1
|
Zhang TY, Liu FQ, Li Z, Xu YT, Zhao WW, Chen HY, Xu JJ. A hollow Ag/AgCl nanoelectrode for single-cell chloride detection. Chem Commun (Camb) 2024; 60:2373-2376. [PMID: 38318933 DOI: 10.1039/d3cc06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This work reports the construction of a miniaturized Ag/AgCl nanoelectrode on a nanopipette, which is capable of dual-functions of single-cell drug infusion and chloride detection and is envisioned to promote the study of chloride-correlated therapeutic effects.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fang-Qing Liu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zheng Li
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Tong Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei-Wei Zhao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Vultaggio-Poma V, Scussel Bergamin L, Falzoni S, Tarantini M, Giuliani AL, Sandonà D, Polverino De Laureto P, Di Virgilio F. Fetal bovine serum contains biologically available ATP. Purinergic Signal 2024; 20:83-89. [PMID: 37074620 PMCID: PMC10828325 DOI: 10.1007/s11302-023-09941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.
Collapse
Affiliation(s)
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
4
|
Doǧan E, Aygün H, Arslan G, Rzayev E, Avcı B, Ayyıldız M, Ağar E. The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci 2020; 14:414. [PMID: 32435183 PMCID: PMC7218146 DOI: 10.3389/fnins.2020.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic, generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and no data has been reported regarding the interaction between P2X7Rs and glutamate receptor NMDA in absence epilepsy. Thus, this study was designed to investigate the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats with absence epilepsy. Permanent cannula and electrodes were placed on the skulls of the animals. After the healing period of the electrode and cannula implantation, ECoG recordings were obtained during 180 min before and after drug injections. P2X7R agonist BzATP, at doses of 50 μg and 100 μg (intracerebroventricular; i.c.v.) and antagonist A-438079, at doses of 20 μg and 40 μg (i.c.v.) were administered alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number (in every 20 min), the mean duration, and the amplitude of spike-wave discharges (SWDs) were calculated and compared. Rats were decapitated and the right and left hemisphere, cerebellum, and brainstem were separated for the measurements of the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs parameters, whereas memantine reduced them, which is considered anticonvulsant. BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased the effect of memantine. Administration of BzATP increased the levels of SOD and GR in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters. Memantine reduced the levels of MDA, GSH, and GR while increased the level of CAT in the cerebrum. Administration of BzATP before memantine abolished the effect of memantine on MDA levels. The evidence from this study suggests that P2X7Rs does not directly play a role in the formation of absence seizures. P2X7Rs agonist, reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and NMDA receptors in absence epilepsy model.
Collapse
Affiliation(s)
- Elif Doǧan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hatice Aygün
- Department of Physiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emil Rzayev
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways. PLoS One 2019; 14:e0220893. [PMID: 31412063 PMCID: PMC6693757 DOI: 10.1371/journal.pone.0220893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Resuscitation with 0.9% Normal Saline (NS), a non-buffered acidic solution, leads to increased morbidity and mortality in the critically ill. The goal of this study was to determine the molecular mechanisms of endothelial injury after exposure to NS. The hypothesis of this investigation is that exposure of endothelium to NS would lead to loss of cell membrane integrity, resulting in release of ATP, activation of the purinergic receptor (P2X7R), and subsequent activation of stress activated signaling pathways and inflammation. Human saphenous vein endothelial cells (HSVEC) incubated in NS, but not buffered electrolyte solution (Plasma-Lyte, PL), exhibited abnormal morphology and increased release of lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and decreased transendothelial resistance (TEER), suggesting loss of membrane integrity. Incubation of intact rat aorta (RA) or human saphenous vein in NS but not PL led to impaired endothelial-dependent relaxation which was ameliorated by apyrase (hydrolyzes ATP) or SB203580 (p38 MAPK inhibitor). Exposure of HSVEC to NS but not PL led to activation of p38 MAPK and its downstream substrate, MAPKAP kinase 2 (MK2). Treatment of HSVEC with exogenous ATP led to interleukin 1β (IL-1β) release and increased vascular cell adhesion molecule (VCAM) expression. Treatment of RA with IL-1β led to impaired endothelial relaxation. IL-1β treatment of HSVEC led to increases in p38 MAPK and MK2 phosphorylation, and increased levels of arginase II. Incubation of porcine saphenous vein (PSV) in PL with pH adjusted to 6.0 or less also led to impaired endothelial function, suggesting that the acidic nature of NS is what contributes to endothelial dysfunction. Volume overload resuscitation in a porcine model after hemorrhage with NS, but not PL, led to acidosis and impaired endothelial function. These data suggest that endothelial dysfunction caused by exposure to acidic, non-buffered NS is associated with loss of membrane integrity, release of ATP, and is modulated by P2X7R-mediated inflammatory responses.
Collapse
|
6
|
Bratengeier C, Bakker AD, Fahlgren A. Mechanical loading releases osteoclastogenesis-modulating factors through stimulation of the P2X7 receptor in hematopoietic progenitor cells. J Cell Physiol 2018; 234:13057-13067. [PMID: 30536959 DOI: 10.1002/jcp.27976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/20/2018] [Indexed: 01/20/2023]
Abstract
Mechanical instability of bone implants stimulate osteoclast differentiation and peri-implant bone loss, leading to prosthetic loosening. It is unclear which cells at the periprosthetic interface transduce mechanical signals into a biochemical response, and subsequently facilitate bone loss. We hypothesized that mechanical overloading of hematopoietic bone marrow progenitor cells, which are located near to the inserted bone implants, stimulates the release of osteoclast-inducing soluble factors. Using a novel in vitro model to apply mechanical overloading, we found that hematopoietic progenitor cells released adenosine triphosphate (ATP) after only 2 min of mechanical loading. The released ATP interacts with its specific receptor P2X7 to stimulate the release of unknown soluble factors that inhibit (physiological loading) or promote (supraphysiological loading) the differentiation of multinucleated osteoclasts derived from bone marrow cultures. Inhibition of ATP-receptor P2X7 by Brilliant Blue G completely abolished the overloading-induced stimulation of osteoclast formation. Likewise, stimulation of P2X7 receptor on hematopoietic cells by BzATP enhanced the release of osteoclastogenesis-stimulating signaling molecules to a similar extent as supraphysiological loading. Supraphysiological loading affected neither gene expression of inflammatory markers involved in aseptic implant loosening (e.g., interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, and PTGES2) nor expression of the osteoclast modulators receptor activator of nuclear factor κ-Β ligand and osteoprotegerin. Our findings suggest that murine hematopoietic progenitor cells are a potential key player in local mechanical loading-induced bone implant loosening via the ATP/P2X7-axis. Our approach identifies potential therapeutic targets to prevent prosthetic loosening.
Collapse
Affiliation(s)
- Cornelia Bratengeier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Anna Fahlgren
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Differentiated HASTR/ci35 cells: A promising in vitro human astrocyte model for facilitating CNS drug development studies. J Pharmacol Sci 2018; 137:350-358. [PMID: 30150146 DOI: 10.1016/j.jphs.2018.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Astrocytes have shown longstanding promise as therapeutic targets for various central nervous system diseases. To facilitate drug development targeting astrocytes, we have recently developed a new conditionally immortalized human astrocyte cell line, termed HASTR/ci35 cells. In this study, in order to further increase their chances to contribute to various astrocyte studies, we report on the development of a culture method that improves HASTR/ci35 cell differentiation status and provide several proofs related to their astrocyte characteristics. The culture method is based on the simultaneous elimination of serum effects and immortalization signals. The results of qPCR showed that the culture method significantly enhanced several astrocyte marker gene expression levels. Using the differentiated HASTR/ci35, we examined their response profiles to nucleotide treatment and inflammatory stimuli, along with their membrane fatty acid composition. Consequently, we found that they responded to ADP or UTP treatment with a transient increase of intracellular Ca2+ concentration, and that they could show reactive response to interleukin-1β treatments. Furthermore, the membrane phospholipids of the cells were enriched with polyunsaturated fatty acids. To summarize, as a unique human astrocyte model carrying the capability of a differentiation induction properties, HASTR/ci35 cells are expected to contribute substantially to astrocyte-oriented drug development studies.
Collapse
|
8
|
Gouwens LK, Ismail MS, Rogers VA, Zeller NT, Garrad EC, Amtashar FS, Makoni NJ, Osborn DC, Nichols MR. Aβ42 Protofibrils Interact with and Are Trafficked through Microglial-Derived Microvesicles. ACS Chem Neurosci 2018. [PMID: 29543435 DOI: 10.1021/acschemneuro.8b00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvesicles (MVs) and exosomes comprise a class of cell-secreted particles termed extracellular vesicles (EVs). These cargo-holding vesicles mediate cell-to-cell communication and have recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD). The two types of EVs are distinguished by the mechanism of cell release and their size, with the smaller exosomes and the larger MVs ranging from 30 to 100 nm and 100 nm to 1 μm in diameter, respectively. MV numbers are increased in AD and appear to interact with amyloid-β peptide (Aβ), the primary protein component of the neuritic plaques in the AD brain. Because microglial cells play such an important role in AD-linked neuroinflammation, we sought to characterize MVs shed from microglial cells, better understand MV interactions with Aβ, and determine whether internalized Aβ may be incorporated into secreted MVs. Multiple strategies were used to characterize MVs shed from BV-2 microglia after ATP stimulation. Confocal images of isolated MVs bound to fluorescently labeled annexin-V via externalized phosphatidylserine revealed a polydisperse population of small spherical structures. Dynamic light scattering measurements yielded MV diameters ranging from 150 to 600 nm. Electron microscopy of resin-embedded MVs cut into thin slices showed well-defined uranyl acetate-stained ring-like structures in a similar diameter range. The use of a fluorescently labeled membrane insertion probe, NBD C6-HPC, effectively tracked MVs in binding experiments, and an Aβ ELISA confirmed a strong interaction between MVs and Aβ protofibrils but not Aβ monomers. Despite the lesser monomer interaction, MVs had an inhibitory effect on monomer aggregation. Primary microglia rapidly internalized Aβ protofibrils, and subsequent stimulation of the microglia with ATP resulted in the release of MVs containing the internalized Aβ protofibrils. The role of MVs in neurodegeneration and inflammation is an emerging area, and further knowledge of MV interaction with Aβ may shed light on extracellular spread and influence on neurotoxicity and neuroinflammation.
Collapse
Affiliation(s)
- Lisa K. Gouwens
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Mudar S. Ismail
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Victoria A. Rogers
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nathan T. Zeller
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Evan C. Garrad
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Fatima S. Amtashar
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nyasha J. Makoni
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - David C. Osborn
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Michael R. Nichols
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
9
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
Ilatovskaya DV, Palygin O, Levchenko V, Staruschenko A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am J Physiol Cell Physiol 2013; 305:C1050-9. [PMID: 24048730 DOI: 10.1152/ajpcell.00138.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium flux in the podocytes is critical for normal and pathophysiological regulation of these types of cells, and excessive calcium signaling results in podocytes damage and improper glomeruli function. Purinergic activation of P2 receptors is a powerful and rapid signaling process; however, the exact physiological identity of P2 receptors subtypes in podocytes remains essentially unknown. The goal of this study was to determine the P2 receptor profile in podocytes of the intact Sprague-Dawley rat glomeruli using available pharmacological tools. Glomeruli were isolated by differential sieving and loaded with Fluo-4/Fura Red cell permeable calcium indicators, and the purinergic response in the podocytes was analyzed with ratiometric confocal fluorescence measurements. Various P2 receptors activators were tested and compared with the effect of ATP, specifically, UDP, MRS 2365, bzATP, αβ-methylene, 2-meSADP, MRS 4062, and MRS 2768, were analyzed. Antagonists (MRS 2500, 5-BDBD, A438079, and NF 449) were tested when 10 μM ATP was applied as the EC50 for ATP activation of the calcium influx in the podocytes was determined to be 10.7 ± 1.5 μM. Several agonists including MRS 2365 and 2-meSADP caused calcium flux. Importantly, only the P2Y1-specific antagonist MRS 2500 (1 nM) precluded the effects of ATP concentrations of the physiological range. Immunohistochemical analysis confirmed that P2Y1 receptors are highly expressed in the podocytes. We conclude that P2Y1 receptor signaling is the predominant P2Y purinergic pathway in the glomeruli podocytes and P2Y1 might be involved in the pathogenesis of glomerular injury and could be a target for treatment of kidney diseases.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
11
|
Song Z, Zhao H, Olubajo O, Hall LB, Orr CN, Askew CB. Characterizing the binding of nucleotide ATP on serum albumin by 31P NMR diffusion. CAN J CHEM 2012. [DOI: 10.1139/v2012-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pulsed-field-gradient (PFG) 31P NMR diffusion spectra were measured under varied sample conditions to characterize the low-affinity binding of adenosine 5′-triphosphate (ATP) on human serum albumin (HSA) or bovine serum albumin (BSA). The NMR diffusion constants of ATP, ATP–HSA, or ATP–BSA were illustrated as function of ATP concentrations. The binding curves of ATP–HSA and ATP–BSA were identical but strikingly different from the ATP curve. Using a “Scatchard plot”, the apparent binding constant (K) and number of ATP binding sites (n) on serum albumin were evaluated as K = 75.25 (mol/L)–1 and n = 10, respectively. At a pH < 5.0 and a pH > 9.0 or a temperature > 45 °C, the diffusion data of ATP–HSA were found to increase remarkably, suggesting that the dissociation of ATP from HSA was largely enhanced, probably because of pH- or heat-induced protein structural change, degradation, or aggregation. In addition, our data indicated that ADP was strongly competitive with ATP for the low-affinity binding to HSA, but heptanone and Cl– were essentially noncompetitive. These results are important for further elucidating the interaction of ATP with serum albumin and its possible effect on related bioprocesses. The method can be well applied to study the binding of other nucleotides/nucleosides on proteins.
Collapse
Affiliation(s)
- Zhiyan Song
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Hua Zhao
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Olarongbe Olubajo
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Lewis B. Hall
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Chauncey N. Orr
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Courtney B. Askew
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
12
|
Lipopolysaccharide inhibits the channel activity of the P2X7 receptor. Mediators Inflamm 2011; 2011:152625. [PMID: 21941410 PMCID: PMC3173735 DOI: 10.1155/2011/152625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.
Collapse
|
13
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 PMCID: PMC3141880 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Seven mammalian purinergic receptor subunits, denoted P2X1-P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca(2+) influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
15
|
Woehrle T, Yip L, Manohar M, Sumi Y, Yao Y, Chen Y, Junger WG. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J Leukoc Biol 2010; 88:1181-9. [PMID: 20884646 DOI: 10.1189/jlb.0410211] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertonic saline (HS) resuscitation increases T cell function and inhibits posttraumatic T cell anergy, which can reduce immunosuppression and sepsis in trauma patients. We have previously shown that HS induces the release of cellular ATP and enhances T cell function. However, the mechanism by which HS induces ATP release and the subsequent regulation of T cell function by ATP remain poorly understood. In the present study, we show that inhibition of the gap junction hemichannel pannexin-1 (Panx1) blocks ATP release in response to HS, and HS exposure triggers significant changes in the expression of all P2X-type ATP receptors in Jurkat T cells. Blocking or silencing of Panx1 or of P2X1, P2X4, or P2X7 receptors blunts HS-induced p38 MAPK activation and the stimulatory effects of HS on TCR/CD28-induced IL-2 gene transcription. Moreover, treatment with HS or agonists of P2X receptors overcomes T cell suppression induced by the anti-inflammatory cytokine IL-10. These findings indicate that Panx1 hemichannels facilitate ATP release in response to hypertonic stress and that P2X1, P2X4, and P2X7 receptor activation enhances T cell function. We conclude that HS and P2 receptor agonists promote T cell function and thus, could be used to improve T cell function in trauma patients.
Collapse
Affiliation(s)
- Tobias Woehrle
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Jung KY, Moon HD, Lee GE, Lim HH, Park CS, Kim YC. Structure-activity relationship studies of spinorphin as a potent and selective human P2X(3) receptor antagonist. J Med Chem 2007; 50:4543-7. [PMID: 17676725 DOI: 10.1021/jm070114m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinorphin, an endogenous antinociceptive peptide (LVVYPWT), showed potent and non-competitive antagonism at the ATP-activated human P2X3 receptor (IC50 = 8.3 pM) in a two-electrode voltage clamp assay with recombinant human P2X3 receptors expressed in Xenopus oocytes. Single alanine substitutions from 1st to 4th amino acids and the cyclic form of LVVYPWT sustained antagonistic properties at the human P2X3 receptors, whereas the threonine to alanine substitution resulted in an enhancing effect of the agonistic activity.
Collapse
Affiliation(s)
- Kwan-Young Jung
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Alloisio S, Aiello R, Ferroni S, Nobile M. Potentiation of native and recombinant P2X7-mediated calcium signaling by arachidonic acid in cultured cortical astrocytes and human embryonic kidney 293 cells. Mol Pharmacol 2006; 69:1975-83. [PMID: 16510558 DOI: 10.1124/mol.105.020164] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the brain, arachidonic acid (AA) plays a critical role in the modulation of a broad spectrum of biological responses, including those underlying neuroinflammation. By using microfluorometry, we investigated the action of extracellular AA in the modulation of the purinoceptor P2X7-mediated elevation of [Ca(2+)](i) in cultured neocortical type-1 astrocytes and P2X7-, P2X2-transfected human embryonic kidney (HEK) 293 cells. We report that in cultured astrocytes, AA-induced [Ca(2+)](i) elevation is coupled to depletion of intracellular Ca(2+) stores and to a sustained noncapacitative Ca(2+) entry. AA also induced a robust potentiation of the astrocytic P2X7-mediated [Ca(2+)](i) rise evoked by the selective agonist 3'-O-(4-benzoyl)benzoyl-ATP (BzATP). Pharmacological studies demonstrate that the selective P2X7 antagonists oxidized ATP and Brilliant Blue G abrogated the AA-mediated potentiation of BzATP-evoked [Ca(2+)](i) elevation. Fluorescent dye uptake experiments showed that the AA-induced increase in [Ca(2+)](i) was not due to a switch of the P2X7 receptor from channel to the pore mode of gating. The synergistic effect of AA and BzATP was also observed in HEK293 cells stably expressing rat and human P2X7 but not in rat P2X2. Control HEK293 cells responded to AA exposure only with a transient [Ca(2+)](i) elevation, whereas in those expressing the P2X7 receptor, AA elicited a potentiation of the BzATP-induced [Ca(2+)](i) rise. Together, these findings indicate that AA mediates a complex regulation of [Ca(2+)](i) dynamics also through P2X7-mediated Ca(2+) entry, suggesting that variations in AA production may be relevant to the control of both the temporal and spatial kinetics of [Ca(2+)](i) signaling in astroglial cells.
Collapse
Affiliation(s)
- Susanna Alloisio
- Institute of Biophysics, Consiglio Nazionale delle Richerche, Via De Marini 6, 16149 Genoa, Italy
| | | | | | | |
Collapse
|
19
|
Mander P, Brown GC. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2005; 2:20. [PMID: 16156895 PMCID: PMC1232863 DOI: 10.1186/1742-2094-2-20] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/12/2005] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation-activated glia are seen in many CNS pathologies and may kill neurons through the release of cytotoxic mediators, such as nitric oxide from inducible NO synthase (iNOS), and possibly superoxide from NADPH oxidase (NOX). We set out to determine the relative role of these species in inducing neuronal death, and to test the dual-key hypothesis that the production of both species simultaneously is required for significant neuronal death. Methods Primary co-cultures of cerebellar granule neurons and glia from rats were used to investigate the effect of NO (from iNOS, following lipopolysaccharide (LPS) and/or cytokine addition) or superoxide/hydrogen peroxide (from NOX, following phorbol 12-myristate 13-acetate (PMA), ATP analogue (BzATP), interleukin-1β (IL-1β) or arachidonic acid (AA) addition) on neuronal survival. Results Induction of glial iNOS caused little neuronal death. Similarly, activation of NOX alone resulted in little or no neuronal death. However, if NOX was activated (by PMA or BzATP) in the presence of iNOS (induced by LPS and interferon-γ) then substantial delayed neuronal death occurred over 48 hours, which was prevented by inhibitors of iNOS (1400W), NOX (apocynin) or a peroxynitrite decomposer (FeTPPS). Neurons and glia were also found to stain positive for nitrotyrosine (a putative marker of peroxynitrite) only when both iNOS and NOX were simultaneously active. If NOX was activated by weak stimulators (IL-1β, AA or the fibrillogenic prion peptide PrP106-126) in the presence of iNOS, it caused microglial proliferation and delayed neurodegeneration over 6 days, which was prevented by iNOS or NOX inhibitors, a peroxynitrite decomposer or a NMDA-receptor antagonist (MK-801). Conclusion These results suggest a dual-key mechanism, whereby glial iNOS or microglial NOX activation alone is relatively benign, but if activated simultaneously are synergistic in killing neurons, through generating peroxynitrite. This mechanism may mediate inflammatory neurodegeneration in response to cytokines, bacteria, ATP, arachidonate and pathological prions, in which case neurons may be protected by iNOS or NOX inhibitors, or scavengers of NO, superoxide or peroxynitrite.
Collapse
Affiliation(s)
- Palwinder Mander
- Biochemistry Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Guy C Brown
- Biochemistry Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
20
|
Sylte MJ, Kuckleburg CJ, Inzana TJ, Bertics PJ, Czuprynski CJ. Stimulation of P2X receptors enhances lipooligosaccharide-mediated apoptosis of endothelial cells. J Leukoc Biol 2005; 77:958-65. [PMID: 15728716 DOI: 10.1189/jlb.1004597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of endothelial cells to lipid A-containing molecules, such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS), causes the release of purinergic compounds [e.g., adenosine 5'-triphosphate (ATP)] and can lead to apoptosis. The P2X family of purinergic receptors (e.g., P2X(7)) has been reported to modulate LPS signaling events and to participate in apoptosis. We investigated the role that P2X receptors play in the apoptosis that follows exposure of bovine endothelial cells to Haemophilus somnus LOS. Addition of P2X inhibitors, such as periodate-oxidized ATP (oATP) or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium, significantly reduced LOS-induced apoptosis. Incubation of endothelial cells with apyrase, which degrades ATP, diminished LOS-induced apoptosis of endothelial cells. Concomitant addition of P2X agonists [e.g., 2',3'-(4-benzoyl)-benzoyl ATP or ATP] to LOS-treated endothelial cells significantly enhanced caspase-3 activation. The P2X antagonist oATP significantly blocked caspase-8 but not caspase-9 activation in LOS-treated endothelial cells. Together, these data indicate that stimulation of P2X receptors enhances LOS-induced apoptosis of endothelial cells, possibly as a result of endogenous release of ATP, which results in caspase-8 activation.
Collapse
Affiliation(s)
- Matt J Sylte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, WI 63706, USA
| | | | | | | | | |
Collapse
|