1
|
Plum T, Feyerabend TB, Rodewald HR. Beyond classical immunity: Mast cells as signal converters between tissues and neurons. Immunity 2024; 57:2723-2736. [PMID: 39662090 DOI: 10.1016/j.immuni.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Mast cells are regarded as effectors in immune defense against parasites and venoms and play an essential role in the pathology of allergic diseases. More recently, mast cells have been shown to receive stimuli derived from type 2 immunity, tissue damage, stress, and inflammation. Mast cells then rapidly convert these diverse signals into appropriate, organ-specific protective reflexes that can limit inflammation or reduce tissue damage. In this review, we consider functions of mast cells in sensations-such as pain, itch, and nausea-arising from tissue insults and inflammation and the ensuing protective responses. In light of emerging data highlighting the involvement of mast cells in neuroimmune communication, we also propose that mast cells are "signal converters" linking immunological and tissue states with nervous system responses.
Collapse
Affiliation(s)
- Thomas Plum
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Mavridis T, Mavridi A, Karampela E, Galanos A, Gkiokas G, Iacovidou N, Xanthos T. Sovateltide (ILR-1620) Improves Motor Function and Reduces Hyperalgesia in a Rat Model of Spinal Cord Injury. Neurocrit Care 2024; 41:455-468. [PMID: 38443708 DOI: 10.1007/s12028-024-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) presents a major global health challenge, with rising incidence rates and substantial disability. Although progress has been made in understanding SCI's pathophysiology and early management, there is still a lack of effective treatments to mitigate long-term consequences. This study investigates the potential of sovateltide, a selective endothelin B receptor agonist, in improving clinical outcomes in an acute SCI rat model. METHODS Thirty male Sprague-Dawley rats underwent sham surgery (group A) or SCI and treated with vehicle (group B) or sovateltide (group C). Clinical tests, including Basso, Beattie, and Bresnahan scoring, inclined plane, and allodynia testing with von Frey hair, were performed at various time points. Statistical analyses assessed treatment effects. RESULTS Sovateltide administration significantly improved motor function, reducing neurological deficits and enhancing locomotor recovery compared with vehicle-treated rats, starting from day 7 post injury. Additionally, the allodynic threshold improved, suggesting antinociceptive properties. Notably, the sovateltide group demonstrated sustained recovery, and even reached preinjury performance levels, whereas the vehicle group plateaued. CONCLUSIONS This study suggests that sovateltide may offer neuroprotective effects, enhancing neurogenesis and angiogenesis. Furthermore, it may possess anti-inflammatory and antinociceptive properties. Future clinical trials are needed to validate these findings, but sovateltide shows promise as a potential therapeutic strategy to improve functional outcomes in SCI. Sovateltide, an endothelin B receptor agonist, exhibits neuroprotective properties, enhancing motor recovery and ameliorating hyperalgesia in a rat SCI model. These findings could pave the way for innovative pharmacological interventions for SCI in clinical settings.
Collapse
Affiliation(s)
- Theodoros Mavridis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland.
| | - Artemis Mavridi
- First Department of Pediatrics, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Department of Neonatology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
3
|
Yuasa GH, Costa NLVK, Lopes RV, Baggio DF, Rae GA, Chichorro JG. Role of endothelin in the pathophysiology of migraine: A new view on an old player. Neuropeptides 2022; 96:102286. [PMID: 36108557 DOI: 10.1016/j.npep.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
There is cumulating evidence that endothelin-1 (ET-1) may play a role in migraine, however controversial findings still impede a conclusion to be drawn. Herein we tested the hypothesis that endothelin ETB receptors are major contributors to migraine-like responses. ET-1, IRL-1620 (selective ETB receptor agonist) or CGRP were injected into the trigeminal ganglion (TG) of female Wistar rats, and the development of periorbital mechanical allodynia was assessed hourly with von Frey hairs. Twenty-four hours later, rats were exposed to an aversive light for 1 h, after which the reactivation of periorbital mechanical allodynia (indicating photic sensitivity) was assessed up to 4 h. Moreover, the effect of systemic Bosentan (ETA/ETB receptors antagonist) or the selective antagonists of ETA (BQ-123) and ETB (BQ-788) receptors injected into the TG were evaluated against CGRP-induced responses. ET-1 and IRL-1620 injection into the TG induced periorbital mechanical allodynia and photic sensitivity. Bosentan attenuated periorbital mechanical allodynia but failed to affect photic sensitivity induced by CGRP. Selective blockade of ETB receptors in the TG fully prevented the development of periorbital mechanical allodynia and photic sensitivity induced by CGRP, but ETA receptor blockade caused only a slight reduction of periorbital mechanical allodynia without affecting photic sensitivity. ETB receptor-operated mechanisms in the TG may contribute to migraine-like responses in female rats.
Collapse
Affiliation(s)
- Gianna Hissae Yuasa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | | - Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil.
| |
Collapse
|
4
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Wilson JL, Gravina A, Grimes K. From random to predictive: a context-specific interaction framework improves selection of drug protein-protein interactions for unknown drug pathways. Integr Biol (Camb) 2022; 14:13-24. [PMID: 35293584 DOI: 10.1093/intbio/zyac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
With high drug attrition, protein-protein interaction (PPI) network models are attractive as efficient methods for predicting drug outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and they have low precision and prediction performance; performance is often no better than random (AUROC ~0.5). Typically, PPI models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could improve prediction performance. We compared two global approaches-statistical and distance-based-and our novel per-phenotype approach, 'context-specific interaction' (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared to 0.51), and a 76-95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Alessio Gravina
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Kevin Grimes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Lomba LA, Cruz JV, Coelho LCM, Leite-Avalca MCG, Correia D, Zampronio AR. Role of central endothelin-1 in hyperalgesia, anhedonia, and hypolocomotion induced by endotoxin in male rats. Exp Brain Res 2020; 239:267-277. [PMID: 33145614 DOI: 10.1007/s00221-020-05929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Sickness syndrome is an adaptive response that can be distinguished by specific signs and symptoms, such as fever and generalized hyperalgesia. Endothelin-1 (ET-1) is produced by inflammatory stimuli, including lipopolysaccharide, and involved in the pathogenesis of inflammation and pain by acting through ETA and ETB receptors. ET-1 also induces fever by acting on the central nervous system. The present study investigated the role of ET-1 in sickness syndrome responses, including hyperalgesia, anhedonia, and hypolocomotion. Intracerebroventricular ET-1 administration induced mechanical and thermal hyperalgesia in rats, which was ameliorated by the ETA receptor antagonist BQ123 and exacerbated by the ETB receptor antagonist BQ788. A cyclooxygenase blocker did not alter hyperalgesia that was induced by ET-1. Lipopolysaccharide administration induced hyperalgesia, and both BQ123 and BQ788 abolished this mechanical hyperalgesia, but the thermal response was only partially blocked. The blockade of ETA receptors in the hypothalamus also abolished lipopolysaccharide-induced mechanical hyperalgesia, and the ETB receptor antagonist did not influence this response. Lipopolysaccharide also induced anhedonia, reflected by lower sucrose preference, and reduced locomotor activity. Both antagonists restored locomotor activity, but only BQ788 reversed the reduction of sucrose preference. These results indicate that ET-1 and both ETA and ETB receptors are involved in various responses that are related to sickness syndrome, including hyperalgesia, anhedonia, and hypolocomotion, that is induced by LPS. Hypothalamic ETA but not ETB receptors are involved in mechanical hyperalgesia that is observed during lipopolysaccharide-induced sickness syndrome.
Collapse
Affiliation(s)
- Luís Alexandre Lomba
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Juliana Varella Cruz
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | | | | | - Diego Correia
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Aleksander Roberto Zampronio
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
7
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022]
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
8
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
9
|
Mazzardo-Martins L, Salm DC, Winkelmann-Duarte EC, Ferreira JK, Lüdtke DD, Frech KP, Belmonte LAO, Horewicz VV, Piovezan AP, Cidral-Filho FJ, Moré AOO, Martins DF. Electroacupuncture induces antihyperalgesic effect through endothelin-B receptor in the chronic phase of a mouse model of complex regional pain syndrome type I. Pflugers Arch 2018; 470:1815-1827. [DOI: 10.1007/s00424-018-2192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
|
10
|
Steinhoff M, Buddenkotte J, Lerner EA. Role of mast cells and basophils in pruritus. Immunol Rev 2018; 282:248-264. [DOI: 10.1111/imr.12635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
- Weill Cornell Medicine-Qatar; Doha Qatar
- Medical School; Qatar University; Doha Qatar
- Department Of Dermatology and UCD Charles Institute for Translational Dermatology; University College Dublin; Dublin Ireland
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
| | - Ethan A. Lerner
- Cutaneous Biology Research Center; Department of Dermatology; Massachusetts General Hospital/Harvard Medical School; Charlestown MA USA
| |
Collapse
|
11
|
Mule NK, Singh JN, Shah KU, Gulati A, Sharma SS. Endothelin-1 Decreases Excitability of the Dorsal Root Ganglion Neurons via ET B Receptor. Mol Neurobiol 2017. [PMID: 28623618 DOI: 10.1007/s12035-017-0640-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endothelin-1 (ET-1) has been demonstrated to be a pro-nociceptive as well as an anti-nociceptive agent. However, underlying molecular mechanisms for these pain modulatory actions remain unclear. In the present study, we evaluated the ability of ET-1 to alter the nociceptor excitability using a patch clamp technique in acutely dissociated rat dorsal root ganglion (DRG) neurons. ET-1 produced an increase in threshold current to evoke an action potential (I threshold) and hyperpolarization of resting membrane potential (RMP) indicating decreased excitability of DRG neurons. I threshold increased from 0.25 ± 0.08 to 0.33 ± 0.07 nA and hyperpolarized RMP from -57.51 ± 1.70 to -67.41 ± 2.92 mV by ET-1 (100 nM). The hyperpolarizing effect of ET-1 appears to be orchestrated via modulation of membrane conductances, namely voltage-gated sodium current (I Na) and outward transient potassium current (I KT). ET-1, 30 and 100 nM, decreased the peak I Na by 41.3 ± 6.8 and 74 ± 15.2%, respectively. Additionally, ET-1 (100 nM) significantly potentiated the transient component (I KT) of the potassium currents. ET-1-induced effects were largely attenuated by BQ-788, a selective ETBR blocker. However, a selective ETAR blocker BQ-123 did not alter the effects of ET-1. A selective ETBR agonist, IRL-1620, mimicked the effect of ET-1 on I Na in a concentration-dependent manner (IC50 159.5 ± 92.6 μM). In conclusion, our results demonstrate that ET-1 hyperpolarizes nociceptors by blocking I Na and potentiating I KT through selective activation of ETBR, which may represent one of the underlying mechanisms for reported anti-nociceptive effects of ET-1.
Collapse
Affiliation(s)
- Nandkishor K Mule
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Jitendra N Singh
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| | - Kunal U Shah
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Anil Gulati
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shyam S Sharma
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
12
|
Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 2017; 63:37-42. [PMID: 28342550 DOI: 10.1016/j.npep.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
Abstract
Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
13
|
Lohsiriwat V, Scholefield JH, Wilson VG, Dashwood MR. Endothelin-1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention. Br J Pharmacol 2017; 174:569-579. [PMID: 28095606 PMCID: PMC5345667 DOI: 10.1111/bph.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin-1 (ET-1) and the role of endothelin ETA and ETB receptors in haemorrhoid tissue. EXPERIMENTAL APPROACH Protein expression of ET-1, ETA and ETB receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET-1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. KEY RESULTS Dense binding of [125 I]-ET-1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ETB than ETA receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ETA and ETB receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ETB receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET-1 and affected by the ETA selective antagonist, but sarafotoxin S6a-induced contractions were more pronounced in veins and antagonized by a selective ETB receptor antagonist. CONCLUSIONS AND IMPLICATIONS ETA and ETB receptors are present in human haemorrhoids with ETB receptors predominating. ETA receptors are activated by ET-1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a - a response that involves ETB receptors at low concentrations. Selective ETB agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids.
Collapse
Affiliation(s)
- Varut Lohsiriwat
- Division of Gastrointestinal Surgery, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - John H Scholefield
- Division of Gastrointestinal Surgery, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Vincent G Wilson
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
14
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
15
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
16
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Makdessi MJ, Barr TP, Xue W, Strichartz GR. Bupivacaine inhibits endothelin-1-evoked increases in intracellular calcium in model sensory neurons. Acta Anaesthesiol Scand 2015; 59:936-45. [PMID: 25684033 DOI: 10.1111/aas.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) induces pain-like behavior in animals and man by activating the Gq protein-coupled receptor endothelin-A (ETA ). Activation of ETA receptors on nociceptor membranes evokes intracellular calcium transients and alters membrane Na(+) and K(+) channel and TRPV1 currents, leading to neuronal hyper-excitability manifested by spontaneous and evoked pain behaviors in vivo. In addition to blocking sodium channels, local anesthetics inhibit the Gq protein-coupled signaling of several inflammatory and pro-algesic mediators. In this study, we aimed to investigate the actions of local anesthetics on ETA -mediated increases in intracellular calcium in ND7/104 model sensory neurons. METHODS Increases in intracellular calcium were measured by the fluorescent indicator fura-2 in a sensory neuron-derived cell line (ND7/104), which endogenously expresses ETA receptors. Effects of lidocaine and bupivacaine, along with their respective membrane-impermeant derivatives QX-314, LEA-123 and LEA-124, on peak calcium responses to ET-1 were measured. RESULTS Bupivacaine suppressed ET-1 responses in a concentration-dependent and non-competitive manner with an IC50 of 3.79 ± 1.63 mM. Bupivacaine (6 mM) reduced the Emax for ET-1 from 50.07 ± 1.91 mM to 27.30 ± 2.92 mM. The actions of bupivacaine occurred quickly and were rapidly reversible. Membrane-impermeant analogs of bupivacaine (LEA-123 and LEA-124, 6 mM) were without effect, as was lidocaine (10 mM) and its quaternary derivative QX-314 (10 mM). CONCLUSION Bupivacaine inhibits ETA -mediated calcium transients at clinically relevant concentrations through an intracellular target. The anti-inflammatory and analgesic actions of bupivacaine may be at least partially due to its inhibitory action on Gq -coupled receptors, including ETA.
Collapse
Affiliation(s)
- M. J. Makdessi
- Pain Research Center; Department of Anesthesiology; Perioperative and Pain Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
- Department of Pharmaceutical Biosciences; Division of Biological Research on Drug Dependence; Uppsala University; Uppsala Sweden
| | - T. P. Barr
- Pain Research Center; Department of Anesthesiology; Perioperative and Pain Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - W. Xue
- Pain Research Center; Department of Anesthesiology; Perioperative and Pain Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
- Boston Latin School; Boston MA USA
| | - G. R. Strichartz
- Pain Research Center; Department of Anesthesiology; Perioperative and Pain Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
18
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
19
|
Gauff FC, Patan-Zugaj B, Licka TF. Effect of short-term hyperinsulinemia on the localization and expression of endothelin receptors A and B in lamellar tissue of the forelimbs of horses. Am J Vet Res 2014; 75:367-74. [PMID: 24669922 DOI: 10.2460/ajvr.75.4.367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine the effect of short-term hyperinsulinemia on the localization and expression of endothelin receptor (ETR)-A and ETR-B in lamellar tissue of the forelimbs of horses. SAMPLES Distal portion of 15 cadaveric forelimbs from healthy adult horses (1 limb/horse) obtained immediately after slaughter at an abattoir. PROCEDURES Each forelimb was assigned to 1 of 3 treatment groups (perfused with autologous blood for 10 hours [control perfusion; n = 5], perfused with an insulin [142 ± 81 μU/mL] perfusate for 10 hours [insulinemic perfusion; 5], or not perfused [unperfused control; 5]). Immunohistochemical evaluation of lamellar tissue was performed to assess localization of ETR-A and ETR-B. Expression of ETR-A and ETR-B was measured semiquantitatively on a scale of 0 to 3 (0 = none, 1 = mild, 2 = moderate, and 3 = high-intensity staining) and quantitatively by means of gray value analysis with imaging software. RESULTS In all specimens, ETR-A and ETR-B were localized in endothelium, smooth muscle cells, axons, and keratinocytes. Quantitative expression of ETR-A in the midportion of the primary epidermal lamellae for the insulinemic perfusion group (149 ± 16) was lower than that for the control perfusion group (158 ± 15). Expression of ETR-B in the primary epidermal lamellae tips for the insulinemic perfusion group (140 ± 29) was higher than that for the control perfusion group (114 ± 8). CONCLUSIONS AND CLINICAL RELEVANCE Hyperinsulinemia caused significant changes in endothelin receptor expression, which suggested that ETR antagonists might be beneficial for treatment of laminitis in horses.
Collapse
Affiliation(s)
- Felicia C Gauff
- Department of Horses and Small Animals, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | | | | |
Collapse
|
20
|
Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J Pain Res 2014; 7:531-45. [PMID: 25210474 PMCID: PMC4155994 DOI: 10.2147/jpr.s65923] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Tami Haymond
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sherika N Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sarah M Sweitzer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA ; Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
21
|
Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta Mol Basis Dis 2014; 1842:869-92. [DOI: 10.1016/j.bbadis.2014.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
|
22
|
Hung VK, Tai LW, Qiu Q, Luo X, Wong K, Chung SK, Cheung C. Over-expression of astrocytic ET-1 attenuates neuropathic pain by inhibition of ERK1/2 and Akt(s) via activation of ETA receptor. Mol Cell Neurosci 2014; 60:26-35. [DOI: 10.1016/j.mcn.2014.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/28/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022] Open
|
23
|
Cerebral activation during von Frey filament stimulation in subjects with endothelin-1-induced mechanical hyperalgesia: a functional MRI study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:610727. [PMID: 24151613 PMCID: PMC3789290 DOI: 10.1155/2013/610727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/14/2013] [Indexed: 11/17/2022]
Abstract
Endothelin-1 (ET-1) is an endogenously expressed potent peptide vasoconstrictor. There is growing evidence that ET-1 plays a role in the pain signaling system and triggers overt nociception in humans. The underlying neuronal pathways are still a matter of great debate. In the present study, we applied an intradermal ET-1 sensitization model to induce mechanical hyperalgesia in healthy subjects. Functional magnetic resonance imaging (fMRI) was used to tease out the cortical regions associated with the processing of ET-1-induced punctate hyperalgesia, as compared to a nonnoxious mechanical stimulation of the contralateral arm. Von Frey hair testing revealed the presence of increased responsiveness to punctate stimulation in all subjects. Activational patterns between nonpainful control stimulation and hyperalgesic stimulation were compared. Two major observations were made: (1) all cortical areas that showed activation during the control stimulation were also present during hyperalgesic stimulation, but in addition, some areas showed bilateral activation only during hyperalgesic stimulation, and (2) some brain areas showed significantly higher signal changes during hyperalgesic stimulation. Our findings suggest that injection of ET-1 leads to a state of punctate hyperalgesia, which in turn causes the activation of multiple brain regions. This indicates that ET-1 activates an extended neuronal pathway.
Collapse
|
24
|
Common mechanism in endothelin-3 and PAF receptor function for anti-inflammatory responses. Eur J Pharmacol 2013; 718:30-3. [DOI: 10.1016/j.ejphar.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/20/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
|
25
|
Tai LW, Hung VKL, Mei W, Qiu Q, Chung SK, Cheung CW. Effects of repeated central administration of endothelin type A receptor antagonist on the development of neuropathic pain in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:529871. [PMID: 24073407 PMCID: PMC3773389 DOI: 10.1155/2013/529871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/13/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022]
Abstract
Endothelin-1 (ET-1) predominates in the endothelin family effectively in vascular tone control, mitogenesis, and neuromodulation. Its receptors are widespread in the central nervous system (CNS) associated with endogenous pain control, suggesting an important role of ET-1 in central pain processing. This study aimed to evaluate the effect of central ET-1 on the development of neuropathic pain behaviour by repeated intrathecal administration of endothelin type A receptor (ETAR) antagonist (BQ-123) in a sciatic nerve ligation (SNL) animal model. BQ-123 was administered intrathecally to rats at dosages 15 μg, 20 μg, 25 μg, and 30 μg, daily for 3 days. Mechanical allodynia was assessed daily 30 minutes before/after injection, 1 hour after injection of BQ-123 from post-SNL day 4 to day 6, and once on day 7 (without BQ-123 administration) before rats were sacrificed. Increasing trends of mechanical threshold were observed, and they reached significance at all dosages on post-SNL day 7 (P < 0.05 at dosage 15 μg and P < 0.001 at dosages 20 μg, 25 μg, and 30 μg) in comparison to control group. BQ-123 at dosage 30 μg showed the most stable and significant mechanical threshold rise. Repeated central administration of BQ-123 alleviated mechanical allodynia after SNL. Our results provide insight into the therapeutic strategies, including timing, against neuropathic pain development with ETAR antagonist.
Collapse
Affiliation(s)
- Lydia W. Tai
- Department of Anaesthesiology, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
| | - Victor K. L. Hung
- Department of Anaesthesiology, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
| | - Wei Mei
- Department of Anaesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qiu
- Department of Anaesthesiology, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Department of Anaesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sookja K. Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Department of Anatomy, The University of Hong Kong, 1/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, 2/F, William MW Mong Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - C. W. Cheung
- Department of Anaesthesiology, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Queen Mary Hospital, Room 424, 4/F, Block K, 102 Pokfulam, Pokfulam, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, 2/F, William MW Mong Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
26
|
Sato A, Suzuki T, Oikawa K, Ohta R, Ebina K. An endothelin-3-related synthetic biotinylated pentapeptide as a novel inhibitor of platelet-activating factor. Eur J Pharmacol 2013; 714:142-7. [DOI: 10.1016/j.ejphar.2013.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/23/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
|
27
|
Sato A, Ebina K. Endothelin-3 at low concentrations attenuates inflammatory responses via the endothelin B2 receptor. Inflamm Res 2013; 62:417-24. [DOI: 10.1007/s00011-013-0594-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/22/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022] Open
|
28
|
Over-expression of endothelin-1 in astrocytes, but not endothelial cells, ameliorates inflammatory pain response after formalin injection. Life Sci 2012; 91:618-22. [DOI: 10.1016/j.lfs.2012.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 06/24/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
29
|
Gomes LO, Hara DB, Rae GA. Endothelin-1 induces itch and pain in the mouse cheek model. Life Sci 2012; 91:628-33. [DOI: 10.1016/j.lfs.2012.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/29/2022]
|
30
|
Ji W, Liang J, Zhang Z. Endothelin B receptors exert antipruritic effects via peripheral κ-opioid receptors. Exp Ther Med 2012. [PMID: 23181126 PMCID: PMC3503748 DOI: 10.3892/etm.2012.624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endothelin B receptor agonists exert antipruritic effects on itching induced via endothelin-1 (ET-1) and compound 48/80. Peripheral µ- and κ-opioid receptors (MORs and KORs, respectively) are reported to be involved in the anti-nociceptive properties triggered by ETB agonists. Therefore, we investigated the role of peripheral opioid receptors in the scratching response induced by ET-1. ETA and ETB antagonists and non-selective and selective opioid receptor antagonists were co-injected with ET-1 in the neck of mice and the number of scratching bouts was counted. Pretreatment with systemically administered naloxone significantly reduced the number of scratches, while co-injection of naloxone substantially augmented the effect of ET-1. Co-injection of nor-Binaltorphimine (nor-BNI), a KOR antagonist, significantly increased the number of scratches induced by ET-1. However, CTOP (a MOR antagonist) and naltrindole [a δ-opioid receptor (DOR) antagonist] did not alter the scratching response elicited by ET-1. These results indicate that peripheral KORs mediate the antipruritic effect of endothelin B receptor activation.
Collapse
Affiliation(s)
- Wenjin Ji
- Departments of Anesthesiology, and ; Postgraduate Institute, Southern Medical University, Guangzhou, P.R. China
| | | | | |
Collapse
|
31
|
Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J, Schmidt BL. Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain 2011; 152:2323-2332. [PMID: 21782343 DOI: 10.1016/j.pain.2011.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/09/2023]
Abstract
Endothelin-1 is a vasoactive peptide that activates both the endothelin A (ET(A)) and endothelin B (ET(B)) receptors, and is secreted in high concentrations in many different cancer environments. Although ET(A) receptor activation has an established nociceptive effect in cancer models, the role of ET(B) receptors on cancer pain is controversial. EDNRB, the gene encoding the ET(B) receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ET(B) mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ET(B) receptor re-expression attenuates cancer-induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer-induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain-producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA Oral and Craniofacial Graduate Program, University of California, San Francisco, San Francisco, CA, USA Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA Bluestone Center for Clinic Research, New York University, NY, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Potent anti-inflammatory and antinociceptive activity of the endothelin receptor antagonist bosentan in monoarthritic mice. Arthritis Res Ther 2011; 13:R97. [PMID: 21689431 PMCID: PMC3218912 DOI: 10.1186/ar3372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 06/20/2011] [Indexed: 01/12/2023] Open
Abstract
Introduction Endothelins are involved in tissue inflammation, pain, edema and cell migration. Our genome-wide microarray analysis revealed that endothelin-1 (ET-1) and endothelin-2 (ET-2) showed a marked up-regulation in dorsal root ganglia during the acute phase of arthritis. We therefore examined the effects of endothelin receptor antagonists on the development of arthritis and inflammatory pain in monoarthritic mice. Methods Gene expression was examined in lumbar dorsal root ganglia two days after induction of antigen-induced arthritis (AIA) using mRNA microarray analysis. Effects of drug treatment were determined by repeated assessment of joint swelling, pain-related behavior, and histopathological manifestations during AIA. Results Daily oral administration of the mixed ETA and ETB endothelin receptor antagonist bosentan significantly attenuated knee joint swelling and inflammation to an extent that was comparable to dexamethasone. In addition, bosentan reduced inflammatory mechanical hyperalgesia. Chronic bosentan administration also inhibited joint swelling and protected against inflammation and joint destruction during AIA flare-up reactions. In contrast, the ETA-selective antagonist ambrisentan failed to promote any detectable antiinflammatory or antinociceptive activity. Conclusions Thus, the present study reveals a pivotal role for the endothelin system in the development of arthritis and arthritic pain. We show that endothelin receptor antagonists can effectively control inflammation, pain and joint destruction during the course of arthritis. Our findings suggest that the antiinflammatory and antinociceptive effects of bosentan are predominantly mediated via the ETB receptor.
Collapse
|
33
|
Liang J, Ji Q, Ji W. Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1. Neurosci Lett 2011; 492:175-8. [PMID: 21315802 DOI: 10.1016/j.neulet.2011.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/19/2011] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
Abstract
Noxious cold reduces pruritus and transient receptor potential ankyrin subfamily member 1 (TRPA1), a non-selective cation channel, is known as a noxious cold-activated ion channel. Recent findings implicated the involvement of TRPA1 in pain induced by endothelin-1 (ET-1). Therefore, we evaluated its potential role in pruritus induced by ET-1. We found that ruthenium red (RR; a nonselective TRP inhibitor) and AP18 (a TRPA1 antagonist) significantly increased scratching bouts caused by ET-1, while capsazepine (a TRPV1 antagonist) and morphine showed no effects in the ET-1-induced scratching response. However, RR and capsazepine significantly reduced scratching bouts caused by histamine. Our results suggested that activation of TRPA1 could suppress itch induced by ET-1 and this is not related to pain induced by ET-1.
Collapse
Affiliation(s)
- Jiexian Liang
- Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong Institute of Cardiovascular, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | |
Collapse
|
34
|
Liang J, Kawamata T, Ji W. Molecular signaling of pruritus induced by endothelin-1 in mice. Exp Biol Med (Maywood) 2010; 235:1300-5. [PMID: 20975080 DOI: 10.1258/ebm.2010.010121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endothelin-1 (ET-1) has recently been identified to evoke pruritus/itching sensation in both humans and animals. It is most likely that the signaling is through the specific G-protein-coupled ET(A) and ET(B) receptors, but the downstream signaling mediators for ET-1 remain elusive. In the present study, we examined the potential involvement of several distinct signaling molecules in ET-1-induced pruritus in a murine model. We applied an in vivo pruritus model in C57BL/6J mice by injecting ET-1 intradermally into the scruff, and recording the number of scratching bouts within 30 min after injection. Then specific antagonists/inhibitors for distinct signaling molecules, including cell-surface ET(A) and ET(B) receptors, histamine receptor type 1 (H1 receptor), protein kinases A (PKA) and C (PKC), phospholipase C (PLC) or adenylyl cyclase (AC), were co-injected with ET-1. The results showed that ET-1 induced a vigorous scratching response in mice in a dose-dependent manner. This response was further enhanced by a specific antagonist for ET(B) receptor, BQ-788, reduced by a specific antagonist for ET(A) receptor, BQ-123, and not affected by mepyramine, the specific inhibitor for H1 receptor. In addition, the scratching response was significantly reduced by inhibitors for PKC and AC, but was significantly enhanced by PLC inhibitor, while PKA inhibitors showed no effects in the ET-1-induced scratching response. Our data suggested that ET-1 may signal through the ET(A) receptor, AC and PKC pathway to induce pruritus sensation, while ET(B) receptor and PLC may antagonize the pruritus evoked by ET-1. These results may provide a basis for the future development of antipruritic therapy.
Collapse
Affiliation(s)
- Jiexian Liang
- Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | | |
Collapse
|
35
|
Millecamps M, Laferrière A, Ragavendran JV, Stone LS, Coderre TJ. Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I). Pain 2010; 151:174-183. [PMID: 20675053 PMCID: PMC4474643 DOI: 10.1016/j.pain.2010.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
Chronic post-ischemic pain (CPIP) is an animal model of CRPS-I developed using a 3-h ischemia-reperfusion injury of the rodent hind paw. The contribution of local endothelin to nociception has been evaluated in CPIP mice by measuring sustained nociceptive behaviors (SNBs) following intraplantar injection of endothelin-1 or -2 (ET-1, ET-2). The effects of local BQ-123 (ETA-R antagonist), BQ-788 (ETB-R antagonist), IRL-1620 (ETB-R agonist) and naloxone (opioid antagonist) were assessed on ET-induced SNBs and/or mechanical and cold allodynia in CPIP mice. ETA-R and ETB-R expression was assessed using immunohistochemistry and Western blot analysis. Compared to shams, CPIP mice exhibited hypersensitivity to local ET-1 and ET-2. BQ-123 reduced ET-1- and ET-2-induced SNBs in both sham and CPIP animals, but not mechanical or cold allodynia. BQ-788 enhanced ET-1- and ET-2-induced SNBs in both sham and CPIP mice, and cold allodynia in CPIP mice. IRL-1620 displayed a non-opioid anti-nociceptive effect on ET-1- and ET-2-induced SNBs and mechanical allodynia in CPIP mice. The distribution of ETA-R and ETB-R was similar in plantar skin of sham and CPIP mice, but both receptors were over-expressed in plantar muscles of CPIP mice. This study shows that ETA-R and ETB-R have differing roles in nociception for sham and CPIP mice. CPIP mice exhibit more local endothelin-induced SNBs, develop a novel local ETB-R agonist-induced (non-opioid) analgesia, and exhibit over-expression of both receptors in plantar muscles, but not skin. The effectiveness of local ETB-R agonists as anti-allodynic treatments in CPIP mice holds promise for novel therapies in CRPS-I patients.
Collapse
Affiliation(s)
- Magali Millecamps
- Department of Anesthesia, McGill University, Montreal (Canada)
- Faculty of Dentistry, McGill University, Montreal (Canada)
- Alan Edwards Centre for Research on Pain, McGill University, Montreal (Canada)
| | - Andre Laferrière
- Department of Anesthesia, McGill University, Montreal (Canada)
- Alan Edwards Centre for Research on Pain, McGill University, Montreal (Canada)
| | - J. Vaigunda Ragavendran
- Department of Anesthesia, McGill University, Montreal (Canada)
- Alan Edwards Centre for Research on Pain, McGill University, Montreal (Canada)
| | - Laura S. Stone
- Department of Anesthesia, McGill University, Montreal (Canada)
- Department of Neurology & Neurosurgery, McGill University, Montreal (Canada)
- Department of Pharmacology & Therapeutics, McGill University, Montreal (Canada)
- Faculty of Dentistry, McGill University, Montreal (Canada)
- Alan Edwards Centre for Research on Pain, McGill University, Montreal (Canada)
| | - Terence J. Coderre
- Department of Anesthesia, McGill University, Montreal (Canada)
- Department of Neurology & Neurosurgery, McGill University, Montreal (Canada)
- Department of Psychology, McGill University, Montreal (Canada)
- Alan Edwards Centre for Research on Pain, McGill University, Montreal (Canada)
- McGill University Health Centre Research Institute, Montreal (Canada)
| |
Collapse
|
36
|
Abstract
Ongoing and breakthrough pain is a primary concern for the cancer patient. Although the etiology of cancer pain remains unclear, animal models of cancer pain have allowed investigators to unravel some of the cancer-induced neuropathologic processes that occur in the region of tumor growth and in the dorsal horn of the spinal cord. Within the cancer microenvironment, cancer and immune cells produce and secrete mediators that activate and sensitize primary afferent nociceptors. Pursuant to these peripheral changes, nociceptive secondary neurons in spinal cord exhibit increased spontaneous activity and enhanced responsiveness to three modes of noxious stimulation: heat, cold, and mechanical stimuli. As our understanding of the peripheral and central mechanisms that underlie cancer pain improves, targeted analgesics for the cancer patient will likely follow.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California San Francisco, USA.
| | | | | | | |
Collapse
|
37
|
Claudino RF, Marcon R, Bento AF, Chichorro JG, Rae GA. Endothelins implicated in referred mechanical hyperalgesia associated with colitis induced by TNBS in miceThis article is one of a selection of papers published in the two-part special issue entitled 20 Years of Endothelin Research. Can J Physiol Pharmacol 2010; 88:661-7. [DOI: 10.1139/y10-043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study evaluated the contribution of endothelins to changes in sensitivity to mechanical stimulation of the lower abdomen and hind paw associated with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. The frequency of withdrawal responses to 10 consecutive applications of von Frey probes to the lower abdomen (0.07 g) or hind paw (0.4 g) was assessed in male BALB/c mice before and after intracolonic TNBS injection (0.5 mg in 100 µL of 35% ethanol). TNBS (0.5 mg) induced referred mechanical hyperalgesia in the abdomen (response frequencies at 24 h: saline 11.0% ± 3.1%, TNBS 48.0% ± 6.9%) and hind paw (frequencies at 24 h: saline 12.5% ± 4.7%, TNBS 47.1% ± 7.1%) lasting up to 72 and 48 h, respectively. Mice receiving 1.0 or 1.5 mg TNBS assumed hunch-backed postures and became immobile during abdominal mechanical stimulation, suggestive of excessive ongoing pain. Atrasentan (ETA receptor antagonist; 10 and 30 mg/kg, i.v.) given 24 h after TNBS abolished hind paw and abdominal mechanical hyperalgesia for 2–3 h. A-192621 (ETB receptor antagonist; 20 mg/kg, i.v.) attenuated abdominal mechanical hyperalgesia at the 3 h time point only. Thus, endothelins contribute importantly to abdominal and hind paw referred mechanical hyperalgesia during TNBS-induced colitis mainly through ETA receptor-signaled mechanisms.
Collapse
Affiliation(s)
- Rafaela Franco Claudino
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Rodrigo Marcon
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Allisson Freire Bento
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| |
Collapse
|
38
|
Chichorro JG, Fiuza CR, Bressan E, Claudino RF, Leite DF, Rae GA. Endothelins as pronociceptive mediators of the rat trigeminal system: role of ETA and ETB receptors. Brain Res 2010; 1345:73-83. [PMID: 20450894 DOI: 10.1016/j.brainres.2010.04.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
Abstract
The trigeminal nerve is comprised of three main divisions, ophthalmic, maxillary and mandibular, each providing somatosensory innervation to distinct regions of the head, face and oral cavity. Recently, a role for endothelins in nociceptive signaling in the trigeminal system has been proposed. The present study aimed to gain better insight into the participation of the endothelin system in trigeminal nociceptive transmission. Herein ET-1 and ET-3 mRNA was detected in the rats' trigeminal ganglion (TG). Fluorescent labeling of TG neurons revealed that ET(A) and ET(B) receptors are distributed along the entire TG, but ET(A) receptor expression slightly predominated within the three divisions. TRPV1 receptors were also detected throughout the entire TG, and a significant proportion of TRPV1-positive neurons (approximately 30%) co-expressed either ET(A) or ET(B) receptors. Our behavioral data showed that ET-1 (3 to 30 pmol/site) induced overt nociceptive responses after injection into the upper lip or temporomandibular joint (TMJ) and hyperalgesic actions when applied to the eye, while ET-3 and the selective ET(B) receptor agonist IRL-1620 (each at 3 to 30 pmol/site) showed only the first two effects. Injection of BQ-123, but not BQ-788 (ET(A) and ET(B) receptor antagonists, respectively, 10 nmol/site each, 30 min beforehand), into the ipsilateral upper lip abolished ET-1 induced facial grooming, but both antagonists markedly reduced the nociceptive responses induced by ET-1 injected into the TMJ. Taken together, these findings suggest that endothelins, acting through ET(A) and/or ET(B) receptors, may play an important role in mediating pain resulting from activation of most trigeminal nerve branches.
Collapse
|
39
|
Fu LW, Guo ZL, Longhurst JC. Endogenous endothelin stimulates cardiac sympathetic afferents during ischaemia. J Physiol 2010; 588:2473-86. [PMID: 20442267 DOI: 10.1113/jphysiol.2010.188730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myocardial ischaemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Previous studies have shown that a brief period of myocardial ischaemia increases endothelin in cardiac venous plasma draining ischaemic myocardium and that exogenous endothelin excites cutaneous group III and IV sensory nerve fibres. The present study tested the hypothesis that endogenous endothelin stimulates cardiac afferents during ischaemia through direct activation of endothelin A receptors (ET(A)Rs). Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anaesthetized cats. Single fields of 38 afferents (CV = 0.25-3.86 m s(-1)) were identified in the left or right ventricle with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 38 cardiac afferents (8 Adelta, 30 C-fibres) and the responses of these 38 afferents to chemical stimuli were further studied in the following protocols. In the first protocol, injection of endothelin 1 (ET-1, 1, 2 and 4 microg) into the left atrium (LA) stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BQ-123, a selective ET(A)R antagonist, abolished the responses of nine afferents to 2 microg of ET-1 injected into the left atrium and attenuated the ischaemia-related increase in activity of eight other afferents by 51%. In contrast, blockade of ET(B) receptors caused inconsistent responses to exogenous ET-1 as well as to ischaemia. Furthermore, in the absence of ET(A)R blockade, cardiac afferents responded consistently to repeated administration of ET-1 (n = 7) and to recurrent myocardial ischaemia (n = 7). Finally, using an immunocytochemical staining approach, we observed that ET(A) receptors were expressed in cardiac sensory neurons in thoracic dorsal root ganglia. Taken together, these data indicate that endogenous endothelin contributes to activation of cardiac afferents during myocardial ischaemia through direct stimulation of ET(A) receptors likely to be located in the cardiac sensory nervous system.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
40
|
Abstract
Transient receptor potential ankyrin subfamily member 1 (TRPA1) is a nonselective cation channel known as a noxious cold-activated ion channel. Recent findings implicated its involvement in acute and chronic cold nociception processes. Here, we investigated whether TRPA1 is involved in endothelin-1 (ET-1)-induced spontaneous pain-like behavior in C57BL/6J mice. We found that TRPA1 antagonists, HC-030031 and AP18, significantly reduced the pain-like behavior caused by ET-1. AP18 also significantly reduced the pain caused by cinnamaldehyde, an agonist of TRPA-1. However, AP18 did not alleviate the pain caused by capsaicin. The pain-like behavior caused by ET-1 was inhibited by phospholipase C inhibitor, but not by protein kinase C inhibitor. Low dose of ET-1 could potentiate cinnamaldehyde-induced nociception. Our results suggested that TRPA1 is involved in ET-1-induced spontaneous pain-like behavior in mice.
Collapse
|
41
|
Kawamata T, Ji W, Yamamoto J, Niiyama Y, Furuse S, Omote K, Namiki A. Involvement of transient receptor potential vanilloid subfamily 1 in endothelin-1-induced pain-like behavior. Neuroreport 2009; 20:233-7. [PMID: 19202458 DOI: 10.1097/wnr.0b013e32831befa5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although local administration of endothelin-1 (ET-1) is known to evoke spontaneous pain, the mechanism of ET-1-induced pain has not been elucidated. We investigated the involvement of protein kinase C (PKC) and transient receptor potential vanilloid subfamily 1 (TRPV1) in ET-1-induced pain-like behavior. Intraplantar ET-1 evoked pain-like behaviors, including licking, flinching, and biting, in a dose-dependent manner in wild-type mice. ET-1-induced pain-like behavior was attenuated by an endothelin type A receptor antagonist but not by PKC inhibitors and was also attenuated in TRPV1-deficient (KO) mice. In addition, we found a significant reduction of spinal Fos expression caused by the same dose of ET-1 in KO mice compared with that in wild-type mice. This study showed that endothelin type A receptor and TRPV1 are involved in ET-1-induced pain-like behaviors but failed to reveal the contribution of PKC.
Collapse
Affiliation(s)
- Tomoyuki Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Motta EM, Chichorro JG, D'Orléans-Juste P, Rae GA. Roles of endothelin ETA and ETB receptors in nociception and chemical, thermal and mechanical hyperalgesia induced by endothelin-1 in the rat hindpaw. Peptides 2009; 30:918-25. [PMID: 19428770 DOI: 10.1016/j.peptides.2009.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 11/16/2022]
Abstract
Evidence on the relative roles of endothelin ET(A) and ET(B) receptors in mediating the nociceptive and hyperalgesic actions of endothelin-1 is still fragmented and conflicting, due to variations between species and/or models. This study assesses the participation of ET(A) and ET(B) receptors on the nociceptive behavior and hyperalgesia to chemical (formalin), mechanical and thermal stimuli evoked by endothelin-1 injected into the rat hind-paw. Intraplantar (i.pl.) injection of endothelin-1 (1-30 pmol, 50 microl) induced dose-dependent nociceptive behaviors over the first hour. Endothelin-1 (3-30 pmol) also potentiated both phases of nociception induced by a subsequent ipsilateral i.pl. injection of formalin (0.5%, 50 microl). Endothelin-1, at 10 pmol, increased responses of the first phase (0-10 min) by 97% and of the second phase (15-60 min) by 120%, and similar degrees of potentiation were observed following 30 pmol of the peptide. Endothelin-1 (1-30 pmol) caused slowly developing long-lasting thermal and mechanical hyperalgesia with maximum effects at 10 and 30 pmol, respectively, reaching significance at 2-3h and remaining elevated for up to at least 8h after injection. Treatment with the selective ET(A) and ET(B) peptidic antagonists BQ-123 and BQ-788 (i.pl., both at 10 nmol, 3.5h after ET-1 injection) or with the non-peptidic antagonists atrasentan and A-192621 systemically (i.v., 10 and 20mg/kg, respectively) each caused significant reductions in endothelin-1-induced nociception, as well as chemical, thermal and mechanical hyperalgesia. Thus, the nociceptive and hyperalgesic effects induced by i.pl. endothelin-1 seem to be mediated by both ET(A) and ET(B) receptors.
Collapse
Affiliation(s)
- Emerson M Motta
- Department of Pharmacology, Federal University of Santa Catarina, Center of Biological Sciences, SC, Brazil
| | | | | | | |
Collapse
|
43
|
Hans G, Schmidt BL, Strichartz G. Nociceptive sensitization by endothelin-1. ACTA ACUST UNITED AC 2009; 60:36-42. [DOI: 10.1016/j.brainresrev.2008.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
44
|
Chichorro JG, Zampronio AR, Cabrini DA, Franco CRC, Rae GA. Mechanisms operated by endothelin ETA and ETB receptors in the trigeminal ganglion contribute to orofacial thermal hyperalgesia induced by infraorbital nerve constriction in rats. Neuropeptides 2009; 43:133-42. [PMID: 19157542 DOI: 10.1016/j.npep.2008.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/26/2022]
Abstract
Endothelins, acting through specific endothelin ET(A) and/or ET(B) receptors, participate in nociceptive processing in models of cancer, inflammatory and neuropathic pain. The present study investigated which cell types express endothelin receptors in the trigeminal ganglion, and the contribution of mechanisms mediated by endothelin ET(A) and ET(B) receptors to orofacial heat hyperalgesia induced by unilateral constriction of the infraorbital nerve (CION). Both receptor types were identified by immunohistochemistry in the trigeminal ganglion, ET(A) receptors on small-sized non-myelinated and myelinated A-fibers and ET(B) receptors on both satellite glial cells and small-sized non-myelinated neuronal cells. CION promoted ipsilateral orofacial heat hyperalgesia which lasted from Day 2 until Day 10 after surgery. Ongoing CION-induced heat hyperalgesia (on Day 4) was reduced transiently, but significantly, by systemic or local treatment with antagonists of endothelin ET(A) receptors (atrasentan, 10 mg/kg, i.v.; or BQ-123, 10 nmol/lip), endothelin ET(B) receptors (A-192621, 20 mg/kg, i.v.; or BQ-788, 10 nmol/ lip), or of both ET(A)/ET(B) receptors (bosentan, 10 mg/kg, i.v.; or BQ-123 plus BQ-788, each at 10 nmol/lip). On the other hand, CION-induced heat hyperalgesia was transiently abolished over the first 90 min following i.p. injection of morphine hydrochloride (2.5 mg/kg), but fully resistant to reversal by indomethacin (4 mg/kg, i.p.) or celecoxib (10 mg/kg, i.p.). Thus, heat hyperalgesia induced by CION is maintained, in part, by peripheral signaling mechanisms operated by ET(A) and ET(B) receptors. Endothelin receptors might represent promising therapeutic targets for the control of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Juliana G Chichorro
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | | | | | | |
Collapse
|
45
|
Clark JCM, Dass CR, Choong PFM. Current and future treatments of bone metastases. Expert Opin Emerg Drugs 2009; 13:609-27. [PMID: 19046130 DOI: 10.1517/14728210802584217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone metastases contribute to a significant degree of morbidity in patients with common cancers through the development of skeletal related events (SRE) such as bone pain and pathological fracture. Traditional therapy has relied on surgical removal of lesions and, with the advent of adjuvant therapies, has been combined with radiotherapy, chemotherapy, and more recently osteoclast inhibiting agents like bisphosphonates. Although these therapeutic combinations can achieve a degree of local control, and rarely cure, across the vast majority of metastatic cancers they provide only palliation. Newer molecular agents currently under investigation, combined with innovations in surgery and radiation therapy offer a more targeted approach to bone metastasis. These utilise our understanding of key steps in the metastatic cascade including chemotactic attraction to bone, secretion of proteases, the cancer supporting microenvironment of bone matrix and the RANK-RANKL interaction for osteoclast activation. Direct inhibition of metastasis progression and osteolysis with less reliance on cytotoxic agents and invasive therapy should result in improved metastatic control, longer survival and less overall morbidity.
Collapse
Affiliation(s)
- J C M Clark
- University of Melbourne, St Vincent's Hospital, St Vincent's Health, Department of surgery and Orthopaedics, Level 3 Daly Wing, 41 Victoria Parade, Fitzroy, Vic, 3053, Australia
| | | | | |
Collapse
|
46
|
Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. THE JOURNAL OF PAIN 2009; 10:4-28. [PMID: 19111868 PMCID: PMC2630124 DOI: 10.1016/j.jpain.2008.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED The endogenous endothelin (ET) peptides participate in a remarkable variety of pain-relatedprocesses. Pain that is elevated by inflammation, by skin incision, by cancer, during a Sickle Cell Disease crisis and by treatments that mimic neuropathic and inflammatory pain and are all reduced by local administration of antagonists of endothelin receptors. Many effects of endogenously released endothelin are simulated by acute, local subcutaneous administration of endothelin, which at very high concentrations causes pain and at lower concentrations sensitizes the nocifensive reactions to mechanical, thermal and chemical stimuli. PERSPECTIVE In this paper we review the biochemistry, second messenger pathways and hetero-receptor coupling that are activated by ET receptors, the cellular physiological responses to ET receptor activation, and the contribution to pain of such mechanisms occurring in the periphery and the CNS. Our goal is to frame the subject of endothelin and pain for a broad readership, and to present the generally accepted as well as the disputed concepts, including important unanswered questions.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115-6110, USA
| | | | | |
Collapse
|
47
|
Khodorova A, Zou S, Ren K, Dubner R, Davar G, Strichartz G. Dual Roles for Endothelin-B Receptors in Modulating Adjuvant-Induced Inflammatory Hyperalgesia in Rats. THE OPEN PAIN JOURNAL 2009; 2:30-40. [PMID: 20559459 PMCID: PMC2886510 DOI: 10.2174/1876386300902010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/15/2009] [Accepted: 03/16/2009] [Indexed: 11/22/2022]
Abstract
Injection of endothelin-1 (ET-1) into the plantar rat hindpaw causes acute pain at high concentrations and tactile sensitization at low concentrations. The pro-nociceptive actions are driven through ET(A) receptors for both levels of [ET-1], but the ET(B) receptors are only pro-nociceptive for allodynia from low [ET-1] and anti-nociceptive for pain from high [ET-1]. The goal of the present work was to discriminate the roles of the ET receptors in the acute hyperalgesia from inflammation by complete Freund's adjuvant (CFA, 20 mg/paw) into the rat hindpaw. Selective antagonists were injected l0 min before and then together with CFA. An ET(A) receptor antagonist, BQ-123, reduced CFA-induced thermal hyperalgesia (by up to 50%), as did an ET(B) receptor antagonist, BQ-788 (by up to 66%). BQ-123 and BQ-788 also delayed the onset (by 1.5 - 2 h) but insignificantly reduced the maximum degree of CFA-induced allodynia (~10%). Surprisingly, an ET(B) receptor agonist, IRL-1620, also reduced maximum thermal hyperalgesia induced by CFA, suppressed peak allodynia and delayed its occurrence by ~ 3 h. The latter actions of IRL-1620 were reversed by co-administration of BQ-788, naloxone hydrochloride and the peripherally restricted opiate receptor antagonist naloxone methiodide, and by antiserum against β-endorphin. These findings demonstrate an important role for endogenous ET-1 in acute inflammatory pain and a dual action of ET(B) receptors, including a pro-algesic action along with the important activation of a local analgesic pathway, implying that at least two different ET(B) receptors contribute to modulation of inflammatory pain.
Collapse
Affiliation(s)
- Alla Khodorova
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shiping Zou
- Department of Biomedical Sciences, Dental School, Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Ke Ren
- Department of Biomedical Sciences, Dental School, Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Ronald Dubner
- Department of Biomedical Sciences, Dental School, Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Gudarz Davar
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gary Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Targeting endothelin ETA and ETB receptors inhibits antigen-induced neutrophil migration and mechanical hypernociception in mice. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:271-9. [PMID: 18854982 DOI: 10.1007/s00210-008-0360-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Endothelin may contribute to the development of inflammatory events such as leukocyte recruitment and nociception. Herein, we investigated whether endothelin-mediated mechanical hypernociception (decreased nociceptive threshold, evaluated by electronic pressure-meter) and neutrophil migration (myeloperoxidase activity) are inter-dependent in antigen challenge-induced Th1-driven hind-paw inflammation. In antigen challenge-induced inflammation, endothelin (ET) ET(A) and ET(B) receptor antagonism inhibited both hypernociception and neutrophil migration. Interestingly, ET-1 peptide-induced hypernociception was not altered by inhibiting neutrophil migration or endothelin ET(B) receptor antagonism, but rather by endothelin ET(A) receptor antagonism. Furthermore, endothelin ET(A), but not ET(B), receptor antagonism inhibited antigen-induced PGE(2) production, whereas either selective or combined blockade of endothelin ET(A) and/or ET(B) receptors reduced hypernociception and neutrophil recruitment caused by antigen challenge. Concluding, this study advances knowledge into the role for endothelin in inflammatory mechanisms and further supports the potential of endothelin receptor antagonists in controlling inflammation.
Collapse
|
49
|
Hamamoto DT, Khasabov SG, Cain DM, Simone DA. Tumor-evoked sensitization of C nociceptors: a role for endothelin. J Neurophysiol 2008; 100:2300-11. [PMID: 18684911 DOI: 10.1152/jn.01337.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary and metastatic cancers that effect bone are frequently associated with pain. Sensitization of primary afferent C nociceptors innervating tissue near the tumor likely contributes to the chronic pain and hyperalgesia accompanying this condition. This study focused on the role of the endogenous peptide endothelin-1 (ET-1) as a potential peripheral algogen implicated in the process of cancer pain. Electrophysiological response properties, including ongoing activity and responses evoked by heat stimuli, of C nociceptors were recorded in vivo from the tibial nerve in anesthetized control mice and mice exhibiting mechanical hyperalgesia following implantation of fibrosarcoma cells into and around the calcaneus bone. ET-1 (100 microM) injected into the receptive fields of C nociceptors innervating the plantar surface of the hind paw evoked an increase in ongoing activity in both control and tumor-bearing mice. Moreover, the selective ETA receptor antagonist, BQ-123 (3 mM), attenuated tumor-evoked ongoing activity in tumor-bearing mice. Whereas ET-1 produced sensitization of C nociceptors to heat stimuli in control mice, C nociceptors in tumor-bearing mice were sensitized to heat, and their responses were not further increased by ET-1. Importantly, administration of BQ-123 attenuated tumor-evoked sensitization of C nociceptors to heat. We conclude that ET-1 at the tumor site contributes to tumor-evoked excitation and sensitization of C nociceptors through an ETA receptor mediated mechanism.
Collapse
Affiliation(s)
- Darryl T Hamamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota, 515 Delaware St. SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
50
|
Kawamata T, Ji W, Yamamoto J, Niiyama Y, Furuse S, Namiki A. Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience 2008; 154:1067-76. [DOI: 10.1016/j.neuroscience.2008.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/05/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|