APC) choose appropriate chemotherapy regimens. This study aimed to determine whether baseline serum amyloid A (SAA) levels were associated with overall survival (OS), progression-free survival (PFS), and treatment response in patients with APC received chemotherapy. Patients and Methods This retrospective study included 268 patients with APC who received first-line chemotherapy at the Sun Yat-Sen University Cancer Center between January 2017 and December 2021. We examined the effect of baseline SAA on OS, PFS and chemotherapy response. The X-Tile program was used to determine the critical value for optimizing the significance of segmentation between Kaplan-Meier survival curves. The Kaplan-Meier curves and Cox regression analyses were used to analyze OS and PFS. Results The best cut-off value of baseline SAA levels for OS stratification was 8.2 mg/L. Multivariate analyses showed that SAA was an independent predictor of OS (Hazard Ratio (HR) = 1.694, 95% Confidence Interval (CI) = 1.247-2.301, p = 0.001) and PFS (HR = 1.555, 95% CI = 1.152-2.098, p = 0.004). Low SAA was associated with longer OS (median, 15.7 months vs 10.0 months, p < 0.001) and PFS (median, 7.6 months vs 4.8 months, p < 0.001). The patients with a low SAA who received mFOLFIRINOX had longer OS (median, 28.5 months vs 15.1 months, p = 0.019) and PFS (median, 12.0 months vs 7.4 months, p = 0.035) than those who received nab-paclitaxel plus gemcitabine (AG) or SOXIRI, whereas there was no significant difference among the three chemotherapy regimens in patients with a high SAA. Conclusion Owing to the rapid and simple analysis of peripheral blood, baseline SAA might be a useful clinical biomarker, not only as a prognostic biomarker for patients with APC, but also as a guide for the selection of chemotherapy regimens.
Collapse
Affiliation(s)
- Honglu Ding
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiuxia Yang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yize Mao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dailei Qin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zehui Yao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruiqi Wang
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Shengping Li, Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, Guangzhou, Guangdong, 510060, People’s Republic of China, Tel +86- 020-87341843, Email
| |
Collapse
|
2
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
3
|
Ma X, Sun L. Construction and Validation of Protein Expression-related Prognostic Models in Clear Cell Renal Cell Carcinoma. J Cancer 2023; 14:793-808. [PMID: 37056387 PMCID: PMC10088890 DOI: 10.7150/jca.81915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 04/15/2023] Open
Abstract
Objective: To construct a prognostic evaluation model for clear cell renal cell carcinoma (ccRCC) patients using bioinformatics method and to screen potential drugs for ccRCC. Methods: ccRCC RNA sequencing data, clinical data, and protein expression data were downloaded from the TCGA database. Univariate Cox and Lasso regression analyses were performed on the combined data to screen out the proteins related to the prognosis, and they were included in a multivariate Cox proportional hazard model. The patients were divided into high and low-risk groups for a survival difference analysis. The predictive power of the model was evaluated on the basis of overall survival, progression-free survival, independent prognostic, clinically relevant receiver operating characteristic (ROC) curve, C-index, principal component, and clinical data statistics analyses. GSEA enrichment and immune function correlation analyses were performed. The samples were divided into different subtypes based on the expression of the risk proteins, and survival analysis of the subtypes was performed. The risk-related protein and RNA sequencing data were analyzed to screen out sensitive drugs with significant differences between the high and low-risk groups. Results: A total of 469 ccRCC-related proteins were screened, of which 13 proteins with independent prognostic significance were screened by univariate Cox, Lasso, and multivariate Cox regression analyses to construct the prognostic model. The sensitivity and accuracy of the model in predicting the survival of patients with ccRCC were high (1 year: 0.811, 3 years: 0.783, 5 years: 0.777). The 13 proteins were closely related to immunity, and the model proteins were different between kidney and tumor tissues according to the HPA database. The samples were divided into three subtypes, and there were obvious clinical characteristics of the three subtypes in the grade and T, N and M stages. According to the IC50 values, CGP-60474, vinorelbine, doxorubicin, etoposide, FTI-277, JQ12, OSU-03012, pyrimethamine, and other drugs were more sensitive in the high-risk group. Conclusions: A prognostic model of protein expression in ccRCC was successfully constructed, which had good predictive ability for the prognosis of ccRCC patients. The ccRCC-related proteins in the model can be used as targets for studying the pathogenesis and targeted therapy.
Collapse
Affiliation(s)
| | - Libin Sun
- ✉ Corresponding author: Libin Sun, Department of Urology, Affiliated First Hospital of Shanxi Medical University, 85 South Jiefang Rd, Taiyuan, Shanxi Province, 030001, China. Tel: +86-15698579398; Email address:
| |
Collapse
|
4
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
5
|
Hou Y, Zhao W, Yang Z, Zhang B. Serum amyloid A (SAA) and Interleukin-6 (IL-6) as the potential biomarkers for gastric cancer. Medicine (Baltimore) 2022; 101:e31514. [PMID: 36316846 PMCID: PMC9622617 DOI: 10.1097/md.0000000000031514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To explore serum amyloid A (SAA) and interleukin-6 (IL-6) as potential diagnostic biomarkers for gastric cancer (GCa) and the application value of the combined diagnosis of SAA, IL6, and Cancer embryonic antigen. Serum samples were collected before the initial surgery from 159 patients comprising samples from 122 patients with GCa and 37 patients with benign gastric disease. All patients were hospitalized at Beijing Aerospace General Hospital in China between 2018 and 2020. The IL-6 and SAA levels were assessed using standard laboratory protocols. The levels of SAA and IL-6 were significantly higher in patients with GCa than in controls. Compared with the healthy group, the concentration of SAA and IL-6 in FIGO III-IV group were significantly higher and the difference were statistically significant. In addition, significant differences were observed between the FIGO III-IV group and FIGO I-II groups. The Receiver operating characteristic (ROC) curve for the combined detection of SAA, IL-6, and Cancer embryonic antigen showed an area under the curve (AUC) of 0.948, sensitivity of 91.0%, and specificity of 89.2%. Spearman's correlation analysis indicated obvious correlations among the levels of serum SAA, IL-6, advanced FIGO stage, lymphatic invasion, and distant metastasis. AA and IL-6 may serve as useful biomarkers for poor prognosis of GCa. Clinical diagnosis combined with SAA and IL-6 may help assess therapeutic outcomes.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
- * Correspondence: Yongwang Hou, Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China (e-mail: )
| | - Weidong Zhao
- Beijing Aerospace General Hospital, Beijing, China
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
6
|
Circulating and non-circulating proteins and nucleic acids as biomarkers and therapeutic molecules in ovarian cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Acute-phase serum amyloid A for early detection of hepatocellular carcinoma in cirrhotic patients with low AFP level. Sci Rep 2022; 12:5799. [PMID: 35388082 PMCID: PMC8986837 DOI: 10.1038/s41598-022-09713-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Regular hepatocellular carcinoma (HCC) surveillance by ultrasonography in combination with the α-fetoprotein (AFP) examination is unsatisfactory in diagnostic sensitivity for early-stage HCC especially in cirrhotic patients. We conducted a prospective study in a tertiary medical center in Taiwan and consecutively collected serum samples from patients with chronic hepatitis, liver cirrhosis (LC), or HCC for new biomarker discovery. Overall, 166 patients were enrolled, including 40 hepatitis, 30 LC, and 96 HCC. Four acute-phase serum amyloid A (A-SAA) derived biomarkers including total A-SAA, A-SAA monomer and oligomer, and protein misfolding cyclic amplification (PMCA) signal were measured and compared between patients with and without HCC. A-SAA biomarkers significantly increased in the HCC group when compared to the hepatitis and LC groups, and generally increased in more advanced tumor stages. Among A-SAA biomarkers, the area under the receiver operator characteristic curves (AUROCs) for PMCA signal in discrimination of all-stage and early-stage HCC were 0.86 and 0.9 in cirrhotic patients, which is comparable to AFP. For cirrhotic patients with low AFP (< 7 ng/mL), PMCA signal maintained good capacity in prediction of early-stage HCC (AUROC: 0.94). Serum A-SAA and its prion-like property showed a potential to complement AFP in detection of early-stage HCC.
Collapse
|
8
|
Cooley LS, Rudewicz J, Souleyreau W, Emanuelli A, Alvarez-Arenas A, Clarke K, Falciani F, Dufies M, Lambrechts D, Modave E, Chalopin-Fillot D, Pineau R, Ambrosetti D, Bernhard JC, Ravaud A, Négrier S, Ferrero JM, Pagès G, Benzekry S, Nikolski M, Bikfalvi A. Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression. Mol Cancer 2021; 20:136. [PMID: 34670568 PMCID: PMC8527701 DOI: 10.1186/s12943-021-01416-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Renal Cell Carcinoma (RCC) is difficult to treat with 5-year survival rate of 10% in metastatic patients. Main reasons of therapy failure are lack of validated biomarkers and scarce knowledge of the biological processes occurring during RCC progression. Thus, the investigation of mechanisms regulating RCC progression is fundamental to improve RCC therapy. METHODS In order to identify molecular markers and gene processes involved in the steps of RCC progression, we generated several cell lines of higher aggressiveness by serially passaging mouse renal cancer RENCA cells in mice and, concomitantly, performed functional genomics analysis of the cells. Multiple cell lines depicting the major steps of tumor progression (including primary tumor growth, survival in the blood circulation and metastatic spread) were generated and analyzed by large-scale transcriptome, genome and methylome analyses. Furthermore, we performed clinical correlations of our datasets. Finally we conducted a computational analysis for predicting the time to relapse based on our molecular data. RESULTS Through in vivo passaging, RENCA cells showed increased aggressiveness by reducing mice survival, enhancing primary tumor growth and lung metastases formation. In addition, transcriptome and methylome analyses showed distinct clustering of the cell lines without genomic variation. Distinct signatures of tumor aggressiveness were revealed and validated in different patient cohorts. In particular, we identified SAA2 and CFB as soluble prognostic and predictive biomarkers of the therapeutic response. Machine learning and mathematical modeling confirmed the importance of CFB and SAA2 together, which had the highest impact on distant metastasis-free survival. From these data sets, a computational model predicting tumor progression and relapse was developed and validated. These results are of great translational significance. CONCLUSION A combination of experimental and mathematical modeling was able to generate meaningful data for the prediction of the clinical evolution of RCC.
Collapse
Affiliation(s)
- Lindsay S Cooley
- University of Bordeaux, LAMC, Pessac, France
- INSERM U1029, Pessac, France
| | - Justine Rudewicz
- University of Bordeaux, LAMC, Pessac, France
- INSERM U1029, Pessac, France
- Bordeaux Bioinformatics Center, CBiB, University of Bordeaux, Bordeaux, France
| | | | - Andrea Emanuelli
- University of Bordeaux, LAMC, Pessac, France
- INSERM U1029, Pessac, France
| | - Arturo Alvarez-Arenas
- Mathematical Modeling for Oncology Team, Inria Bordeaux Sud-Ouest, Talence, France
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Kim Clarke
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| | - Francesco Falciani
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| | - Maeva Dufies
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco, Monaco
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nice, France
| | | | - Elodie Modave
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Domitille Chalopin-Fillot
- Bordeaux Bioinformatics Center, CBiB, University of Bordeaux, Bordeaux, France
- University of Bordeaux, IBGC, Bordeaux, France
| | - Raphael Pineau
- University of Bordeaux, "Service Commun des Animaleries", Bordeaux, France
| | - Damien Ambrosetti
- Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Central laboratory of Pathology, Nice, France
| | | | - Alain Ravaud
- Centre Hospitalier Universitaire (CHU) de Bordeaux, service d'oncologie médicale, Bordeaux, France
| | | | - Jean-Marc Ferrero
- Centre Antoine Lacassagne, Clinical Research Department, Nice, France
| | - Gilles Pagès
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco, Monaco
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nice, France
| | - Sebastien Benzekry
- Mathematical Modeling for Oncology Team, Inria Bordeaux Sud-Ouest, Talence, France
- COMPO team-project, Inria Sophia Antipolis and CRCM, Inserm U1068, CNRS UMR7258, Aix-Marseille University UM105, Institut Paoli-Calmettes, Marseille, France
| | - Macha Nikolski
- Bordeaux Bioinformatics Center, CBiB, University of Bordeaux, Bordeaux, France
- University of Bordeaux, IBGC, Bordeaux, France
| | - Andreas Bikfalvi
- University of Bordeaux, LAMC, Pessac, France.
- INSERM U1029, Pessac, France.
| |
Collapse
|
9
|
Zhang W, Kong HF, Gao XD, Dong Z, Lu Y, Huang JG, Li H, Yang YP. Immune infiltration-associated serum amyloid A1 predicts favorable prognosis for hepatocellular carcinoma. World J Gastroenterol 2020; 26:5287-5301. [PMID: 32994688 PMCID: PMC7504249 DOI: 10.3748/wjg.v26.i35.5287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Serum amyloid A1 (SAA1) is an acute-phase protein involved in acute or chronic hepatitis. Its function is still controversial. In addition, the effect of the expression of SAA1 and its molecular function on the progression in hepatocellular carcinoma (HCC) is still unclear.
AIM To demonstrate the expression of SAA1 and its effect on the prognosis in HCC and explain further the correlation of SAA1 and immunity pathways.
METHODS SAA1 expression in HCC was conducted with The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) in GEPIA tool, and the survival analysis based on the SAA1 expression level was achieved in the Kaplan-Meier portal. The high or low expression group was then drawn based on the median level of SAA1 expression. The correlation of SAA1 and the clinical features were conducted in the UALCAN web-based portal with TCGA-LIHC, including tumor grade, patient disease stage, and the TP53 mutation. The correlation analysis between SAA1 expression and TP53 mutation was subjected to the TCGA portal. The tumor purity score and the immune score were analyzed with CIBERSORT. The correlation of SAA1 expression and tumor-infiltrating lymphocytes was achieved in TISIDB web-based integrated repository portal for tumor-immune system interactions. GSE125336 dataset was used to test the SAA1 expression in the responsive or resistant group with anti-PD1 therapy. Gene set enrichment analysis was applied to evaluate the gene enrichment signaling pathway in HCC. The similar genes of SAA1 in HCC were identified in GEPIA, and the protein-protein interaction of SAA1 was conducted in the Metascape tool. The expression of C-X-C motif chemokine ligand 2, C-C motif chemokine ligand 23, and complement C5a receptor 1 was studied and overall survival analysis in HCC was conducted in GEPIA and Kaplan-Meier portal, respectively.
RESULTS SAA1 expression was decreased in HCC, and lower SAA1 expression predicted poorer overall survival, progression-free survival, and disease-specific survival. Furthermore, SAA1 expression was further decreased with increased tumor grade and patient disease stage. Also, SAA1 expression was further downregulated in patients with TP53 mutation compared with patients with wild type TP53. SAA1 expression was negatively correlated with the TP53 mutation. Lower SAA1 predicted poorer survival rate, especially in the patients with no hepatitis virus infection, other than those with hepatitis virus infection. Moreover, the SAA1 expression was negatively correlated with tumor purity. In contrast, SAA1 expression was positively correlated with the immune score in HCC, and the correlation analysis between SAA1 expression and tumor-infiltrating lymphocytes also showed a positive correlation in HCC. Decreased SAA1 was closely associated with the immune tolerance of HCC. C-X-C motif chemokine ligand 2 and C-C motif chemokine ligand 23 genes were identified as the hub genes associated with SAA1, which could also serve as favorable prognosis markers for HCC.
CONCLUSION SAA1 is downregulated in the liver tumor, and it is closely involved in the progression of HCC. Lower SAA1 expression indicates lower survival rate, especially for those patients without hepatitis virus infection. Lower SAA1 expression also suggests lower immune infiltrating cells, especially for those with immune cells exerting anti-tumor immune function. SAA1 expression is closely associated with the anti-tumor immune pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hui-Fang Kong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Xu-Dong Gao
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Zheng Dong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Ying Lu
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Jia-Gan Huang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hong Li
- Department of Infectious Diseases, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou Province, China
| | - Yong-Ping Yang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Li Z, Hou Y, Zhao M, Li T, Liu Y, Chang J, Ren L. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J Ovarian Res 2020; 13:67. [PMID: 32517794 PMCID: PMC7285470 DOI: 10.1186/s13048-020-00669-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is the most fatal gynecologic malignancy worldwide due to its vagueness, delay in diagnosis, recurrence, and drug resistance. Therefore, a new type of ovarian cancer treatment prediction biomarker is urgently needed to supplement existing tools. A total of 230 people participated in this study. Out of this figure, 100 participants were patients who underwent an ovarian tumor operation, another 100 participants were ovarian benign patients, and the remaining 30 participants were healthy women. Cancer (experimental) group were 100 patients who underwent ovarian tumor operation, while the control groups were 130 participants consisting of 100 ovarian benign patients and 30 healthy women. Levels of SAA, carbohydrate antigen-125 (CA-125), and human epididymis protein 4 (HE4) were assessed using standard laboratory protocols. A total of 5 ovarian cancer tissues and paracancerous tissues were collected and then stored at − 80 °C until the qRT-PCR assay was conducted. Results The ROC curve of SAA concentration in ovarian cancer was plotted to obtain the area under the curve AUC = 0.889, the cut-off value 17.05 mg/L, the sensitivity 78.4% and specificity 86.5%. Compared with pretreatment, the level of serum SAA decreased significantly after treatment. The results revealed that there was a significant correlation between the level of serum SAA and advanced FIGO stage, histology subtype, lymphatic invasion, and distant metastasis (p = 0.003,0.002,0.000 and 0.001). The quantitative Reverse transcription polymerase chain reaction (qRT-PCR) assay revealed that the Messenger RNA (mRNA) of SAA-1 and SAA-4 was much higher in cancer tissues than in adjacent tissues, and MMPs was up-regulation including MMP-1, MMP-9 and MMP- 12 in OVCAR-3 cell stimulated by SAA. The transwell assay revealed that SAA could promote OVCAR-3 cell migration. Moreover, SAA can regulate EMT markers and promote AKT pathway activation. Conclusions In summary, our results demonstrated that SAA may be a potential diagnosis and treatment prediction biomarker. The SAA promotes OVCAR-3 cell migration by regulating MMPs and EMT which may correlate with AKT pathway activation.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongwang Hou
- Department of Laboratory, the First Affiliated Hospital of Hebei North University, Hebei, China
| | - Meng Zhao
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianning Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yahui Liu
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiao Chang
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Ren
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
11
|
Li J, Lai C, Peng S, Chen H, Zhou L, Chen Y, Chen S. The prognostic value of integration of pretreatment serum amyloid A (SAA)-EBV DNA (S-D) grade in patients with nasopharyngeal carcinoma. Clin Transl Med 2020; 9:2. [PMID: 31907639 PMCID: PMC6944720 DOI: 10.1186/s40169-019-0252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Serum amyloid A (SAA) has been associated with the development and prognosis of cancer. The purpose of this study was to evaluate the predictive value of integration of pretreatment SAA–EBV DNA (S-D) grade and comparison with the TNM staging system in patients with nasopharyngeal carcinoma (NPC). The S-D grade was calculated based on the cut-off values of serum SAA and EBV DNA copy numbers which were determined by receiver operating characteristic (ROC) curves. We evaluated the prognostic value of pretreatment SAA, EBV DNA and S-D grade on overall survival (OS) of NPC patients. We also evaluated the predictive power of S-D grade with TNM staging system using 4 indices: concordance statistics (C-index), time-dependent ROC (ROCt) curve, net reclassification index (NRI) and integrated discrimination improvement (IDI). Results A total of 304 NPC patients were enrolled in this study. Multivariate analysis showed that TNM stage (P = 0.007), SAA (P = 0.013), and EBV DNA (P = 0.033) were independent prognostic factors in NPC. The S-D grade was divided into S-D grade 1, S-D grade 2, and S-D grade 3, which had more predictive accuracy for OS than TNM staging according to all 4 indices. Conclusions We found that the S-D grade could be used as a new tool to predict the OS in NPC patients.
Collapse
Affiliation(s)
- Jianpei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Changchun Lai
- Department Of Clinical Laboratory, Maoming People's Hospital, Maoming, 525000, Guangdong, People's Republic of China
| | - Songguo Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Lei Zhou
- Department Of Clinical Laboratory, The Traditional Chinese Medical Hospital of Gaozhou City, Maoming, 525000, Guangdong, People's Republic of China
| | - Yufeng Chen
- Department Of Clinical Laboratory, Maoming People's Hospital, Maoming, 525000, Guangdong, People's Republic of China
| | - Shulin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
12
|
Lin HY, Tan GQ, Liu Y, Lin SQ. The prognostic value of serum amyloid A in solid tumors: a meta-analysis. Cancer Cell Int 2019; 19:62. [PMID: 30930691 PMCID: PMC6425599 DOI: 10.1186/s12935-019-0783-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that serum amyloid A (SAA) levels are correlated with the clinical outcomes of solid tumors. However, the available data have not been systematically evaluated. The objective of the present meta-analysis was to explore the prognostic value of SAA levels in solid tumors. METHODS Eligible studies were identified from the PubMed, EMBASE and Science Citation Index electronic databases. The clinical characteristics, disease/progression-free survival (DFS/PFS) and overall survival (OS) were extracted from the eligible studies. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated with Stata 12.0 software. We also performed subgroup, meta-regression and sensitivity analyses. RESULTS In total, 12 eligible studies including 2749 patients were enrolled in the present meta-analysis. The pooled HRs with 95% CIs showed that elevated levels of SAA were significantly associated with poor OS (HR = 3.01, 95% CI 1.96-4.63) and DFS/PFS (HR = 1.67, 95% CI 1.31-2.12) in patients with solid tumors. Although publication bias was seem found in the studies with regard to OS, a further trim and fill analysis revealed that the adjusted HR was 3.02 (95% CI 1.96-4.63), which was close to the original HR. Subgroup analysis confirmed an elevated level of SAA as a strong prognostic marker in patients with solid tumors, regardless of tumor type, detection method, cut-off value, sample size, area and variance analyses. CONCLUSION Our meta-analysis indicated that elevated levels of SAA might be an unfavorable prognostic marker for OS in patients with solid tumors.
Collapse
Affiliation(s)
- Hai-yingjie Lin
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 Guangdong China
| | - Guo-qiang Tan
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, 529030 Guangdong China
| | - Yan Liu
- Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008 Hubei China
| | - Shao-qiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 Guangdong China
| |
Collapse
|
13
|
Zhou J, Sheng J, Fan Y, Zhu X, Tao Q, He Y, Wang S. Association between serum amyloid A levels and cancers: a systematic review and meta-analysis. Postgrad Med J 2018; 94:499-507. [PMID: 30341230 DOI: 10.1136/postgradmedj-2018-136004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/02/2018] [Accepted: 09/08/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Increased serum amyloid A (SAA) levels have been investigated in various human malignancies, but a consistent perspective has not been established to date. This study systematically reviewed the association between SAA levels and cancers. METHODS Cochrane Library, PubMed and Embase were carefully searched for available studies. The following keywords were used in database searches: 'serum amyloid A', 'SAA', 'cancer', 'tumour', 'carcinoma', 'nubble', 'knurl' and 'lump'. Pooled standard mean differences (SMDs) with corresponding 95% CIs were calculated using random-effects model analysis. RESULTS Twenty studies, which contained 3682 cancer cases and 2424 healthy controls, were identified in this systematic review and meta-analysis. Our study suggested that the average SAA concentrations in the case groups were significantly higher than those in control groups (SMD 0.77, 95% CI 0.55 to 1.00, p<0.001). Subgroup analysis revealed that continent, age and cancer location were associated with SAA level differences between case groups and control groups. Sensitivity analyses showed the robustness and credibility of our results. In addition, we further stratified analyses for cancer stages and found that the concentrations of SAA increased gradually with the aggravation of cancer stages. CONCLUSION High circulating SAA levels were markedly associated with the developing risks of cancer, especially for participants from Asia, Oceania and Europe, or subject age more than 50, or locations in oesophageal squamous cell, ovarian, breast, lung, renal and gastric cancers. In addition, our study found that the concentrations of SAA increased with the severity of cancer stages.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Jie Sheng
- Anhui Provincial Laboratory of Population Health and Eugenics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yong Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xingmeng Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Qi Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yue He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Sufang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
17
|
Expression of inflammatory lipopolysaccharide binding protein (LBP) predicts the progression of conventional renal cell carcinoma - a short report. Cell Oncol (Dordr) 2017; 40:651-656. [PMID: 28936621 DOI: 10.1007/s13402-017-0346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The mortality of conventional renal cell carcinoma (RCC) correlates directly with the presence or postoperative development of metastases. The aim of this study was to identify new markers associated with the postoperative progression of conventional RCC. METHODS Tissue microarrays (TMA) of conventional RCC from a cohort of 414 patients were analysed by immunohistochemistry for expression of the lipopolysaccharide binding protein (LBP), which was identified as a candidate biomarker through Affymetrix U133 Plus 2.0 array analysis. Univariate and multivariate Cox regression models were addressed to cancer-specific survival in association with age, sex, clinicopathological parameters and LBP expression. The survival time of the patients was estimated by Kaplan-Meier analyses, and comparisons of survival curves were made using the Log rank test. RESULTS Univariate analysis revealed an association of patient survival with all clinicopathological parameters tested and LBP expression. In multivariate analysis only T classification, grade and LBP staining showed a significant association with postoperative cancer-specific survival (p < 0.001). LBP expression was found to be associated with a poor patient survival in Kaplan-Meier analyses. The estimated median survival time for patients with tumours showing LBP expression was 74 months, whereas the overall survival time was 142 months. CONCLUSION LBP expression in conventional RCC defines a group of patients at a high risk of postoperative progression and may help to direct optimized active surveillance and timely adjuvant therapy.
Collapse
|
18
|
Chen QY, Tang QN, Tang LQ, Chen WH, Guo SS, Liu LT, Li CF, Li Y, Liang YJ, Sun XS, Guo L, Mo HY, Sun R, Luo DH, Fan YY, He Y, Chen MY, Cao KJ, Qian CN, Guo X, Mai HQ. Pretreatment Serum Amyloid A and C-reactive Protein Comparing with Epstein-Barr Virus DNA as Prognostic Indicators in Patients with Nasopharyngeal Carcinoma: A Prospective Study. Cancer Res Treat 2017; 50:701-711. [PMID: 28707462 PMCID: PMC6056968 DOI: 10.4143/crt.2017.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose The measuring Epstein-Barr virus (EBV) DNA is an important predictor of nasopharyngeal carcinoma (NPC). This study evaluated the predictive value of pretreatment serum amyloid A (SAA) and C-reactive protein (CRP) comparing with EBV DNA in patients with NPC. Materials and Methods In an observational study of 419 non-metastatic NPC patients, we prospectively evaluated the prognostic effects of pretreatment SAA, CRP, and EBV DNA on survival. The primary end-point was progress-free survival (PFS). Results The median level of SAA and CRP was 4.28 mg/L and 1.88 mg/L, respectively. For the high-SAA group (> 4.28 mg/L) versus the low-SAA (≤ 4.28 mg/L) group and the high-CRP group (> 1.88 mg/L) versus the low-CRP (≤ 1.88 mg/L) group, the 5-year PFS was 64.5% versus 73.1% (p=0.013) and 65.2% versus 73.3% (p=0.064), respectively. EBV DNA detection showed a superior predictive result, the 5-year PFS in the EBV DNA ≥ 1,500 copies/mL group was obviously different than the EBV DNA < 1,500 copies/mL group (62.2% versus 77.8%, p < 0.001). Multifactorial Cox regression analysis confirmed that in the PFS, the independent prognostic factors were including EBV DNA (hazard ratio [HR], 1.788; p=0.009), tumour stage (HR, 1.903; p=0.021), and node stage (HR, 1.498; p=0.049), but the SAA and CRP were not included in the independent prognostic factors. Conclusion The results of SAA and CRP had a certain relationship with the prognosis of NPC, and the prognosis of patients with high level of SAA and CRP were poor. However, the predictive ability of SAA and CRP was lower than that of EBV DNA.
Collapse
Affiliation(s)
- Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing-Nan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Hui Chen
- Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shan-Shan Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chao-Feng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Information Technology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Jing Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ling Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao-Yuan Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Ying Fan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ming-Yuan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ka-Jia Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chao-Nan Qian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PLoS One 2015; 10:e0143080. [PMID: 26717416 PMCID: PMC4705106 DOI: 10.1371/journal.pone.0143080] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence. METHODS MeSH (Medical Subject Heading) terms were used to search multiple electronic databases (PubMed, EMBASE, Web of Science, SCOPUS, EBM-Cochrane). Two independent reviewers selected research papers. We also included a quality Assessment (QA) score. Reports with QA scores <50% were excluded. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) methodology was utilized for this review (S1 PRISMA Checklist). RESULTS 271 articles were identified for final review. There were 45% prospective studies and 52% retrospective. 264 had intermediate QA score (≥50% but <80%); Seven were adequate (80% -100%); A high CRP was predictive of prognosis in 90% (245/271) of studies-80% of the 245 studies by multivariate analysis, 20% by univariate analysis. Many (52%) of the articles were about gastrointestinal malignancies (GI) or kidney malignancies. A high CRP was prognostic in 90% (127 of 141) of the reports in those groups of tumors. CRP was also prognostic in most reports in other solid tumors primary sites. CONCLUSIONS A high CRP was associated with higher mortality in 90% of reports in people with solid tumors primary sites. This was particularly notable in GI malignancies and kidney malignancies. In other solid tumors (lung, pancreas, hepatocellular cancer, and bladder) an elevated CRP also predicted prognosis. In addition there is also evidence to support the use of CRP to help decide treatment response and identify tumor recurrence. Better designed large scale studies should be conducted to examine these issues more comprehensively.
Collapse
Affiliation(s)
- Shiva Shrotriya
- Department of Solid Tumor Oncology, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
- The Harry R. Horvitz Center for Palliative Medicine, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
| | - Declan Walsh
- Department of Solid Tumor Oncology, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
- The Harry R. Horvitz Center for Palliative Medicine, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
- * E-mail:
| | - Nabila Bennani-Baiti
- Department of Solid Tumor Oncology, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
- The Harry R. Horvitz Center for Palliative Medicine, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
| | - Shirley Thomas
- Department of Solid Tumor Oncology, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
- The Harry R. Horvitz Center for Palliative Medicine, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
| | - Cliona Lorton
- Our Lady’s Hospice & Care Services, Harold’s Cross, Dublin, Ireland
| |
Collapse
|
20
|
Pavón MA, Parreño M, Téllez-Gabriel M, León X, Arroyo-Solera I, López M, Céspedes MV, Casanova I, Gallardo A, López-Pousa A, Mangues MA, Quer M, Barnadas A, Mangues R. CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advanced-stage head and neck squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E1392-403. [PMID: 26516695 DOI: 10.1002/hed.24232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We studied the association between the expression of a subset of previously identified genes and clinical outcome in patients with head and neck cancer. METHODS We analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) the expression of 89 genes in tumor biopsies from stage III to IVa/b chemotherapy treated patients (n = 46). Two additional cohorts analyzed by RNAseq (The Cancer Genome Atlas [TCGA] project; n = 371) or immunohistochemistry (IHC; n = 73) were used to validate results. RESULTS Thirty genes were associated with local-recurrence or progression-free survival. The best multi-gene decision-tree model to predict local recurrence included nuclear receptor coactivator 1 (NCOA1) and serum-amyloid A2 (SAA2) expression, whereas the best model to predict disease recurrence included creatine kinase mitochondrial 1 (CKMT1) and metal-regulatory transcription factor 1 (MTF1). Both models were associated with cancer-specific survival. Results were confirmed analyzing the RNAseq data included in the TCGA project. CKMT1 and NCOA1 were identified as independent risk factors for survival in an independent cohort analyzed by immunohistochemistry. CONCLUSION CKMT1 and NCOA1 expression has prognostic significance in advanced-stage head and neck carcinoma. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1392-E1403, 2016.
Collapse
Affiliation(s)
- Miguel Angel Pavón
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Matilde Parreño
- Translational Molecular Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Marta Téllez-Gabriel
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Xavier León
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Irene Arroyo-Solera
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Montserrat López
- Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Maria Virtudes Céspedes
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Isolda Casanova
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Antonio López-Pousa
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Department of Medical Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | | | - Miquel Quer
- Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Ramón Mangues
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
21
|
Kim YJ, Gallien S, El-Khoury V, Goswami P, Sertamo K, Schlesser M, Berchem G, Domon B. Quantification of SAA1 and SAA2 in lung cancer plasma using the isotype-specific PRM assays. Proteomics 2015; 15:3116-25. [PMID: 26177823 DOI: 10.1002/pmic.201400382] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
The quantification of plasma proteins using the high resolution and accurate mass (HR/AM)-based parallel reaction monitoring (PRM) method provides an immediate benefit over the conventional SRM-based method in terms of selectivity. In this study, multiplexed PRM assays were developed to analyze isotypes of serum amyloid A (SAA) proteins in human plasma with a focus on SAA1 and SAA2. Elevated plasma levels of these proteins in patients diagnosed with lung cancer have been reported in previous studies. Since SAA1 and SAA2 are highly homologous, the available immunoassays tend to overestimate their concentrations due to cross-reactivity. On the other hand, when mass spectrometry (MS)-based assays are used, the presence of the several allelic variants may result in a problem of underestimation. In the present study, eight peptides that represent the target proteins at three different levels: isotype-specific (SAA1α, SAA 1β, SAA1γ, SAA2α, SAA2β), protein-specific (SAA1 or SAA2), and pan SAA (SAA1 and SAA2) were chosen to differentiate SAAs in lung cancer plasma samples using a panel of PRM assays. The measurement of specific isotypes, leveraging the analytical performance of PRM, allowed to quantify the allelic variants of both target proteins. The isotypes detected were corroborated with the genetic information obtained from the same samples. The combination of SAA2α and SAA2β assays representing the total SAA2 concentration demonstrated a superior analytical outcome than the previously used assay on the common peptide when applied to the detection of lung cancer.
Collapse
Affiliation(s)
- Yeoun Jin Kim
- Luxembourg Clinical Proteomics Center, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sebastien Gallien
- Luxembourg Clinical Proteomics Center, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Victoria El-Khoury
- Laboratory of Experimental Hemato-Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Panchali Goswami
- Luxembourg Clinical Proteomics Center, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Katriina Sertamo
- Luxembourg Clinical Proteomics Center, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marc Schlesser
- Service de Pneumologie, Centre Hospitalier du Luxembourg, Strassen, Luxembourg
| | - Guy Berchem
- Laboratory of Experimental Hemato-Oncology, Luxembourg Institute of Health, Strassen, Luxembourg.,Service d'Hémato-Cancérologie, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Bruno Domon
- Luxembourg Clinical Proteomics Center, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
22
|
Pal S, Azad A, Bhatia S, Drabkin H, Costello B, Sarantopoulos J, Kanesvaran R, Lauer R, Starodub A, Hauke R, Sweeney CJ, Hahn NM, Sonpavde G, Richey S, Breen T, Kremmidiotis G, Leske A, Doolin E, Bibby DC, Simpson J, Iglesias J, Hutson T. A Phase I/II Trial of BNC105P with Everolimus in Metastatic Renal Cell Carcinoma. Clin Cancer Res 2015; 21:3420-7. [PMID: 25788492 PMCID: PMC4526387 DOI: 10.1158/1078-0432.ccr-14-3370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/08/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE BNC105P inhibits tubulin polymerization, and preclinical studies suggest possible synergy with everolimus. In this phase I/II study, efficacy and safety of the combination were explored in patients with metastatic renal cell carcinoma (mRCC). EXPERIMENTAL DESIGN A phase I study in patients with clear cell mRCC and any prior number of therapies was conducted using a classical 3 + 3 design to evaluate standard doses of everolimus with increasing doses of BNC105P. At the recommended phase II dose (RP2D), patients with clear cell mRCC and one to two prior therapies (including ≥ 1 VEGF-TKI) were randomized to BNC105P with everolimus (arm A) or everolimus alone (arm B). The primary endpoint of the study was 6-month progression-free survival (6MPFS). Secondary endpoints included response rate, PFS, overall survival, and exploratory biomarker analyses. RESULTS In the phase I study (N = 15), a dose of BNC105P at 16 mg/m(2) with everolimus at 10 mg daily was identified as the RP2D. In the phase II study, 139 patients were randomized, with 69 and 67 evaluable patients in arms A and B, respectively. 6MPFS was similar in the treatment arms (arm A: 33.82% vs. arm B: 30.30%, P = 0.66) and no difference in median PFS was observed (arm A: 4.7 mos vs. arm B: 4.1 mos; P = 0.49). Changes in matrix metalloproteinase-9, stem cell factor, sex hormone-binding globulin, and serum amyloid A protein were associated with clinical outcome with BNC105P. CONCLUSIONS Although the primary endpoint was not met in an unselected population, correlative studies suggest several biomarkers that warrant further prospective evaluation.
Collapse
Affiliation(s)
- Sumanta Pal
- City of Hope Medical Center, Duarte, California.
| | - Arun Azad
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Harry Drabkin
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | - Richard Lauer
- University of New Mexico Cancer Center, Albuquerque, New Mexico
| | - Alexander Starodub
- Indiana University Health Goshen Center for Cancer Care, Goshen, Indiana
| | - Ralph Hauke
- Nebraska Cancer Specialists/Nebraska Methodist Hospital, Omaha, Nebraska
| | | | - Noah M Hahn
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | | | | - Timothy Breen
- Hoosier Cancer Research Network, Indianapolis, Indiana
| | | | | | | | | | | | | | - Thomas Hutson
- Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
23
|
Subbannayya Y, Mir SA, Renuse S, Manda SS, Pinto SM, Puttamallesh VN, Solanki HS, Manju HC, Syed N, Sharma R, Christopher R, Vijayakumar M, Veerendra Kumar KV, Keshava Prasad TS, Ramaswamy G, Kumar RV, Chatterjee A, Pandey A, Gowda H. Identification of differentially expressed serum proteins in gastric adenocarcinoma. J Proteomics 2015; 127:80-8. [PMID: 25952687 DOI: 10.1016/j.jprot.2015.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Gastric adenocarcinoma is an aggressive cancer with poor prognosis. Blood based biomarkers of gastric cancer have the potential to improve diagnosis and monitoring of these tumors. Proteins that show altered levels in the circulation of gastric cancer patients could prove useful as putative biomarkers. We used an iTRAQ-based quantitative proteomic approach to identify proteins that show altered levels in the sera of patients with gastric cancer. Our study resulted in identification of 643 proteins, of which 48 proteins showed increased levels and 11 proteins showed decreased levels in serum from gastric cancer patients compared to age and sex matched healthy controls. Proteins that showed increased expression in gastric cancer included inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Mannose-binding protein C (MBL2), sex hormone-binding globulin (SHBG), insulin-like growth factor-binding protein 2 (IGFBP2), serum amyloid A protein (SAA1), Orosomucoid 1 (ORM1) and extracellular superoxide dismutase [Cu-Zn] (SOD3). We used multiple reaction monitoring assays and validated elevated levels of ITIH4 and SAA1 proteins in serum from gastric cancer patients. BIOLOGICAL SIGNIFICANCE Gastric cancer is a highly aggressive cancer associated with high mortality. Serum-based biomarkers are of considerable interest in diagnosis and monitoring of various diseases including cancers. Gastric cancer is often diagnosed at advanced stages resulting in poor prognosis and high mortality. Pathological diagnosis using biopsy specimens remains the gold standard for diagnosis of gastric cancer. Serum-based biomarkers are of considerable importance as they are minimally invasive. In this study, we carried out quantitative proteomic profiling of serum from gastric cancer patients to identify proteins that show altered levels in gastric cancer patients. We identified more than 50 proteins that showed altered levels in gastric cancer patient sera. Validation in a large cohort of well classified patient samples would prove useful in identifying novel blood based biomarkers for gastric cancers. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Rajiv Gandhi University of Health Sciences, Bangalore 560041, Karnataka, India; Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | - Sartaj Ahmad Mir
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Manipal 576 104, Karnataka, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Srikanth S Manda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Manipal 576 104, Karnataka, India
| | | | | | - H C Manju
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Rakesh Sharma
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore 560029, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore 560029, Karnataka, India
| | - M Vijayakumar
- Department of Surgery, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | - K V Veerendra Kumar
- Department of Surgery, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Girija Ramaswamy
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
| |
Collapse
|
24
|
Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, Fulp WJ, Dalton W, Yeatman T, Brem S. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol 2014; 5:389-99. [PMID: 25220188 DOI: 10.1016/j.jgo.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Senescence-associated genes (SAGs) are responsible for the senescence-associated secretory phenotype, linked in turn to cellular aging, the aging brain, and the pathogenesis of cancer. OBJECTIVE We hypothesized that senescence-associated genes are overexpressed in older patients, in higher grades of glioma, and portend a poor prognosis. METHODS Forty-seven gliomas were arrayed on a custom version of the Affymetrix HG-U133+2.0 GeneChip, for expression of fourteen senescence-associated genes: CCL2, CCL7, CDKN1A, COPG, CSF2RB, CXCL1, ICAM-1, IGFBP-3, IL-6, IL-8, SAA4, TNFRSF-11B, TNFSF-11 and TP53. A combined "senescence score" was generated using principal component analysis to measure the combined effect of the senescence-associated gene signature. RESULTS An elevated senescence score correlated with older age (r=0.37; P=.01) as well as a higher degree of malignancy, as determined by WHO, histological grade (r=0.49; P<.001). There was a mild association with poor prognosis (P=.06). Gliosarcomas showed the highest scores. Six genes independently correlated with either age (IL-6, TNFRSF-11B, IGFBP-3, SAA4, and COPG), prognosis (IL-6, SAA4), or the grade of the glioma (IL-6, IL-8, ICAM-1, IGFBP-3, and COPG). CONCLUSION We report: 1) a novel molecular signature in human gliomas, based on cellular senescence, translating the concept of SAG to human cancer; 2) the senescence signature is composed of genes central to the pathogenesis of gliomas, defining a novel, aggressive subtype of glioma; and 3) these genes provide prognostic biomarkers, as well as targets, for drug discovery and immunotherapy.
Collapse
Affiliation(s)
- Domenico Coppola
- Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Lodovico Balducci
- Senior Oncology Programs, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Dung-Tsa Chen
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | | | - Michael Nebozhyn
- Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Merck Laboratory
| | - Aileen Staller
- Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William J Fulp
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William Dalton
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Timothy Yeatman
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gibbs Cancer Center & Research Institute, Spartanburg, SC 29303 USA
| | - Steven Brem
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Labots M, Schütte LM, van der Mijn JC, Pham TV, Jiménez CR, Verheul HMW. Mass spectrometry-based serum and plasma peptidome profiling for prediction of treatment outcome in patients with solid malignancies. Oncologist 2014; 19:1028-39. [PMID: 25187478 DOI: 10.1634/theoncologist.2014-0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Treatment selection tools are needed to enhance the efficacy of targeted treatment in patients with solid malignancies. Providing a readout of aberrant signaling pathways and proteolytic events, mass spectrometry-based (MS-based) peptidomics enables identification of predictive biomarkers, whereas the serum or plasma peptidome may provide easily accessible signatures associated with response to treatment. In this systematic review, we evaluate MS-based peptide profiling in blood for prompt clinical implementation. METHODS PubMed and Embase were searched for studies using a syntax based on the following hierarchy: (a) blood-based matrix-assisted or surface-enhanced laser desorption/ionization time-of-flight MS peptide profiling (b) in patients with solid malignancies (c) prior to initiation of any treatment modality, (d) with availability of outcome data. RESULTS Thirty-eight studies were eligible for review; the majority were performed in patients with non-small cell lung cancer (NSCLC). Median classification prediction accuracy was 80% (range: 66%-93%) in 11 models from 14 studies reporting an MS-based classification model. A pooled analysis of 9 NSCLC studies revealed clinically significant median progression-free survival in patients classified as "poor outcome" and "good outcome" of 2.0 ± 1.06 months and 4.6 ± 1.60 months, respectively; median overall survival was also clinically significant at 4.01 ± 1.60 months and 10.52 ± 3.49 months, respectively. CONCLUSION Pretreatment MS-based serum and plasma peptidomics have shown promising results for prediction of treatment outcome in patients with solid tumors. Limited sample sizes and absence of signature validation in many studies have prohibited clinical implementation thus far. Our pooled analysis and recent results from the PROSE study indicate that this profiling approach enables treatment selection, but additional prospective studies are warranted.
Collapse
Affiliation(s)
- Mariette Labots
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lisette M Schütte
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Thang V Pham
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R Jiménez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Babu A, Lachmann H, Pickett T, Boddana P, Ludeman L. Renal cell carcinoma presenting as AA amyloidosis: a case report and review of the literature. CEN Case Rep 2013; 3:68-74. [PMID: 28509249 DOI: 10.1007/s13730-013-0088-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/28/2013] [Indexed: 01/09/2023] Open
Abstract
A 47-year-old Caucasian man developed mild diarrhoea associated with more than 10 kg weight loss, severe fatigue and anaemia. Endoscopy demonstrated deposits of AA amyloid within the gastrointestinal tract. He had heavy proteinuria with a serum albumin of 15 g/L consistent with systemic AA amyloidosis. He had no symptoms to suggest an underlying chronic inflammatory condition but had CRP 130 mg/L and SAA 474 mg/L. In an attempt to identify the source of his inflammatory response, he underwent a contrast-enhanced whole-body computed tomography scan, which revealed a necrotising mass lesion in the right kidney consistent with a renal cell carcinoma. It also showed non-mechanical obstruction of the small bowel and, immediately post-imaging, the patient developed intractable vomiting followed by oliguric renal failure requiring haemodialysis. Despite his renal and gut failure, he underwent right radical nephrectomy without further complications. Histology showed complete resection of a clear cell renal cell carcinoma and renal amyloid deposits. Post-surgery, his acute-phase response decreased to normal, consistent with the renal cell carcinoma acting as the inflammatory stimulus. Although he remains dialysis dependent, his gut function improved and he has regained both normal weight and serum albumin. Our case demonstrates partial resolution of AA amyloidosis with removal of the inflammatory source.
Collapse
Affiliation(s)
- Adarsh Babu
- Department of Renal Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB, UK.
| | - Helen Lachmann
- National Amyloidosis Centre, UCL School of Medicine, London, UK
| | - Tom Pickett
- Department of Renal Medicine, Gloucestershire Royal Hospital, Gloucester, UK
| | - Preetham Boddana
- Department of Renal Medicine, Gloucestershire Royal Hospital, Gloucester, UK
| | - Linmarie Ludeman
- Department of Pathology, Gloucester Royal Hospital, Gloucester, GL1 3NN, UK
| |
Collapse
|
28
|
Yang J, Liu P, Tian M, Li Y, Chen W, Li X. Proteomic identification of angiomotin by ProteomeLab PF-2D and correlation with clinical outcome in human clear cell renal cell carcinoma. Int J Oncol 2013; 42:2078-86. [PMID: 23588948 DOI: 10.3892/ijo.2013.1889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/13/2013] [Indexed: 11/05/2022] Open
Abstract
Identification of new therapeutic and prognostic biomarkers for clear cell renal cell carcinoma (ccRCC) is urgently required since most patients are in advanced stages of ccRCC at initial diagnosis and the recurrence rate is high. Differentially expressed proteins between the ccRCC cell line RLC-310 and the normal renal cell line HK-2 were identified by a comparative proteomic approach based on a protein fractionation two-dimensional (PF-2D) liquid-phase fractionation system and capillary liquid chromatography electrospray ionization mass spectrometry/mass spectrometry (LC-ESI-MS/MS). Differentially expressed proteins (n=196) were identified. Of the 13 differentially expressed proteins newly discovered in ccRCC, angiomotin (Amot) was the focus of this study since its role in ccRCC progression has been obscure. The overexpression of Amot in ccRCC tissues was confirmed by comparing Amot expression in 18 primary ccRCC tissues and adjacent normal renal tissues (ANRT) using western blot analysis. Quantitative RT-PCR using 127 ccRCC tissues revealed that high levels of Amot transcripts were associated with poor differentiation, venous invasion and decreased survival (p<0.0001, <0.05 and <0.05). Multivariate analysis indicated that Amot transcript was an independent prognostic factor for the survival of ccRCC patients (p<0.05). These data suggest that Amot may serve as a novel prognostic factor of ccRCC.
Collapse
Affiliation(s)
- Jin Yang
- Medical Oncology Department, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Craven RA, Vasudev NS, Banks RE. Proteomics and the search for biomarkers for renal cancer. Clin Biochem 2013; 46:456-65. [DOI: 10.1016/j.clinbiochem.2012.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/25/2022]
|
30
|
Wood SL, Knowles MA, Thompson D, Selby PJ, Banks RE. Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nat Rev Urol 2013; 10:206-18. [PMID: 23443013 DOI: 10.1038/nrurol.2013.24] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urine is an ideal body fluid for the detection of protein markers produced by urological cancers as it can be sampled noninvasively and contains secreted and directly shed proteins from the prostate, bladder and kidney. Major challenges of working with urine include high inter-individual and intra-individual variability, low protein concentration, the presence of salts and the dynamic range of protein expression. Despite these challenges, significant progress is being made using modern proteomic methods to identify and characterize protein-based markers for urological cancers. The development of robust, easy-to-use clinical tests based on novel biomarkers has the potential to impact upon diagnosis, prognosis and monitoring and could revolutionize the treatment and management of these cancers.
Collapse
Affiliation(s)
- Steven L Wood
- Wolfson Molecular Imaging Centre, 27 Palatine Road, Withington, Manchester M20 3LJ, UK.
| | | | | | | | | |
Collapse
|
31
|
Mittal A, Poudel B, Pandeya DR, Gupta SP, Sathian B, Yadav SK. Serum amyloid a as an independent prognostic factor for renal cell carcinoma--a hospital based study from the Western region of Nepal. Asian Pac J Cancer Prev 2013; 13:2253-5. [PMID: 22901203 DOI: 10.7314/apjcp.2012.13.5.2253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The objective of our present study was to assess the role of serum amyloid A (SAA) in stages and prognosis of renal cell carcinoma. MATERIAL AND METHODS It was a hospital based retrospective study carried out in the Department of Medicine and Biochemistry of Manipal Teaching Hospital, Pokhara, Nepal between 1st January 2008 and 31st December 2011. The variables collected were SAA, CRP. Approval for the study was obtained from the institutional research ethical committee. Quantitative analysis of human SAA and C-reactive protein (CRP) was performed by radial immune diffusion (RID) assay for all cases. RESULTS Of the 422 total cases of renal cell carcinoma, 218 patients had normal and 204 abnormal SAA. SAA levels were grossly elevated in T3 stage (122.3±SD35.7) when compared to the mean for the T2 stage (84.2±SD24.4) (p value: 0.0001). Similarly, SAA levels were grossly elevated in M1 stage (190.0±SD12.7) when compared to the M0 stage (160.9±SD24.8) (p: 0.0001). There was no significant association with elevated CRP levels (209.1±SD22.7, normal 199.0±SD19.5) . CONCLUSION The validity of SAA in serum as being of independent prognostic significance in RCC was demonstrated with higher levels in advanced stage disease.
Collapse
Affiliation(s)
- Ankush Mittal
- Department of Biochemistry, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
32
|
Gianazza E, Chinello C, Mainini V, Cazzaniga M, Squeo V, Albo G, Signorini S, Di Pierro SS, Ferrero S, Nicolardi S, van der Burgt YE, Deelder AM, Magni F. Alterations of the serum peptidome in renal cell carcinoma discriminating benign and malignant kidney tumors. J Proteomics 2012; 76 Spec No.:125-40. [DOI: 10.1016/j.jprot.2012.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 01/21/2023]
|
33
|
Wang JY, Zheng YZ, Yang J, Lin YH, Dai SQ, Zhang G, Liu WL. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 2012; 12:365. [PMID: 22917173 PMCID: PMC3492207 DOI: 10.1186/1471-2407-12-365] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increase of Serum amyloid A (SAA) level has been observed in patients with a variety of cancers. The objective of this study was to determined whether SAA level could be used as a prognostic parameter in patients with esophageal squamous cell carcinoma (ESCC). METHODS SAA levels were measured by rate nephelometry immunoassay in 167 healthy controls and 167 ESCC patients prior to surgical resection. Statistical associations between clinicopathological observations and SAA levels were determined using the Mann-Whitney U test. The clinical value of SAA level as a prognostic parameter was evaluated using the Cox's proportional hazards model. RESULTS SAA levels were significantly higher in patients with ESCC compared to levels in healthy controls (13.88 ± 15.19 mg/L vs. 2.26 ± 1.66 mg/L, P < 0.001). Elevation of SAA levels (≥ 8.0 mg/L) was observed in 54.5% (91/167) of patients with ESCC but not in healthy controls. SAA levels were associated with tumor size (P < 0.001), histological differentiation (P = 0.015), T classification (P < 0.001), clinical stage (P < 0.001), lymph node metastasis (P < 0.001) and distant metastasis (P < 0.001), but not with the age and gender of the patients or tumor location. Multivariate analysis revealed that patients with an elevated level of SAA (≥ 8.0 mg/L) had significantly lower 5-year survival rate than those with non-elevated SAA (< 8.0 mg/L, log-rank P < 0.0001). CONCLUSIONS An elevated level of preoperative SAA was found to associate with tumor progression and poor survival in patients with ESCC.
Collapse
Affiliation(s)
- Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The serum amyloid A (SAA) protein is an acute phase protein that is synthesized under the regulation of inflammatory cytokines during both acute and chronic inflammation. It is suggested that the SAA increases correlate with many types of carcinogenesis and neoplastic diseases. Th changes in SAA in serum could therefore indicate the progress and malignancy of the disease, as well as the host responses. The present paper reviewed the rationale of using SAA as potential cancer biomarker in clinical diagnosis, including the contribution and involvement of SAA in cancer growth and development. Then we discussed the current applications of SAA in diagnosis and tracing of different types of cancers. Finally the proteomics techniques, especially the SELDI-TOF MS to identify SAA in serum from patients were appreciated as an important manner in clinical diagnosis.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
35
|
Vermaat JS, Gerritse FL, van der Veldt AA, Roessingh WM, Niers TM, Oosting SF, Sleijfer S, Roodhart JM, Beijnen JH, Schellens JH, Gietema JA, Boven E, Richel DJ, Haanen JB, Voest EE. Validation of serum amyloid α as an independent biomarker for progression-free and overall survival in metastatic renal cell cancer patients. Eur Urol 2012; 62:685-95. [PMID: 22285764 DOI: 10.1016/j.eururo.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/12/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND We recently identified apolipoprotein A2 (ApoA2) and serum amyloid α (SAA) as independent prognosticators in metastatic renal cell carcinoma (mRCC) patients, thereby improving the accuracy of the Memorial-Sloan Kettering Cancer Center (MSKCC) model. OBJECTIVE Validate these results prospectively in a separate cohort of mRCC patients treated with tyrosine kinase inhibitors (TKIs). DESIGN, SETTING, AND PARTICIPANTS For training we used 114 interferon-treated mRCC patients (inclusion 2001-2006). For validation we studied 151 TKI-treated mRCC patients (inclusion 2003-2009). MEASUREMENTS Using Cox proportional hazards regression analysis, SAA and ApoA2 were associated with progression-free survival (PFS) and overall survival (OS). In 72 TKI-treated patients, SAA levels were analyzed longitudinally as a potential early marker for treatment effect. RESULTS AND LIMITATIONS Baseline ApoA2 and SAA levels significantly predicted PFS and OS in the training and validation cohorts. Multivariate analysis identified SAA in both separate patient sets as a robust and independent prognosticator for PFS and OS. In contrast to our previous findings, ApoA2 interacted with SAA in the validation cohort and did not contribute to a better predictive accuracy than SAA alone and was therefore excluded from further analysis. According to the tertiles of SAA levels, patients were categorized in three risk groups, demonstrating accurate risk prognostication. SAA as a single biomarker showed equal prognostic accuracy when compared with the multifactorial MSKCC risk mode. Using receiver operating characteristic analysis, SAA levels >71 ng/ml were designated as the optimal cut-off value in the training cohort, which was confirmed for its significant sensitivity and specificity in the validation cohort. Applying SAA >71 ng/ml as an additional risk factor significantly improved the predictive accuracy of the MSKCC model in both independent cohorts. Changes in SAA levels after 6-8 wk of TKI treatment had no value in predicting treatment outcome. CONCLUSIONS SAA but not ApoA2 was shown to be a robust and independent prognosticator for PFS and OS in mRCC patients. When incorporated in the MSKCC model, SAA showed additional prognostic value for patient management.
Collapse
Affiliation(s)
- Joost S Vermaat
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li M, Rathmell WK. Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2012. [DOI: 10.1007/978-3-642-21858-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Findeisen P, Neumaier M. Functional protease profiling for diagnosis of malignant disease. Proteomics Clin Appl 2011; 6:60-78. [PMID: 22213637 DOI: 10.1002/prca.201100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/24/2022]
Abstract
Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
38
|
Dowling P, Clarke C, Hennessy K, Torralbo-Lopez B, Ballot J, Crown J, Kiernan I, O'Byrne KJ, Kennedy MJ, Lynch V, Clynes M. Analysis of acute-phase proteins, AHSG, C3, CLI, HP and SAA, reveals distinctive expression patterns associated with breast, colorectal and lung cancer. Int J Cancer 2011; 131:911-23. [DOI: 10.1002/ijc.26462] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/31/2011] [Indexed: 11/05/2022]
|
39
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Eggener S. TNM staging for renal cell carcinoma: time for a new method. Eur Urol 2010; 58:517-9; discussion 519-21. [PMID: 20728266 DOI: 10.1016/j.eururo.2010.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/05/2010] [Indexed: 01/03/2023]
|