1
|
Mishima H, Ando S, Kuzuhara H, Yamamura A, Kondo R, Suzuki Y, Imaizumi Y, Yamamura H. Melatonin inhibits voltage-gated potassium K V4.2 channels and negatively regulates melatonin secretion in rat pineal glands. Am J Physiol Cell Physiol 2024; 327:C1023-C1034. [PMID: 39159388 DOI: 10.1152/ajpcell.00664.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.
Collapse
Affiliation(s)
- Hiroki Mishima
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shunsuke Ando
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hibiki Kuzuhara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
2
|
Yang C, Li Q, Hu F, Liu Y, Wang K. Inhibition of Cardiac Kv4.3/KChIP2 Channels by Sulfonylurea Drug Gliquidone. Mol Pharmacol 2024; 105:224-232. [PMID: 38164605 DOI: 10.1124/molpharm.123.000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 μM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
3
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Alles SRA, Garcia E, Balasubramanyan S, Jones K, Tyson JR, Joy T, Snutch TP, Smith PA. Peripheral nerve injury increases contribution of L-type calcium channels to synaptic transmission in spinal lamina II: Role of α2δ-1 subunits. Mol Pain 2018; 14:1744806918765806. [PMID: 29580153 PMCID: PMC5882044 DOI: 10.1177/1744806918765806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Following peripheral nerve chronic constriction injury, the accumulation of the α2δ–1 auxiliary subunit of voltage-gated Ca2+ channels in primary afferent terminals contributes to the onset of neuropathic pain. Overexpression of α2δ–1 in Xenopus oocytes increases the opening properties of Cav1.2 L-type channels and allows Ca2+ influx at physiological membrane potentials. We therefore posited that L-type channels play a role in neurotransmitter release in the superficial dorsal horn in the chronic constriction injury model of neuropathic pain. Results Whole-cell recording from lamina II neurons from rats, subject to sciatic chronic constriction injury, showed that the L-type Ca2+ channel blocker, nitrendipine (2 µM) reduced the frequency of spontaneous excitatory postsynaptic currents. Nitrendipine had little or no effect on spontaneous excitatory postsynaptic current frequency in neurons from sham-operated animals. To determine whether α2δ–1 is involved in upregulating function of Cav1.2 L-type channels, we tested the effect of the α2δ–1 ligand, gabapentin (100 µM) on currents recorded from HEK293F cells expressing Cav1.2/β4/α2δ–1 channels and found a significant decrease in peak amplitude with no effect on control Cav1.2/β4/α2δ–3 expressing cells. In PC-12 cells, gabapentin also significantly reduced the endogenous dihydropyridine-sensitive calcium current. In lamina II, gabapentin reduced spontaneous excitatory postsynaptic current frequency in neurons from animals subject to chronic constriction injury but not in those from sham-operated animals. Intraperitoneal injection of 5 mg/kg nitrendipine increased paw withdrawal threshold in animals subject to chronic constriction injury. Conclusion We suggest that L-type channels show an increased contribution to synaptic transmission in lamina II dorsal horn following peripheral nerve injury. The effect of gabapentin on Cav1.2 via α2δ–1 may contribute to its anti-allodynic action.
Collapse
Affiliation(s)
- Sascha RA Alles
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sridhar Balasubramanyan
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Karen Jones
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John R Tyson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Twinkle Joy
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Peter A Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Peter A Smith, Department of Pharmacology, 9.75 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7. Email
| |
Collapse
|
5
|
Wei H, Li Y, Du Y, Ma J. KCND2 upregulation might be an independent indicator of poor survival in gastric cancer. Future Oncol 2018; 14:2811-2820. [PMID: 30051729 DOI: 10.2217/fon-2018-0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM We aimed to investigate the expression of voltage-gated potassium channels KCND1/KCND2/KCND3 in gastric cancer (GC) and normal stomach tissues and to investigate the prognostic value of the upregulated gene KCND2. PATIENTS & METHODS A retrospective analysis was performed using data from large available databases. RESULTS KCND2 was significantly upregulated at the mRNA and protein levels in GC compared with that in normal stomach tissues. High KCND2 RNA expression was independently associated with shorter overall survival (HR: 1.634, 95% CI: 1.135-2.352; p = 0.008) and recurrence-free survival (HR: 2.644, 95% CI: 1.438-4.863; p = 0.002). Data mining in the Kaplan-Meier plotter confirmed the prognostic value of KCND2. CONCLUSION KCND2 upregulation is a valuable prognostic biomarker in GC patients, in terms of overall survival and recurrence-free survival.
Collapse
Affiliation(s)
- Hua Wei
- Department of Endoscopy, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Yan Li
- Department of Endoscopy, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Yaowu Du
- Laboratory for Nanomedicine, School of Basic Medical Science, Henan University, Kaifeng, 475004, PR China
| | - Ji Ma
- Department of Endoscopy, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| |
Collapse
|
6
|
Godfraind T. Discovery and Development of Calcium Channel Blockers. Front Pharmacol 2017; 8:286. [PMID: 28611661 PMCID: PMC5447095 DOI: 10.3389/fphar.2017.00286] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan) and Heibrunn (USA) experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB) of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are important factors of their action. The high sensitivity of hypertensive animals is explained by the partial depolarization of their arteries. It is noted that they are arteriolar dilators and that they cannot be simply considered as vasodilators. The second part of this report provides key information about clinical usefulness of CCBs. A section is devoted to the controversy on their safety closed by the Allhat trial (2002). Sections are dedicated to their effect in cardiac ischemia, in cardiac arrhythmias, in atherosclerosis, in hypertension, and its complications. CCBs appear as the most commonly used for the treatment of cardiovascular diseases. As far as hypertension is concerned, globally the prevalence in adults aged 25 years and over was around 40% in 2008. Usefulness of CCBs is discussed on the basis of large clinical trials. At therapeutic dosage, they reduce the elevated blood pressure of hypertensive patients but don't change blood pressure of normotensive subjects, as was observed in animals. Those active on both L- and T-type channels are efficient in nephropathy. Alteration of cognitive function is a complication of hypertension recognized nowadays as eventually leading to dementia. This question is discussed together with the efficacy of CCBs in cognitive pathology. In the section entitled beyond the cardiovascular system, CCBs actions in migraine, neuropathic pain, and subarachnoid hemorrhage are reported. The final conclusions refer to long-term effects discovered in experimental animals that have not yet been clearly reported as being important in human pharmacotherapy.
Collapse
Affiliation(s)
- Théophile Godfraind
- Pharmacologie, Faculté de Médecine et de Dentisterie, Université Catholique de LouvainBruxelles, Belgium
| |
Collapse
|
7
|
Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K + current in human atrial myocytes. Eur J Pharmacol 2016; 789:98-108. [DOI: 10.1016/j.ejphar.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
|
8
|
Shaldam MA, El-Hamamsy MH, Saleh DO, El-Moselhy TF. Synthesis, Evaluation of Pharmacological Activity, and Molecular Docking of 1,4-Dihydropyridines as Calcium Antagonists. Chem Pharm Bull (Tokyo) 2016; 64:297-304. [DOI: 10.1248/cpb.c15-00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Moataz Ahmed Shaldam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Delta University for Science and Technology
| | | | | | | |
Collapse
|
9
|
Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol Sin 2015; 36:1451-61. [PMID: 26592512 DOI: 10.1038/aps.2015.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/26/2015] [Indexed: 01/16/2023]
Abstract
AIM Neferine is an isoquinoline alkaloid isolated from seed embryos of Nelumbo nucifera (Gaertn), which has a variety of biological activities. In this study we examined the effects of neferine on Kv4.3 channels, a major contributor to the transient outward current (I(to)) in rabbit heart, and on ex vivo electrophysiology of rabbit hearts. METHODS Whole-cell Kv4.3 currents were recorded in HEK293 cells expressing human cardiac Kv4.3 channels using patch-clamp technique. Arterially perfused wedges of rabbit left ventricles (LV) were prepared, and transmembrane action potentials were simultaneously recorded from epicardial (Epi) and endocardial (Endo) sites with floating microelectrodes together with transmural electrocardiography (ECG). RESULTS Neferine (0.1-100 μmol/L) dose-dependently and reversibly inhibited Kv4.3 currents (the IC50 value was 8.437 μmol/L, and the maximal inhibition at 100 μmol/L was 44.12%). Neferine (10 μmol/L) caused a positive shift of the steady-state activation curve of Kv4.3 currents, and a negative shift of the steady-state inactivation curve. Furthermore, neferine (10 μmol/L) accelerated the inactivation but not the activation of Kv4.3 currents, and markedly slowed the recovery of Kv4.3 currents from inactivation. Neferine-induced blocking of Kv4.3 currents was frequency-dependent. In arterially perfused wedges of rabbit LV, neferine (1, 3, and 10 μmol/L) dose-dependently prolonged the QT intervals and action potential durations (APD) at both Epi and Endo sites, and caused dramatic increase of APD10 at Epi sites. CONCLUSION Neferine inhibits Kv4.3 channels likely by blocking the open state and inactivating state channels, which contributes to neferine-induced dramatic increase of APD10 at Epi sites of rabbit heart.
Collapse
|
10
|
Yu H, Zou B, Wang X, Li M. Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels. Br J Pharmacol 2015; 172:3370-82. [PMID: 25752739 DOI: 10.1111/bph.13127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND PURPOSE A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. EXPERIMENTAL APPROACH To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. KEY RESULTS Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. CONCLUSION AND IMPLICATIONS AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation.
Collapse
Affiliation(s)
- Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| | - Beiyan Zou
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Park MH, Son YK, Hong DH, Choi IW, Kim DJ, Lee H, Bang H, Na SH, Li H, Jo SH, Park WS. The Ca2+ channel inhibitor efonidipine decreases voltage-dependent K+ channel activity in rabbit coronary arterial smooth muscle cells. Vascul Pharmacol 2013; 59:90-5. [DOI: 10.1016/j.vph.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022]
|
12
|
Yamamoto S, Tanabe M, Ono H. N- and L-Type Voltage-Dependent Ca 2+ Channels Contribute to the Generation of After-Discharges in the Spinal Ventral Root After Cessation of Noxious Mechanical Stimulation. J Pharmacol Sci 2012; 119:82-90. [DOI: 10.1254/jphs.12035fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
13
|
Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K. Effect of the I(to) activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2. Br J Pharmacol 2010; 160:2028-44. [PMID: 20649599 PMCID: PMC2958647 DOI: 10.1111/j.1476-5381.2010.00859.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/09/2010] [Accepted: 03/22/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The compound NS5806 increases the transient outward current (I(to)) in canine ventricular cardiomyocytes and slows current decay. In human and canine ventricle, I(to) is thought to be mediated by K(V)4.3 and various ancillary proteins, yet, the exact subunit composition of I(to) channels is still debated. Here we characterize the effect of NS5806 on heterologously expressed putative I(to) channel subunits and other potassium channels. EXPERIMENTAL APPROACH Cloned K(V)4 channels were co-expressed with KChIP2, DPP6, DPP10, KCNE2, KCNE3 and K(V)1.4 in Xenopus laevis oocytes or CHO-K1 cells. KEY RESULTS NS5806 increased K(V)4.3/KChIP2 peak current amplitudes with an EC(50) of 5.3 +/- 1.5microM and significantly slowed current decay. KCNE2, KCNE3, DPP6 and DPP10 modulated K(V)4.3 currents and the response to NS5806, but current decay was slowed only in complexes containing KChIP2. The effect of NS5806 on K(V)4.2 was similar to that on K(V)4.3, and current decay was only slowed in presence of KChIP2. However, for K(V)4.1, the slowing of current decay by NS5806 was independent of KChIP2. K(V)1.4 was strongly inhibited by 10 microM NS5806 and K(V)1.5 was inhibited to a smaller extent. Effects of NS5806 on kinetics of currents generated by K(V)4.3/KChIP2/DPP6 with K(V)1.4 in oocytes could reproduce those on cardiac I(to) in canine ventricular myocytes. K(V)7.1, K(V)11.1 and K(ir)2 currents were unaffected by NS5806. CONCLUSION AND IMPLICATIONS NS5806 modulated K(V)4 channel gating depending on the presence of KChIP2, suggesting that NS5806 can potentially be used to address the molecular composition as well as the physiological role of cardiac I(to).
Collapse
Affiliation(s)
- A Lundby
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Suzuki Y, Inoue T, Ra C. L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells. Mol Immunol 2009; 47:640-8. [PMID: 19926136 DOI: 10.1016/j.molimm.2009.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+) is a highly versatile intracellular second messenger in many cell types, and regulates many complicated cellular processes, including cell activation, proliferation and apoptosis. Influx of Ca(2+) from the extracellular fluid is required for sustained elevation of the cytosolic Ca(2+) concentration and full activation of Ca(2+)-dependent processes. It is widely accepted that Ca(2+) release-activated Ca(2+) channels are the major routes of Ca(2+) influx in electrically non-excitable cells, including hematopoietic cells, whereas voltage-gated Ca(2+) channels such as L-type Ca(2+) channels (LTCCs) serve as the principal routes of Ca(2+) entry into electrically excitable cells such as neurons and myocytes. However, recent pharmacological and molecular genetic studies have revealed the existence of functional LTCCs and/or LTCC-like channels in a variety of immune cells including mast cells. In this article, we review recent advances in our understanding of Ca(2+) signaling in immune cells with a special interest in mast cells. We highlight roles for LTCCs in antigen receptor-mediated mast cell activation and survival.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | |
Collapse
|
15
|
Ca v 1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol 2009; 46:2370-80. [PMID: 19447492 DOI: 10.1016/j.molimm.2009.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 11/23/2022]
Abstract
In non-excitable cells, store-operated Ca(2+) channels (SOCs) are the principal routes of Ca(2+) entry. Recently, store-independent Ca(2+) channels which are pharmacologically and/or immunologically similar to L-type Ca(2+) channels (LTCCs) have been shown to exist in various hematopoietic cells, including T cells, B cells and neutrophils. We previously reported that mast cells express LTCCs which regulate mast cell effector responses in a distinct manner from SOCs. In the present study, we examined the possible role for LTCCs in mast cell survival. Both RBL-2H3 mast cells and bone marrow-derived mast cells underwent considerable apoptosis after treatment with thapsigargin (Tg) but not stimulation through the high-affinity IgE receptor (Fc epsilon RI). The LTCC-selective antagonists such as nifedipine greatly augmented Fc epsilon RI-mediated apoptosis, while the LTCC-selective agonist (S)-BayK8644 blocked Tg-induced apoptosis. The modulation of apoptosis was accompanied by altered mitochondrial integrity, as measured with the mitochondrial membrane potential, cytochrome c release and caspase-3/7 activation. Fc epsilon RI stimulation induced mitochondrial Ca(2+) ([Ca(2+)](m)) entry through both SOCs and LTCCs, while Tg evoked [Ca(2+)](m) entry through LTCCs but not SOCs. The LTCC-selective antagonists blocked [Ca(2+)](m) entry, whereas (S)-BayK8644 augmented Tg-induced [Ca(2+)](m) entry. Moreover, blockade of the expression of the alpha(1C) subunit of Ca(v)1.2 LTCC using small-interfering RNA strongly augmented Fc epsilon RI-mediated apoptosis, mitochondrial integrity, and mitochondrial Ca(2+) collapse, and abolished the protective effects of (S)-BayK8644 against Tg-induced apoptosis. These findings suggest that Ca(v)1.2 LTCC protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption.
Collapse
|
16
|
Zhang XL, Gold MS. Dihydropyridine block of voltage-dependent K+ currents in rat dorsal root ganglion neurons. Neuroscience 2009; 161:184-94. [PMID: 19289157 DOI: 10.1016/j.neuroscience.2009.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The dihydropyridines nifedipine, nimodipine and Bay K 8644 are widely used as pharmacological tools to assess the contribution of L-type voltage-gated Ca(2+) channels to a variety of neuronal processes including synaptic transmission, excitability and second messenger signaling. These compounds are still used in neuronal preparations despite evidence from cardiac tissue and heterologous expression systems that they block several voltage-dependent K(+) (Kv) channels. Both because these compounds have been used to assess the relative contribution of L-type Ca(2+) channels to several different processes in dorsal root ganglion (DRG) neurons and because a relatively wide variety of Kv channels present in other neuronal populations is present in DRG neurons, we determined the extent to which dihydropyridines block Kv currents in these neurons. Standard whole cell patch clamp techniques were used to study acutely disassociated adult rat DRG neurons. All three dihydropyridines tested blocked Kv currents in DRG neurons; IC(50) values (concentration resulting in an inhibition that is 50% of maximum) for nifedipine and nimodipine-induced block of sustained Kv currents were 14.5 and 6.6 microM, respectively. The magnitude of sustained current block was 44+/-1.6%, 60+/-2%, and 56+/-2.9% with 10 microM nifedipine, nimodipine and Bay K 8644, respectively. Current block was occluded by neither 4-aminopyridine (5 mM) nor tetraethylammonium (135 mM). Dihydropyridine-induced block of Kv currents was not associated with a shift in the voltage-dependence of current activation or inactivation, the recovery from inactivation, or voltage dependent block. However, there was a small use-dependence to the dihydropyridine-induced block. Our results suggest that several types of Kv channels in DRG neurons are blocked by mechanisms distinct from those underlying block of Kv channels in cardiac myocytes. Importantly, our results suggest that if investigators wish to explore the contribution of L-type Ca(2+) channels to neuronal function, they should consider alternative strategies for the manipulation of these channels than the use of dihydropyridines.
Collapse
Affiliation(s)
- X-L Zhang
- Department of Anesthesiology, University of Pittsburgh, 3500 Terrace Street, Room E1440 BST, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
17
|
Radicke S, Cotella D, Sblattero D, Ravens U, Santoro C, Wettwer E. The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:617-26. [PMID: 19153714 DOI: 10.1007/s00210-008-0389-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
Collapse
Affiliation(s)
- Susanne Radicke
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Bett GCL, Rasmusson RL. Modification of K+ channel-drug interactions by ancillary subunits. J Physiol 2007; 586:929-50. [PMID: 18096604 DOI: 10.1113/jphysiol.2007.139279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reconciling ion channel alpha-subunit expression with native ionic currents and their pharmacological sensitivity in target organs has proved difficult. In native tissue, many K(+) channel alpha-subunits co-assemble with ancillary subunits, which can profoundly affect physiological parameters including gating kinetics and pharmacological interactions. In this review, we examine the link between voltage-gated potassium ion channel pharmacology and the biophysics of ancillary subunits. We propose that ancillary subunits can modify the interaction between pore blockers and ion channels by three distinct mechanisms: changes in (1) binding site accessibility; (2) orientation of pore-lining residues; (3) the ability of the channel to undergo post-binding conformational changes. Each of these subunit-induced changes has implications for gating, drug affinity and use dependence of their respective channel complexes. A single subunit may modulate its associated alpha-subunit by more than one of these mechanisms. Voltage-gated potassium channels are the site of action of many therapeutic drugs. In addition, potassium channels interact with drugs whose primary target is another channel, e.g. the calcium channel blocker nifedipine, the sodium channel blocker quinidine, etc. Even when K(+) channel block is the intended mode of action, block of related channels in non-target organs, e.g. the heart, can result in major and potentially lethal side-effects. Understanding factors that determine specificity, use dependence and other properties of K(+) channel drug binding are therefore of vital clinical importance. Ancillary subunits play a key role in determining these properties in native tissue, and so understanding channel-subunit interactions is vital to understanding clinical pharmacology.
Collapse
Affiliation(s)
- Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, 124 Sherman Hall, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | |
Collapse
|
19
|
Fu XW, Nurse C, Cutz E. Characterization of slowly inactivating KV{alpha} current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine. Am J Physiol Lung Cell Mol Physiol 2007; 293:L892-902. [PMID: 17644754 DOI: 10.1152/ajplung.00098.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary neuroepithelial bodies (NEB) form innervated cell clusters that express voltage-activated currents and function as airway O(2) sensors. We investigated A-type K(+) currents in NEB cells using neonatal rabbit lung slice preparation. The whole cell K(+) current was slowly inactivating with activation threshold of approximately -30 mV. This current was blocked approximately 27% by blood-depressing substance I (BDS-I; 3 microM), a selective blocker of Kv3.4 subunit, and reduced approximately 20% by tetraethylammonium (TEA; 100 microM). The BDS-I-sensitive component had an average peak value of 189 +/- 14 pA and showed fast inactivation kinetics that could be fitted by one-component exponential function with a time constant of (tau1) 77 +/- 10 ms. This Kv slowly inactivating current was also blocked by heteropodatoxin-2 (HpTx-2; 0.2 microM), a blocker of Kv4 subunit. The HpTx-2-sensitive current had an average peak value of 234 +/- 23 pA with a time constant (tau) 82 +/- 11 ms. Hypoxia (Po(2) = 15-20 mmHg) inhibited the slowly inactivating K(+) current by approximately 47%, during voltage steps from -30 to +30 mV, and no further inhibition occurred when TEA was combined with hypoxia. Nicotine at concentrations of 50 and 100 microM suppressed the slowly inactivating K(+) current by approximately 24 and approximately 40%, respectively. This suppression was not reversed by mecamylamine suggesting a direct effect of nicotine on these K(+) channels. In situ hybridization experiments detected expression of mRNAs for Kv3.4 and Kv4.3 subunits, while double-label immunofluorescence confirmed membrane localization of respective channel proteins in NEB cells. These studies suggest that the hypoxia-sensitive current in NEB cells is carried by slowly inactivating A-type K(+) channels, which underlie their oxygen-sensitive potassium currents, and that exposure to nicotine may directly affect their function, contributing to smoking-related lung disease.
Collapse
Affiliation(s)
- Xiao Wen Fu
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Research Institute, The Hospital for Sick Children and University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
20
|
Nishimaru K, Miura Y, Endoh M. Mechanisms of endothelin-1-induced decrease in contractility in adult mouse ventricular myocytes. Br J Pharmacol 2007; 152:456-63. [PMID: 17641672 PMCID: PMC2050817 DOI: 10.1038/sj.bjp.0707392] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The potent vasoconstrictor polypeptide endothelin-1 (ET-1) plays an important pathophysiological role in progression of cardiovascular diseases and elicits prominent effects on myocardial contractility. Although ET-1 produces a positive inotropy in cardiac muscle of most mammalian species, it induces a sustained negative inotropy in mice. This study was performed to gain an insight into the cellular mechanisms underlying the negative inotropy in adult mouse ventricular myocytes. EXPERIMENTAL APPROACH Cell shortening and Ca(2+) transients were simultaneously recorded from isolated mouse ventricular myocytes loaded with the Ca(2+)-sensitive fluorescent dye indo-1. KEY RESULTS ET-1 decreased cell shortening in a concentration-dependent manner (pD(2) value of 10.1). The ET-1-induced decrease in cell shortening was associated with a decrease in Ca(2+) transients. In addition, the Ca(2+) transient/cell-shortening relationship was shifted to the right by ET-1, indicating decreased myofilament Ca(2+) sensitivity. The instantaneous relationship of the rising phase of the Ca(2+) transient and cell shortening was shifted to the right by ET-1. Decreased Ca(2+) transients and cell shortening induced by ET-1 were markedly attenuated by the specific Na(+)/Ca(2+) exchange inhibitor SEA0400. CONCLUSIONS AND IMPLICATIONS ET-1-induced negative inotropy in mouse ventricular myocytes was mediated by decreased Ca(2+) transients and myofilament Ca(2+) sensitivity. These data are entirely consistent with the involvement of increased Ca(2+) extrusion via the Na(+)/Ca(2+) exchanger in the ET-1-mediated decrease in Ca(2+) transients. Decreased Ca(2+) sensitivity may be due to retardation of cell shortening in response to a rise in Ca(2+) transients.
Collapse
Affiliation(s)
- K Nishimaru
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine Yamagata, Japan
| | - Y Miura
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine Yamagata, Japan
| | - M Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine Yamagata, Japan
- Author for correspondence:
| |
Collapse
|
21
|
Inui T, Mori Y, Watanabe M, Takamaki A, Yamaji J, Sohma Y, Yoshida R, Takenaka H, Kubota T. Physiological Role of L-Type Ca2+ Channels in Marginal Cells in the Stria Vascularis of Guinea Pigs. J Physiol Sci 2007; 57:287-98. [DOI: 10.2170/physiolsci.rp006807] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/25/2007] [Indexed: 11/05/2022]
|
22
|
Nimura Y, Mori Y, Inui T, Sohma Y, Takenaka H, Kubota T. Effects of CO2/HCO3− in Perilymph on the Endocochlear Potential in Guinea Pigs. J Physiol Sci 2007; 57:15-22. [PMID: 17169167 DOI: 10.2170/physiolsci.rp012006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/06/2006] [Indexed: 11/05/2022]
Abstract
The effect of CO(2)/HCO(3)(-) on the endocochlear potential (EP) was examined by using both ion-selective and conventional microelectrodes and the endolymphatic or perilymphatic perfusion technique. The main findings were as follows: (i) A decrease in the EP from approximately +75 to approximately +35 mV was produced by perilymphatic perfusion with CO(2)/HCO(3)(-)-free solution, which decrease was accompanied by an increase in the endolymphatic pH (DeltapH(e), approximately 0.4). (ii) Perilymphatic perfusion with a solution containing 20 mM NH(4)Cl produced a decrease in the EP (DeltaEP, approximately 20 mV) with an increase in the pH(e) (DeltapH(e), approximately 0.2), whereas switching the perfusion solution from the NH(4)Cl solution to a 5% CO(2)/25 mM HCO(3)(-) solution produced a gradual increase in the EP to the control level with the concomitant recovery of the pH(e). (iii) The perfusion with a solution of high or low HCO(3)(-) with a constant CO(2) level within 10 min produced no significant changes in the EP. (iv) Perfusion of the perilymph with 10 microg/ml nifedipine suppressed the transient asphyxia-induced decrease in EP slightly, but not significantly. (v) By contrast, the administration of 1 microg/ml nifedipine via the endolymph inhibited significantly the reduction in the EP induced by transient asphyxia or perilymphatic perfusion with CO(2)/HCO(3)(-)-free or 20 mM NH(4)Cl solution. These findings suggest that the effect of CO(2) removal from perilymphatic perfusion solution on the EP may be mediated by an increase in cytosolic Ca(2+) concentration induced by an elevation of cytosolic pH in endolymphatic surface cells.
Collapse
Affiliation(s)
- Yoshitsugu Nimura
- Department of Physiology, Osaka Medical College, Osaka, 569-8686, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
It is generally accepted that hypertension doubles the risk of cardiovascular disease, of which coronary heart disease is the most common and lethal. Hypertension is a predisposing factor for the development of stroke, peripheral arterial disease, heart failure and end-state renal disease. Atherosclerosis-causing coronary heart disease is related to the severity of hypertension. Inhibition of calcium entry reduces the active tone of vascular smooth muscle and produces vasodilatation. This pharmacological action has been the basis for the use of calcium-channel blockers (CCBs) for the management of hypertension. Other drug families may achieve this: diuretics, beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists. Cardiovascular hypertrophy and atherosclerosis are major complications related to high blood pressure. Cardiac hypertrophy is considered as an independent risk factor associated with abnormalities of diastolic function and can result in heart failure. Atherosclerosis is associated with activation of innate immunity. Atherosclerosis is expressing itself not only as coronary heart disease, but as a cerebrovascular and peripheral arterial disease. By impairing physiological vasomotor function, atherosclerosis includes ultimately necrosis of myocardium. CCBs reduce blood pressure. Do they prevent the progress of the main complications of hypertension? This major question is the matter of the present paper.
Collapse
Affiliation(s)
- Théophile Godfraind
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, B1200 Brussels.
| |
Collapse
|
24
|
Wang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR, Duan D. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes. J Physiol 2005; 568:423-43. [PMID: 16081489 PMCID: PMC1474744 DOI: 10.1113/jphysiol.2005.091264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The K(v)4.2/4.3 channels are the primary subunits that contribute to the fast-inactivating, voltage-dependent transient outward K(+) current (I(to,fast)) in the heart. I(to,fast) is the critical determinant of the early repolarization of the cardiac action potential and plays an important role in the adaptive remodelling of cardiac myocytes, which usually causes cell volume changes, during myocardial ischaemia, hypertrophy and heart failure. It is not known, however, whether I(to,fast) is regulated by cell volume changes. In this study we investigated the molecular mechanism for cell volume regulation of I(to,fast) in native mouse left ventricular myocytes. Hyposmotic cell swelling caused a marked increase in densities of the peak I(to,fast) and a significant shortening in phase 1 repolarization of the action potential duration. The voltage-dependent gating properties of I(to,fast) were, however, not altered by changes in cell volume. In the presence of either protein kinase C (PKC) activator (12,13-dibutyrate) or phosphatase inhibitors (calyculin A and okadaic acid), hyposmotic cell swelling failed to further up-regulate I(to,fast). When expressed in NIH/3T3 cells, both K(v)4.2 and K(v)4.3 channels were also strongly regulated by cell volume in the same voltage-independent but PKC- and phosphatase-dependent manner as seen in I(to,fast) in the native cardiac myocytes. We conclude that K(v)4.2/4.3 channels in the heart are regulated by cell volume through a phosphorylation/dephosphorylation pathway mediated by PKC and serine/threonine phosphatase(s). These findings suggest a novel role of K(v)4.2/4.3 channels in the adaptive electrical and structural remodelling of cardiac myocytes in response to myocardial hypertrophy, ischaemia and reperfusion.
Collapse
Affiliation(s)
- Guan-Lei Wang
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada School of Medicine, Reno, 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Persson F, Carlsson L, Duker G, Jacobson I. Blocking Characteristics of hKv1.5 and hKv4.3/hKChIP2.2 After Administration of the Novel Antiarrhythmic Compound AZD7009. J Cardiovasc Pharmacol 2005; 46:7-17. [PMID: 15965349 DOI: 10.1097/01.fjc.0000161405.37198.c1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AZD7009 is a novel antiarrhythmic compound in early clinical development for management of atrial fibrillation. Electrophysiological studies in animals have shown high antiarrhythmic efficacy, predominant action on atrial electrophysiology, and low proarrhythmic activity. AZD7009 has previously been shown to inhibit hERG and hNav1.5 currents. The main objective of the present study was to characterize the effects of AZD7009 on hKv1.5 and hKv4.3/hKChIP2.2 currents to get a deeper understanding of the ion channel-blocking properties of the compound. hKv1.5 and hKv4.3/hKChIP2.2 currents were expressed in CHO cells. Currents were measured using the whole-cell configuration of the voltage-clamp technique. AZD7009 inhibited hKv1.5 and hKv4.3/hKChIP2.2 currents with equal potency: the IC50 for hKv1.5 block was 27.0 +/- 1.6 muM (n = 6), and the IC50 for hKv4.3/hKChIP2.2 block was 23.7 +/- 4.4 muM (n = 5). Block of the hKv4.3/hKChIP2.2 current was frequency dependent with larger block at higher frequency, whereas block of the hKv1.5 current was slightly decreased at higher frequency. In conclusion, AZD7009 inhibits both the hKv1.5 and the hKv4.3/hKChIP2.2 currents. These effects likely contribute to the effects described in animals in vivo.
Collapse
Affiliation(s)
- Frida Persson
- AstraZeneca R&D Mölndal, Integrative Pharmacology, Mölndal, Sweden.
| | | | | | | |
Collapse
|
26
|
Gao Z, Sun H, Chiu SW, Lau CP, Li GR. Effects of diltiazem and nifedipine on transient outward and ultra-rapid delayed rectifier potassium currents in human atrial myocytes. Br J Pharmacol 2005; 144:595-604. [PMID: 15678082 PMCID: PMC1576039 DOI: 10.1038/sj.bjp.0706113] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. It is unknown whether the widely used L-type Ca(2+) channel antagonists diltiazem and nifedipine would block the repolarization K(+) currents, transient outward current (I(to1)) and ultra-rapid delayed rectifier K(+) current (I(Kur)), in human atrium. The present study was to determine the effects of diltiazem and nifedipine on I(to1) and I(Kur) in human atrial myocytes with whole-cell patch-clamp technique. 2. It was found that diltiazem substantially inhibited I(to1) in a concentration-dependent manner, with an IC(50) of 29.2+/-2.4 microM, and nifedipine showed a similar effect (IC(50)=26.8+/-2.1 muM). The two drugs had no effect on voltage-dependent kinetics of the current; however, they accelerated I(to1) inactivation significantly, suggesting an open channel block. 3. In addition, diltiazem and nifedipine suppressed I(Kur) in a concentration-dependent manner (at +50 mV, IC(50)=11.2+/-0.9 and 8.2+/-0.8 microM, respectively). These results indicate that the Ca(2+) channel blockers diltiazem and nifedipine substantially inhibit I(to1) and I(Kur) in human atrial myocytes.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Health Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiying Sun
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Health Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shui-Wah Chiu
- Cardiothoracic Unit, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chu-Pak Lau
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Health Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gui-Rong Li
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Health Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
27
|
Rüschenschmidt C, Straub H, Köhling R, Siep E, Gorji A, Speckmann EJ. Reduction of human neocortical and guinea pig CA1-neuron A-type currents by organic calcium channel blockers. Neurosci Lett 2004; 368:57-62. [PMID: 15342134 DOI: 10.1016/j.neulet.2004.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/17/2004] [Accepted: 06/22/2004] [Indexed: 11/25/2022]
Abstract
In epilepsy models, organic calcium antagonists regularly induce a transient activity increase before suppression of epileptiform discharges. This action was speculated to be mediated by a modulation of potassium currents. Since A-type currents potently regulate neuronal excitability, their modulation by calcium channel blockers was investigated in acutely isolated human neocortical temporal lobe neurons and CA1 neurons of guinea pigs using the whole-cell voltage-clamp technique. In human neurons, 40 microM nifedipine caused an amplitude reduction by 28% at a command potential of -6 mV and produced a biexponential, markedly accelerated current inactivation with time constants of 8.4 +/- 1.1 ms (n = 6) and 62.9 +/- 6.4 ms (n = 5). The time constant under control conditions was 50.1 +/- 8.5 ms (n = 6). Verapamil (40 microM) did not affect the current amplitude, but accelerated the monoexponential current inactivation from 40.2 +/- 7.1 ms to 13.3 +/- 0.8 ms (n = 9). Accordingly, verapamil accelerated the inactivation from 42.3 +/- 5.9 ms to 15.0 +/- 1.3 ms (n = 11) in guinea pig CA1 neurons, without affecting the current amplitude. In this preparation, it was shown that the two enantiomers of verapamil do not differ in their actions. The results show that the A-type current in human neocortical and in guinea pig hippocampal neurons is reduced by organic calcium channel blockers.
Collapse
|
28
|
Carraway RE, Hassan S, Cochrane DE. Polyphenolic antioxidants mimic the effects of 1,4-dihydropyridines on neurotensin receptor function in PC3 cells. J Pharmacol Exp Ther 2004; 309:92-101. [PMID: 14718582 DOI: 10.1124/jpet.103.060442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine the mechanism(s) by which 1,4-dihydropyridine Ca2+ channel blockers (DHPs) enhance the binding of neurotensin (NT) to prostate cancer PC3 cells and inhibit NT-induced inositol phosphate formation. Earlier work indicated that these effects, which involved the G protein-coupled NT receptor NTR1, were indirect and required cellular metabolism or architecture. At the micromolar concentrations used, DHPs can block voltage-sensitive and store-operated Ca2+ channels, K+ channels, and Na+ channels, and can inhibit lipid peroxidation. By varying [Ca2+] and testing the effects of stimulators and inhibitors of Ca2+ influx and internal Ca2+ release, we determined that although DHPs may have inhibited inositol phosphate formation partly by blocking Ca2+ influx, the effect on NT binding was Ca2+-independent. By varying [K+] and [Na+], we showed that these ions did not contribute to either effect. For a series of DHPs, the activity order for effects on NTR1 function followed that for antioxidant ability. Antioxidant polyphenols (luteolin and resveratrol) mimicked the effects of DHPs and showed structural similarity to DHPs. Antioxidants with equal redox ability, but without structural similarity to DHPs (such as alpha-tocopherol, riboflavin, and N-acetyl-cysteine) were without effect. A flavoprotein oxidase inhibitor (diphenylene iodonium) and a hydroxy radical scavenger (butylated hydroxy anisole) also displayed the effects of DHPs. In conclusion, DHPs indirectly alter NTR1 function in live cells by a mechanism that depends on the drug's ability to donate hydrogen but does not simply involve sulfhydryl reduction.
Collapse
Affiliation(s)
- Robert E Carraway
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|