1
|
Suriyawongpongsa P, Niyom S, Wanapinit K, Vijarnsorn M, Roytrakul S, Ploypetch S. Effects of Cannabidiol Oil on Anesthetic Requirements in Cats: MAC Determination and Serum Profiling via Nanoscale Liquid Chromatography-Tandem Mass Spectrometry. Animals (Basel) 2025; 15:1393. [PMID: 40427271 DOI: 10.3390/ani15101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Cannabidiol (CBD), a non-psychotropic cannabinoid derived from Cannabis plants, is increasingly explored for its potential therapeutic applications in veterinary medicine. This study aimed to evaluate the impact of CBD oil on the minimum alveolar concentration of isoflurane (MACiso) in cats. Sixteen healthy cats underwent isoflurane anesthesia, and the MACiso was determined using the tail-clamping technique both at baseline and 30 min after the administration of CBD oil (2 mg/kg) via a stomach tube. CBD administration resulted in a significant 11% reduction in the MACiso, from 1.77 ± 0.14% to 1.62 ± 0.21% (p < 0.001). Following CBD administration, heart and respiratory rates were elevated at the time of MACiso determination compared to baseline whereas other physiological parameters remained unchanged. Serum biochemical analysis conducted two weeks post administration revealed a significant decrease in blood urea nitrogen (BUN) levels while one cat exhibited a mild increase in alanine aminotransferase (ALT). Proteomic analysis identified 12 CBD-associated proteins in feline serum 30 min post administration, with CBDA and THCA synthases demonstrating significant upregulation. These findings indicate that CBD oil reduces anesthetic requirements in cats without inducing significant physiological disturbances. Further research is warranted to elucidate the underlying mechanisms of CBD's anesthetic-sparing effects and its implications in veterinary anesthesia.
Collapse
Affiliation(s)
- Panisara Suriyawongpongsa
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Graduated School, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Sirirat Niyom
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kannika Wanapinit
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Monchanok Vijarnsorn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Echeverria-Villalobos M, Fabian CA, Mitchell JG, Mazzotta E, Fiorda Diaz JC, Noon K, Weaver TE. Cannabinoids and General Anesthetics: Revisiting Molecular Mechanisms of Their Pharmacological Interactions. Anesth Analg 2024; 140:00000539-990000000-01027. [PMID: 39504269 PMCID: PMC12063680 DOI: 10.1213/ane.0000000000007313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Cannabis has been used for recreation and medical purposes for more than a millennium across the world; however, its use's consequences remain poorly understood. Although a growing number of surgical patients are regular cannabis consumers, little is known regarding the pharmacological interactions between cannabis and general anesthetics; consequently, there is not a solid consensus among anesthesiologists on the perioperative management of these patients. The existing evidence about the molecular mechanisms underlying pharmacological interactions between cannabinoids and anesthetic agents, both in animal models and in humans, shows divergent results. While some animal studies have demonstrated that phytocannabinoids (tetrahydrocannabinol [THC], cannabidiol [CBD], and cannabinol [CBN]) potentiate the anesthetic effects of inhalation and intravenous anesthetics, while others have found effects comparable with what has been described in humans so far. Clinical studies and case reports have consistently shown increased requirements of GABAergic anesthetic drugs (isoflurane, sevoflurane, propofol, midazolam) to achieve adequate levels of clinical anesthesia. Several potential molecular mechanisms have been proposed to explain the effects of these interactions. However, it is interesting to mention that in humans, it has been observed that the ingestion of THC enhances the hypnotic effect of ketamine. Animal studies have reported that cannabinoids enhance the analgesic effect of opioids due to a synergistic interaction of the endogenous cannabinoid system (ECS) with the endogenous opioid system (EOS) at the spinal cord level and in the central nervous system. However, human data reveals that cannabis users show higher scores of postoperative pain intensity as well as increased requirements of opioid medication for analgesia. This review aims to improve understanding of the molecular mechanisms and pharmacological interactions between cannabis and anesthetic drugs and the clinical outcomes that occur when these substances are used together.
Collapse
Affiliation(s)
| | - Catherine A. Fabian
- Department of Anesthesiology. University of Michigan Hospital, Ann Arbor, Michigan
| | - Justin G. Mitchell
- Department of Anesthesiology & Perioperative Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Elvio Mazzotta
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Juan C. Fiorda Diaz
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Noon
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tristan E. Weaver
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
3
|
Pan LLH, Chen SP, Ling YH, Wang YF, Lai KL, Liu HY, Chen WT, Huang WJ, Coppola G, Treede RD, Wang SJ. Salivary Testosterone Levels and Pain Perception Exhibit Sex-Specific Association in Healthy Adults But Not in Patients With Migraine. THE JOURNAL OF PAIN 2024; 25:104575. [PMID: 38788888 DOI: 10.1016/j.jpain.2024.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
This study investigated the sex-specific associations between pain perception and testosterone levels in healthy controls (HCs) and patients with migraine. Male and female HCs and migraine patients were recruited. A series of questionnaires were completed by the participants to evaluate their psychosocial profiles, which included data on mood, stress, and sleep quality. Heat pain thresholds and suprathreshold pain ratings at 45 °C (referred to as the pain perception score [PPS]) were assessed using the Thermode system. Salivary testosterone levels were analyzed using a commercial enzyme-linked immunosorbent assay kit. A total of 88 HCs (men/women: 41/47, age: 29.9 ± 7.7 years) and 75 migraine patients (men/women: 30/45, age: 31.1 ± 7.7 years) completed all assessments. No significant differences were observed in either the psychosocial profiles or heat pain thresholds and PPSs between the sexes in the control and migraine groups. A positive correlation between testosterone levels and PPSs was identified in the male controls (r = .341, P = .029), whereas a negative correlation was identified in the female controls (r = -.407, P = .005). No such correlations were identified in the migraine group. This study confirms that a negative association is present between PPSs and testosterone levels in female controls, which is in line with the findings that testosterone is associated with reduced pain perception. Our study is the first to demonstrate a sex-specific association between PPSs and testosterone levels in HCs. Moreover, this study also revealed that the presence of migraine appears to disrupt this association. PERSPECTIVE: This study revealed that testosterone levels demonstrate opposite associations with pain perception in healthy men and women. However, the presence of migraine appears to disrupt this sex-specific association.
Collapse
Affiliation(s)
- Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Hsiang Ling
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Yu Liu
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - William J Huang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Gianluca Coppola
- Department of Medico‑Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Rolf-Detlef Treede
- Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Wijerathne T. Prolonged Lower Limb Dystonia and Dysphonia Following General Anesthesia in a Patient on Hydroxyzine. Cureus 2024; 16:e67263. [PMID: 39301388 PMCID: PMC11411341 DOI: 10.7759/cureus.67263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
We present a case of prolonged lower limb movement disorder following general anesthesia in a female patient in her early forties. She presented with vigorous, regular synchronous, rhythmic, and jerky movements during the immediate postoperative period lasting around forty minutes. Her past anesthetic history suggests varying degrees of postoperative movement disorders. Our patient was on long-term hydroxyzine for her skin condition. She had uneventful anesthetics before the prescription of hydroxyzine for her skin condition. All post-anesthetic dystonic events were reported while she was on hydroxyzine. Dystonic reactions during the perioperative period are rare and mostly occur during induction and emergence, which usually be transient. Our patient had prolonged lower limb dystonia resulting in severe muscular pain and lethargy for a few days. Further, she once developed transient aphasia and prolonged dysphonia following total intravenous anesthesia. This clinical finding could be a part of spasmodic laryngeal dystonia, which has not been reported previously. We correlate this rare postoperative dystonic reaction with propofol and possibly with the concurrent use of hydroxyzine. As differential diagnosis can widely vary, the correlation of clinical findings with movement disorders is important for the diagnosis. Alterations of anesthetic techniques avoiding propofol and holding hydroxyzine are advisable in such rare clinical situations. Early diagnosis of perioperative movement disorders will prompt specific treatments, such as anticholinergic medications, for dystonia.
Collapse
|
5
|
Echeverria-Villalobos M, Guevara Y, Mitchell J, Ryskamp D, Conner J, Bush M, Periel L, Uribe A, Weaver TE. Potential perioperative cardiovascular outcomes in cannabis/cannabinoid users. A call for caution. Front Cardiovasc Med 2024; 11:1343549. [PMID: 38978789 PMCID: PMC11228818 DOI: 10.3389/fcvm.2024.1343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Background Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.
Collapse
Affiliation(s)
| | - Yosira Guevara
- Department of Anesthesiology, St Elizabeth’s Medical Center, Brighton, MA, United States
| | - Justin Mitchell
- Department of Anesthesiology & Perioperative Medicine, UCLA Medical Center, Los Angeles, CA, United States
| | - David Ryskamp
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Joshua Conner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Margo Bush
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States
| | - Luis Periel
- Touro College of Osteopathic Medicine, New York, NW, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan E. Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Qiu GL, Peng LJ, Wang P, Yang ZL, Zhang JQ, Liu H, Zhu XN, Rao J, Liu XS. In vivo imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia. Zool Res 2024; 45:679-690. [PMID: 38766749 PMCID: PMC11188615 DOI: 10.24272/j.issn.2095-8137.2023.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/25/2023] [Indexed: 05/22/2024] Open
Abstract
General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.
Collapse
Affiliation(s)
- Gao-Lin Qiu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Li-Jun Peng
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Peng Wang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhi-Lai Yang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ji-Qian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Hu Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. E-mail:
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China. E-mail:
| | - Xue-Sheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China. E-mail:
| |
Collapse
|
7
|
Bloemhof-Bris E, Meiri D, Sulimani L, Genesh SN, Wexler G, Cohen I, Salama A, Burshtein I, Hirschmann S, Feffer K, Weizman S, Stryjer R, Shelef A. Alterations in plasma endocannabinoid concentrations among individuals with major depression treated with electroconvulsive therapy. Psychiatry Res 2024; 337:115967. [PMID: 38796933 DOI: 10.1016/j.psychres.2024.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The role of the endocannabinoid system (ECS) in depression and suicidality has recently emerged. The purpose of the study was to identify changes in plasma endocannabinoid concentrations of several endocannabinoids and correlate them with depressive symptoms and suicidality in patients with severe major depression undergoing electroconvulsive therapy (ECT). The study included 17 patients that were evaluated in four visits at different stages of therapy. At each visit depression, anxiety and suicidality symptoms were assessed and blood samples collected. Several endocannabinoid concentrations increased following six sessions of ECT, as 2-AG (p < 0.05) and LEA (p < 0.01), and following twelve sessions of ECT, as 2-AG (p < 0.05), AEA (p < 0.05), LEA (p < 0.05) and DH-Gly (p < 0.05). Endocannabinoids also correlated with symptoms of depression, anxiety and suicidality at baseline and at the sixth ECT session. Finally, we found one endocannabinoid, l-Gly, that differentiated between remitted and not-remitted patients at the seventh and thirteenth ECT sessions (p < 0.05). Our findings suggest that depression is markedly related to imbalance of the endocannabinoid system, and further regulated by ECT. Plasma endocannabinoids could be promising biomarkers for detection of depression response and remission.
Collapse
Affiliation(s)
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Sulimani
- Department of Biology, The Kleifeld Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Gay Wexler
- Lev Hasharon Mental Health Center, Tzur Moshe, Israel
| | - Itzhak Cohen
- Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Anas Salama
- Lev Hasharon Mental Health Center, Tzur Moshe, Israel
| | | | - Shmuel Hirschmann
- Lev Hasharon Mental Health Center, Tzur Moshe, Israel; Departement of Psychiatry, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Feffer
- Lev Hasharon Mental Health Center, Tzur Moshe, Israel; Departement of Psychiatry, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shira Weizman
- Departement of Psychiatry, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Abarbanel Mental Health Center, Bat Yam, Israel
| | - Rafael Stryjer
- Departement of Psychiatry, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Abarbanel Mental Health Center, Bat Yam, Israel
| | - Assaf Shelef
- Lev Hasharon Mental Health Center, Tzur Moshe, Israel; Departement of Psychiatry, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Hasckel Gewehr JL, Enzele ML, Freiria LM, Nunes MM, Spengler J, Dondoerfer Teixeira AP, Amazonas E, Sasso Padilha V. Full spectrum cannabidiol-rich extract reduced propofol dosage required for anesthetic induction in dogs-a pilot study. Front Vet Sci 2024; 11:1352314. [PMID: 38645644 PMCID: PMC11026717 DOI: 10.3389/fvets.2024.1352314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Cannabinoids show great therapeutic potential, but their effect on anesthesia still remains unclear. Use of chronic recreational Cannabis in humans undergoing anesthetic procedures tends to require a higher dose when compared to non-users. On the other hand, studies on rodents and dogs have shown that cannabinoid agonists may potentiate certain anesthetics. This contrast of effects possibly occurs due to different time lengths of administration of different phytocannabinoids at different doses, and their distinct effects on the Endocannabinoid System, which is also affected by anesthetics such as propofol and isoflurane. Methods Twenty-seven healthy male dogs, client-owned, ranging from 1 to 7 years, and from 5 to 35 kg were selected, mean weight 15.03±7.39 kg, with owners volunteering their animals to participate in the research performed in the Federal University of Santa Catarina (UFSC). Dogs were randomized into 3 groups. The Control Group (CON, n = 9), receiving only Extra Virgin Olive Oil, the same oil-base used in the treatment groups. Group 2 (G2, n = 9) received 2 mg/kg of total phytocannabinoids, and Group 3 (G3, n = 9) received 6 mg/kg of total phytocannabinoids. All groups received their treatments transmucosally, 75 min before their induction with propofol. Heart and respiratory rate, blood pressure, temperature and sedation were evaluated prior to, and at 30, 60, and 75 min after administration of the fsCBD-rich extract or Placebo extract. Preanesthetic medication protocol was also included across all treatment groups, 15 min before induction. Parametric data was analyzed with one-way ANOVA, followed by Student-Newman-Keuls (SNK) if significant statistical differences were found. Non-parametric data was analyzed using Friedman's test, followed by Dunn test for comparisons between all timepoints in the same group. Kruskal-Wallis followed by Dunn was utilized for between groups comparisons. Propofol dose necessary for induction was analyzed through One-way ANOVA followed by Tukey's Multiple Comparisons Test, using Instat by Graphpad, and differences were considered statistically significant when p < 0.05. Our analysis assessed if statistical significance was present between time points in the same group, and between groups in the same time points. Results In our study, 6 mg/kg of total phytocannabinoids were able to reduce the dose of propofol necessary for induction by 23% when compared to the control group. The fsCBD-rich extract did not produce significant sedation within or between groups, although statistically significant differences in heart rate and systolic blood pressure were found. Discussion Our findings indicate that phytocannabinoids could be an adjunct option in anesthesia, although further research is necessary to better confirm this data. Additionally, further research is needed to determine the best dosage, delivery method, time for administration, ideal molecular profile for desired effects, safety, drug-drug interactions, and transurgical effects.
Collapse
Affiliation(s)
| | - Maria Laura Enzele
- Veterinary Medicine, Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| | - Lucas Marlon Freiria
- Veterinary Clinic School (CVE) of the Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| | - Morgana Martins Nunes
- Veterinary Clinic School (CVE) of the Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| | - Júlia Spengler
- Veterinary Clinic School (CVE) of the Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| | | | - Erik Amazonas
- Department of Biosciences and One Health (BSU), Center for Rural Sciences (CCR), Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
- Cannabis Development and Innovation Center (PODICAN/UFSC), Curitibanos, Brazil
| | - Vanessa Sasso Padilha
- Department of Biosciences and One Health (BSU), Center for Rural Sciences (CCR), Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| |
Collapse
|
9
|
Abstract
The cannabis plant has been used for centuries to manage the symptoms of various ailments including pain. Hundreds of chemical compounds have been identified and isolated from the plant and elicit a variety of physiological responses by binding to specific receptors and interacting with numerous other proteins. In addition, the body makes its own cannabinoid-like compounds that are integrally involved in modulating normal and pathophysiological processes. As the legal cannabis landscape continues to evolve within the United States and throughout the world, it is important to understand the rich science behind the effects of the plant and the implications for providers and patients. This narrative review aims to provide an overview of the basic science of the cannabinoids by describing the discovery and function of the endocannabinoid system, pharmacology of cannabinoids, and areas for future research and therapeutic development as they relate to perioperative and chronic pain medicine.
Collapse
Affiliation(s)
- Alexandra Sideris
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | | | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
10
|
Peng J, Ma X, Chen Y, Yan J, Jiang H. C57BL/6J and C57BL/6N mice exhibit different neuro-behaviors and sensitivity to midazolam- and propofol-induced anesthesia. Physiol Behav 2023; 264:114146. [PMID: 36889487 DOI: 10.1016/j.physbeh.2023.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Phenotypes of inbred mice are strain-dependent, indicating the important influence of genetic background in biomedical research. C57BL/6 is one of the most commonly used inbred mouse strains, and its two closely related substrains, C57BL/6J and C57BL/6N, have been separated for only about 70 years. These two substrains have accumulated genetic variations and exhibit different phenotypes, but it remains unclear whether they respond to anesthetics differently. In this study, commercially acquired wildtype C57BL/6J or C57BL/6N mice from two different sources were analyzed and compared for their response to a spectrum of anesthetics (midazolam, propofol, esketamine or isoflurane anesthesia) and their performance in a series of behavioral tests associated with neurological functions including open field test (OFT), elevated plus maze (EPM), Y maze, prepulse inhibition (PPI), tail strain test (TST) and forced swimming test (FST). Loss of the righting reflex (LORR) is used to measure the anesthetic effects. Our results suggested that the anesthesia induction time induced by either of the four anesthetics were comparable for the C57BL/6J and C57BL/6N mice. However, C57BL/6J or C57BL/6N mice do exhibit different sensitivity to midazolam and propofol. The anesthesia duration of midazolam of C57BL/6J mice was about 60% shorter than that of the C57BL/6N mice, while the LORR duration induced by propofol in C57BL/6J mice was 51% longer than that of the C57BL/6N. In comparison, the two substrains were anesthetized by esketamine or isoflurane similarly. In the behavioral analysis, the C57BL/6J mice exhibited a lower level of anxiety- and depression-like behaviors in OFT, EPM, FST and TST than the C57BL/6N mice. Locomotor activity and sensorimotor gating of these two substrains remained comparable. Our results stress the point that when selecting inbred mice for allele mutation or behavioral testing, the influence of even subtle differences in genetic background should be fully considered.
Collapse
Affiliation(s)
- Jiali Peng
- Department of Anaesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofan Ma
- Department of Anaesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jia Yan
- Department of Anaesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong Jiang
- Department of Anaesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Bahceci D, Anderson LL, Kevin RC, Doohan PT, Arnold JC. Hyperthermia-Induced Seizures Enhance Brain Concentrations of the Endocannabinoid-Related Linoleoyl Glycerols in a Scn1a+/- Mouse Model of Dravet Syndrome. Cannabis Cannabinoid Res 2022. [PMID: 36269656 DOI: 10.1089/can.2022.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The endocannabinoid system contributes to the homeostatic response to seizure activity in epilepsy, a disease of brain hyperexcitability. Indeed, studies using conventional epilepsy models have shown that seizures increase endocannabinoids in the brain. However, it is unknown whether endocannabinoids and structurally related fatty acid amides and monoacylglycerols are similarly released in response to acute seizures in animal models of drug-resistant epilepsy. Therefore, in this study, we investigated whether a hyperthermia-induced seizure increased concentrations of endocannabinoids and related signaling lipids in the Scn1a+/- mouse model of Dravet syndrome. Materials and Methods: We compared hippocampal concentrations of the major endocannabinoids and related monoglycerols and N-acylethanolamines in wild-type mice, naïve Scn1a+/- mice, and Scn1a+/- mice primed with a single, hyperthermia-induced, generalized tonic-clonic seizure. Samples were collected 5 and 60 min following the seizure and then analyzed with LC-MS/MS. Results: We found that a hyperthermia-induced seizure in Scn1a+/- mice did not affect hippocampal concentrations of the major endocannabinoids, 2-AG and anandamide, or the N-acylethanolamines studied, although the sampling of tissue 5 min postseizure may have been too late to capture any effect on these lipids. Heterozygous deletion of Scn1a alone did not affect these lipid signaling molecules. Notably, however, we found that a hyperthermia-induced seizure significantly increased hippocampal concentrations of the monoacylglycerols, 2-linoleoyl glycerol (2-LG) and 1-linoleoyl glycerol (1-LG), in Scn1a+/- mice. Conclusions: Our results show the unprecedented elevation of the lesser-studied endocannabinoid-related monoacylglycerols, 2-LG and 1-LG, following a hyperthermia-induced seizure in a mouse model of Dravet syndrome. Future research is needed to comprehensively explore the function of these lipid signaling molecules during seizure activity and whether their actions can be exploited to develop new therapeutics.
Collapse
Affiliation(s)
- Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown , Australia.,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown , Australia.,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | - Richard C Kevin
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown , Australia.,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | - Peter T Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown , Australia.,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown , Australia.,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| |
Collapse
|
12
|
Anderson LL, Doohan PT, Hawkins NA, Bahceci D, Thakur GA, Kearney JA, Arnold JC, Arnold JC. The endocannabinoid system impacts seizures in a mouse model of Dravet syndrome. Neuropharmacology 2022; 205:108897. [PMID: 34822817 PMCID: PMC9514665 DOI: 10.1016/j.neuropharm.2021.108897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Dravet syndrome is a catastrophic childhood epilepsy with multiple seizure types that are refractory to treatment. The endocannabinoid system regulates neuronal excitability so a deficit in endocannabinoid signaling could lead to hyperexcitability and seizures. Thus, we sought to determine whether a deficiency in the endocannabinoid system might contribute to seizure phenotypes in a mouse model of Dravet syndrome and whether enhancing endocannabinoid tone is anticonvulsant. Scn1a+/- mice model the clinical features of Dravet syndrome: hyperthermia-induced seizures, spontaneous seizures and reduced survival. We examined whether Scn1a+/- mice exhibit deficits in the endocannabinoid system by measuring brain cannabinoid receptor expression and endocannabinoid concentrations. Next, we determined whether pharmacologically enhanced endocannabinoid tone was anticonvulsant in Scn1a+/- mice. We used GAT229, a positive allosteric modulator of the cannabinoid (CB1) receptor, and ABX-1431, a compound that inhibits the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). The Scn1a+/- phenotype is strain-dependent with mice on a 129S6/SvEvTac (129) genetic background having no overt phenotype and those on an F1 (129S6/SvEvTac x C57BL/6J) background exhibiting a severe epilepsy phenotype. We observed lower brain cannabinoid CB1 receptor expression in the seizure-susceptible F1 compared to seizure-resistant 129 strain, suggesting an endocannabinoid deficiency might contribute to seizure susceptibility. GAT229 and ABX-1431 were anticonvulsant against hyperthermia-induced seizures. However, subchronic ABX1431 treatment increased spontaneous seizure frequency despite reducing seizure severity. Cnr1 is a putative genetic modifier of epilepsy in the Scn1a+/- mouse model of Dravet syndrome. Compounds that increase endocannabinoid tone could be developed as novel treatments for Dravet syndrome.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Peter T. Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, MA 02115, USA
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
13
|
Qing X, Xu YL, Liu H, Liu XS. The influence of anesthesia and surgery on fear extinction. Neurosci Lett 2022; 766:136347. [PMID: 34808271 DOI: 10.1016/j.neulet.2021.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Accumulating evidence has demonstrated significant clinical post-traumatic stress disorder (PTSD) symptoms after anesthesia or surgery. Fear extinction dysfunction is a notable feature of PTSD. Although anesthetics and surgery profoundly affect memory processes, their designated effects on fear extinction have not been dissertated. Previous studies have suggested that innate immune system activation disrupts fear extinction, and surgery has been shown to increase the inflammatory response. Thus, in the current study, we examined the effects of propofol, sevoflurane, dexmedetomidine and surgery on fear extinction in adolescent mice, and further tested whether dexmedetomidine could reverse the injury effect of surgery on fear extinction through its anti-inflammatory effects. Our results showed that propofol (200 mg/kg) impaired the acquisition and recall of cued fear extinction, and surgery disrupted cued fear extinction acquisition/recall and consolidation. In contrast to cued fear extinction, contextual fear extinction was not affected by propofol or surgery. Moreover, dexmedetomidine prevented surgery-induced impairment of cued extinction acquisition and recall but not consolidation. Finally, TNF-α and IL-6 levels in the ventromedial prefrontal cortex were not necessary for the dexmedetomidine treatment effect of surgery-induced fear extinction dysfunction. The study results showed that propofol and surgery selective impaired the cued fear extinction stage in adolescent mice, and dexmedetomidine may unleash a protective effect in preventing postoperative PTSD.
Collapse
Affiliation(s)
- Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Yuan-Ling Xu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hu Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
14
|
Imasogie N, Rose RV, Wilson A. High quantities: Evaluating the association between cannabis use and propofol anesthesia during endoscopy. PLoS One 2021; 16:e0248062. [PMID: 33661987 PMCID: PMC7932135 DOI: 10.1371/journal.pone.0248062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Endoscopy under propofol sedation has become a routine procedure. Given the number of Canadians undergoing an endoscopy annually, as well as the pervasive use of cannabis by many patients, understanding the effect of cannabis use on the propofol dose at endoscopy is highly relevant. We aimed to evaluate the association between cannabis exposure and the propofol dose needed to achieve adequate sedation at endoscopy. METHODS A case-control study of individuals undergoing endoscopy was conducted at a single outpatient endoscopy clinic in London, Ontario between 2014 and 2017. Cases included all individuals with any self-reported cannabis exposure, while controls included all individuals without any self-reported history of cannabis use. Dose of propofol administered by a single anesthetist was collected on each subject as well as additional demographic and procedure-related covariates. RESULTS Three hundred and eighteen participants were included (cases, n = 151; controls, n = 167). Cannabis exposure was associated with an increase in propofol dose (cases 0.33 mg/kg/minute ±0.24; controls, 0.18 mg/kg/minute ±0.11; p<0.0001). Cannabis exposure remained an independent predictor of propofol dose on multivariate linear regression accounting for other important covariates (p<0.0001). Daily cannabis users required a higher propofol dose than weekly or monthly users. Three procedural sedation-related complications occurred in the cannabis-exposed group, while none occurred in the unexposed group. CONCLUSION Our data suggest that cannabis use is significantly associated with the quantity of propofol needed for sedation at endoscopy. Further study is needed to better understand the molecular basis for this possible drug-drug interaction.
Collapse
Affiliation(s)
- Ngozi Imasogie
- Department of Anesthesia, Yorkton Regional Centre, Yorkton, SK, Canada
| | - Rhiannon V. Rose
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Aze Wilson
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- * E-mail:
| |
Collapse
|
15
|
Kim JL, Bulthuis NE, Cameron HA. The Effects of Anesthesia on Adult Hippocampal Neurogenesis. Front Neurosci 2020; 14:588356. [PMID: 33192273 PMCID: PMC7643675 DOI: 10.3389/fnins.2020.588356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
In animal studies, prolonged sedation with general anesthetics has resulted in cognitive impairments that can last for days to weeks after exposure. One mechanism by which anesthesia may impair cognition is by decreasing adult hippocampal neurogenesis. Several studies have seen a reduction in cell survival after anesthesia in rodents with most studies focusing on two particularly vulnerable age windows: the neonatal period and old age. However, the extent to which sedation affects neurogenesis in young adults remains unclear. Adult neurogenesis in the dentate gyrus (DG) was analyzed in male and female rats 24 h after a 4-h period of sedation with isoflurane, propofol, midazolam, or dexmedetomidine. Three different cell populations were quantified: cells that were 1 week or 1 month old, labeled with the permanent birthdate markers EdU or BrdU, respectively, and precursor cells, identified by their expression of the endogenous dividing cell marker proliferating cell nuclear antigen (PCNA) at the time of sacrifice. Midazolam and dexmedetomidine reduced cell proliferation in the adult DG in both sexes but had no effect on postmitotic cells. Propofol reduced the number of relatively mature, 28-day old, neurons specifically in female rats and had no effects on younger cells. Isoflurane had no detectable effects on any of the cell populations examined. These findings show no general effect of sedation on adult-born neurons but demonstrate that certain sedatives do have drug-specific and sex-specific effects. The impacts observed on different cell populations predict that any cognitive effects of these sedatives would likely occur at different times, with propofol producing a rapid but short-lived impairment and midazolam and dexmedetomidine altering cognition after a several week delay. Taken together, these studies lend support to the hypothesis that decreased neurogenesis in the young adult DG may mediate the effects of sedation on cognitive function.
Collapse
Affiliation(s)
| | | | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Navarrete C, Garcia-Martin A, DeMesa J, Muñoz E. Cannabinoids in Metabolic Syndrome and Cardiac Fibrosis. Curr Hypertens Rep 2020; 22:98. [PMID: 33089434 DOI: 10.1007/s11906-020-01112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article provides a concise overview of how cannabinoids and the endocannabinoid system (ECS) have significant implications for the prevention and treatment of metabolic syndrome (MetS) and for the treatment of cardiovascular disorders, including cardiac fibrosis. RECENT FINDINGS Over the past few years, the ECS has emerged as a pivotal component of the homeostatic mechanisms for the regulation of many bodily functions, including inflammation, digestion, and energy metabolism. Therefore, the pharmacological modulation of the ECS by cannabinoids represents a novel strategy for the management of many diseases. Specifically, increasing evidence from preclinical research studies has opened new avenues for the development of cannabinoid-based therapies for the management and potential treatment of MetS and cardiovascular diseases. Current information indicates that modulation of the ECS can help maintain overall health and well-being due to its homeostatic function. From a therapeutic perspective, cannabinoids and the ECS have also been shown to play a key role in modulating pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic, and cardiovascular diseases, as well as cancer and pain. Thus, targeting and modulating the ECS with cannabinoids or cannabinoid derivatives may represent a major disease-modifying medical advancement to achieve successful treatment for MetS and certain cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Jim DeMesa
- Emerald Health Pharmaceuticals, San Diego, CA, USA
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofia, Córdoba, Spain.
| |
Collapse
|
17
|
Kraft B, Stromer W. Der Einfluss von Cannabis und Cannabinoiden auf Anästhesie und Analgesie in der perioperativen Phase. Schmerz 2020; 34:314-318. [DOI: 10.1007/s00482-020-00449-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Echeverria-Villalobos M, Todeschini AB, Stoicea N, Fiorda-Diaz J, Weaver T, Bergese SD. Perioperative care of cannabis users: A comprehensive review of pharmacological and anesthetic considerations. J Clin Anesth 2019; 57:41-49. [DOI: 10.1016/j.jclinane.2019.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/16/2019] [Accepted: 03/03/2019] [Indexed: 12/23/2022]
|
19
|
Basavarajappa BS, Joshi V, Shivakumar M, Subbanna S. Distinct functions of endogenous cannabinoid system in alcohol abuse disorders. Br J Pharmacol 2019; 176:3085-3109. [PMID: 31265740 DOI: 10.1111/bph.14780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Δ9 -tetrahydrocannabinol, the principal active component in Cannabis sativa extracts such as marijuana, participates in cell signalling by binding to cannabinoid CB1 and CB2 receptors on the cell surface. The CB1 receptors are present in both inhibitory and excitatory presynaptic terminals and the CB2 receptors are found in neuronal subpopulations in addition to microglial cells and astrocytes and are present in both presynaptic and postsynaptic terminals. Subsequent to the discovery of the endocannabinoid (eCB) system, studies have suggested that alcohol alters the eCB system and that this system plays a major role in the motivation to abuse alcohol. Preclinical studies have provided evidence that chronic alcohol consumption modulates eCBs and expression of CB1 receptors in brain addiction circuits. In addition, studies have further established the distinct function of the eCB system in the development of fetal alcohol spectrum disorders. This review provides a recent and comprehensive assessment of the literature related to the function of the eCB system in alcohol abuse disorders.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
20
|
Rock EM, Limebeer CL, Aliasi-Sinai L, Parker LA. The ventral pallidum as a critical region for fatty acid amide hydrolase inhibition of nausea-induced conditioned gaping in male Sprague-Dawley rats. Neuropharmacology 2019; 155:142-149. [PMID: 31145905 DOI: 10.1016/j.neuropharm.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Here we investigate the involvement of the ventral pallidum (VP) in the anti-nausea effect of fatty acid amide hydrolase (FAAH) inhibition with PF-3845, and examine the pharmacological mechanism of such an effect. We explored the potential of intra-VP PF-3845 to reduce the establishment of lithium chloride (LiCl)-induced conditioned gaping (a model of acute nausea) in male Sprague-Dawley rats. As well, the role of the cannabinoid 1 (CB1) receptors and the peroxisome proliferator-activated receptors-α (PPARα) in the anti-nausea effect of PF-3845 was examined. Finally, the potential of intra-VP GW7647, a PPARα agonist, to reduce acute nausea was also evaluated. Intra-VP PF-3845 dose-dependently reduced acute nausea by a PPARα mechanism (and not a CB1 receptor mechanism). Intra-VP administration of GW7647, similarly attenuated acute nausea. These findings suggest that the anti-nausea action of FAAH inhibition may occur in the VP, and may involve activation of PPARα to suppress acute nausea.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Lital Aliasi-Sinai
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Linda A Parker
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
21
|
Colangeli R, Di Maio R, Pierucci M, Deidda G, Casarrubea M, Di Giovanni G. Synergistic action of CB 1 and 5-HT 2B receptors in preventing pilocarpine-induced status epilepticus in rats. Neurobiol Dis 2019; 125:135-145. [PMID: 30716469 DOI: 10.1016/j.nbd.2019.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 11/30/2022] Open
Abstract
Endocannabinoids (eCBs) and serotonin (5-HT) play a neuromodulatory role in the central nervous system. Both eCBs and 5-HT regulate neuronal excitability and their pharmacological potentiation has been shown to control seizures in pre-clinical and human studies. Compelling evidence indicates that eCB and 5-HT systems interact to modulate several physiological and pathological brain functions, such as food intake, pain, drug addiction, depression, and anxiety. Nevertheless, there is no evidence of an eCB/5-HT interaction in experimental and human epilepsies, including status epilepticus (SE). Here, we performed video-EEG recording in behaving rats treated with the pro-convulsant agent pilocarpine (PILO), in order to study the effect of the activation of CB1/5-HT2 receptors and their interaction on SE. Synthetic cannabinoid agonist WIN55,212-2 (WIN) decreased behavioral seizure severity of PILO-induced SE at 2 mg/kg (but not at 1 and 5 mg/kg, i.p.), while 5-HT2B/2C receptor agonist RO60-0175 (RO; 1, 3, 10 mg/kg, i.p.) was devoid of any effect. RO 3 mg/kg was instead capable of potentiating the effect of WIN 2 mg/kg on the Racine scale score. Surprisingly, neither WIN 2 mg/kg nor RO 3 mg/kg had any effect on the incidence and the intensity of EEG seizures when administered alone. However, WIN+RO co-administration reduced the incidence and the severity of EEG SE and increased the latency to SE onset after PILO injection. WIN+RO effects were blocked by the selective CB1R antagonist AM251 and the 5-HT2BR antagonist RS127445, but not by the 5-HT2CR antagonist SB242084 or the 5-HT2AR antagonist MDL11,939. These data revealed a synergistic interaction between CB1R/5-HT2BR in the expression of PILO-induced SE.
Collapse
Affiliation(s)
- Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Roberto Di Maio
- Pittsburgh Inst. for Neurodegenerative Dis., Dept. of Neurology, Univ. of Pittsburgh, PA, USA
| | - Massimo Pierucci
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Maurizio Casarrubea
- Department of Experimental Biomedicine and Clinical Neurosciences, Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Endocannabinoid System and Alcohol Abuse Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:89-127. [PMID: 31332736 DOI: 10.1007/978-3-030-21737-2_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC), the primary active component in Cannabis sativa preparations such as hashish and marijuana, signals by binding to cell surface receptors. Two types of receptors have been cloned and characterized as cannabinoid (CB) receptors. CB1 receptors (CB1R) are ubiquitously present in the central nervous system (CNS) and are present in both inhibitory interneurons and excitatory neurons at the presynaptic terminal. CB2 receptors (CB2R) are demonstrated in microglial cells, astrocytes, and several neuron subpopulations and are present in both pre- and postsynaptic terminals. The majority of studies on these receptors have been conducted in the past two and half decades after the identification of the molecular constituents of the endocannabinoid (eCB) system that started with the characterization of CB1R. Subsequently, the seminal discovery was made, which suggested that alcohol (ethanol) alters the eCB system, thus establishing the contribution of the eCB system in the motivation to consume ethanol. Several preclinical studies have provided evidence that CB1R significantly contributes to the motivational and reinforcing properties of ethanol and that the chronic consumption of ethanol alters eCB transmitters and CB1R expression in the brain nuclei associated with addiction pathways. Additionally, recent seminal studies have further established the role of the eCB system in the development of ethanol-induced developmental disorders, such as fetal alcohol spectrum disorders (FASD). These results are augmented by in vitro and ex vivo studies, showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the eCB system during development and in the adult stage. This chapter provides a current and comprehensive review of the literature concerning the role of the eCB system in alcohol abuse disorders (AUD).
Collapse
|
23
|
Melikian N, Zerbo E, Khan GS, Anjum J. Protracted Amnesia and Catatonia After Routine Colonoscopy Using Propofol for Sedation. Psychiatr Ann 2018. [DOI: 10.3928/00485713-20181106-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yuan XC, Zhu B, Jing XH, Xiong LZ, Wu CH, Gao F, Li HP, Xiang HC, Zhu H, Zhou B, He W, Lin CY, Pan HL, Wang Q, Li M. Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis. Front Mol Neurosci 2018; 11:112. [PMID: 29681797 PMCID: PMC5897736 DOI: 10.3389/fnmol.2018.00112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Knee osteoarthritis (KOA) is a highly prevalent, chronic joint disorder, which can lead to chronic pain. Although electroacupuncture (EA) is effective in relieving chronic pain in the clinic, the involved mechanisms remain unclear. Reduced diffuse noxius inhibitory controls (DNIC) function is associated with chronic pain and may be related to the action of endocannabinoids. In the present study, we determined whether EA may potentiate cannabinoid receptor-mediated descending inhibitory control and inhibit chronic pain in a mouse model of KOA. We found that the optimized parameters of EA inhibiting chronic pain were the low frequency and high intensity (2 Hz + 1 mA). EA reversed the reduced expression of CB1 receptors and the 2-arachidonoylglycerol (2-AG) level in the midbrain in chronic pain. Microinjection of the CB1 receptor antagonist AM251 into the ventrolateral periaqueductal gray (vlPAG) can reversed the EA effect on pain hypersensitivity and DNIC function. In addition, CB1 receptors on GABAergic but not glutamatergic neurons are involved in the EA effect on DNIC function and descending inhibitory control of 5-HT in the medulla, thus inhibiting chronic pain. Our data suggest that endocannabinoid (2-AG)-CB1R-GABA-5-HT may be a novel signaling pathway involved in the effect of EA improving DNIC function and inhibiting chronic pain.
Collapse
Affiliation(s)
- Xiao-Cui Yuan
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Ze Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cai-Hua Wu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Gao
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ping Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuan-You Lin
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qiang Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
26
|
Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2186383. [PMID: 28814985 PMCID: PMC5549482 DOI: 10.1155/2017/2186383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/16/2023]
Abstract
Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R) injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R) injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS), malonaldehyde (MDA), and MPO (myeloperoxidase) and increased superoxide dismutase (SOD) production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.
Collapse
|
27
|
Barrie N, Kuruppu V, Manolios E, Ali M, Moghaddam M, Manolios N. Endocannabinoids in arthritis: current views and perspective. Int J Rheum Dis 2017; 20:789-797. [DOI: 10.1111/1756-185x.13146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Barrie
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| | - Vindhya Kuruppu
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| | | | - Marina Ali
- Department of Dermatology; Westmead Hospital; Sydney Australia
| | | | - Nicholas Manolios
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| |
Collapse
|
28
|
Zhong H, Tong L, Gu N, Gao F, Lu Y, Xie RG, Liu J, Li X, Bergeron R, Pomeranz LE, Mackie K, Wang F, Luo CX, Ren Y, Wu SX, Xie Z, Xu L, Li J, Dong H, Xiong L, Zhang X. Endocannabinoid signaling in hypothalamic circuits regulates arousal from general anesthesia in mice. J Clin Invest 2017; 127:2295-2309. [PMID: 28463228 DOI: 10.1172/jci91038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Consciousness can be defined by two major attributes: awareness of environment and self, and arousal, which reflects the level of awareness. The return of arousal after general anesthesia presents an experimental tool for probing the neural mechanisms that control consciousness. Here we have identified that systemic or intracerebral injection of the cannabinoid CB1 receptor (CB1R) antagonist AM281 into the dorsomedial nucleus of the hypothalamus (DMH) - but not the adjacent perifornical area (Pef) or the ventrolateral preoptic nucleus of the hypothalamus (VLPO) - accelerates arousal in mice recovering from general anesthesia. Anesthetics selectively activated endocannabinoid (eCB) signaling at DMH glutamatergic but not GABAergic synapses, leading to suppression of both glutamatergic DMH-Pef and GABAergic DMH-VLPO projections. Deletion of CB1R from widespread cerebral cortical or prefrontal cortical (PFC) glutamatergic neurons, including those innervating the DMH, mimicked the arousal-accelerating effects of AM281. In contrast, CB1R deletion from brain GABAergic neurons or hypothalamic glutamatergic neurons did not affect recovery time from anesthesia. Inactivation of PFC-DMH, DMH-VLPO, or DMH-Pef projections blocked AM281-accelerated arousal, whereas activation of these projections mimicked the effects of AM281. We propose that decreased eCB signaling at glutamatergic terminals of the PFC-DMH projection accelerates arousal from general anesthesia through enhancement of the excitatory DMH-Pef projection, the inhibitory DMH-VLPO projection, or both.
Collapse
Affiliation(s)
- Haixing Zhong
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Tong
- Institute of Mental Health Research at the Royal, and.,Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Ning Gu
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fang Gao
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Neurobiology, and
| | - Yacheng Lu
- Department of Anatomy, Histology, and Embryology, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Neurobiology, and
| | - Jingjing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Li
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Richard Bergeron
- Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Feng Wang
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chun-Xia Luo
- Institute of Mental Health Research at the Royal, and
| | - Yan Ren
- Institute of Mental Health Research at the Royal, and
| | | | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lin Xu
- Key Lab of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Jinlian Li
- Department of Anatomy, Histology, and Embryology, Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Zhang
- Institute of Mental Health Research at the Royal, and.,Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Hamilton DJ, White CM, Rees CL, Wheeler DW, Ascoli GA. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach. J Pharm Biomed Anal 2017; 144:269-278. [PMID: 28549853 DOI: 10.1016/j.jpba.2017.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/05/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
Abstract
Neurons are often classified by their morphological and molecular properties. The online knowledge base Hippocampome.org primarily defines neuron types from the rodent hippocampal formation based on their main neurotransmitter (glutamate or GABA) and the spatial distributions of their axons and dendrites. For each neuron type, this open-access resource reports any and all published information regarding the presence or absence of known molecular markers, including calcium-binding proteins, neuropeptides, receptors, channels, transcription factors, and other molecules of biomedical relevance. The resulting chemical profile is relatively sparse: even for the best studied neuron types, the expression or lack thereof of fewer than 70 molecules has been firmly established to date. The mouse genome-wide in situ hybridization mapping of the Allen Brain Atlas provides a wealth of data that, when appropriately analyzed, can substantially augment the molecular marker knowledge in Hippocampome.org. Here we focus on the principal cell layers of dentate gyrus (DG), CA3, CA2, and CA1, which together contain approximately 90% of hippocampal neurons. These four anatomical parcels are densely packed with somata of mostly excitatory projection neurons. Thus, gene expression data for those layers can be justifiably linked to the respective principal neuron types: granule cells in DG and pyramidal cells in CA3, CA2, and CA1. In order to enable consistent interpretation across genes and regions, we screened the whole-genome dataset against known molecular markers of those neuron types. The resulting threshold values allow over 6000 very-high confidence (>99.5%) expressed/not-expressed assignments, expanding the biochemical information content of Hippocampome.org more than five-fold. Many of these newly identified molecular markers are potential pharmacological targets for major neurological and psychiatric conditions. Furthermore, our approach yields reasonable expression/non-expression estimates for every single gene in each of these four neuron types with >90% average confidence, providing a considerably complete genetic characterization of hippocampal principal neurons.
Collapse
Affiliation(s)
- D J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| | - C M White
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - C L Rees
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - D W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - G A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| |
Collapse
|
31
|
Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS One 2017; 12:e0176521. [PMID: 28448548 PMCID: PMC5407801 DOI: 10.1371/journal.pone.0176521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.
Collapse
|
32
|
Chidambaran V, Pilipenko V, Spruance K, Venkatasubramanian R, Niu J, Fukuda T, Mizuno T, Zhang K, Kaufman K, Vinks AA, Martin LJ, Sadhasivam S. Fatty acid amide hydrolase-morphine interaction influences ventilatory response to hypercapnia and postoperative opioid outcomes in children. Pharmacogenomics 2016; 18:143-156. [PMID: 27977335 DOI: 10.2217/pgs-2016-0147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Fatty acid amide hydrolase (FAAH) degrades anandamide, an endogenous cannabinoid. We hypothesized that FAAH variants will predict risk of morphine-related adverse outcomes due to opioid-endocannabinoid interactions. PATIENTS & METHODS In 101 postsurgical adolescents receiving morphine analgesia, we prospectively studied ventilatory response to 5% CO2 (HCVR), respiratory depression (RD) and vomiting. Blood was collected for genotyping and morphine pharmacokinetics. RESULTS We found significant FAAH-morphine interaction for missense (rs324420) and several regulatory variants, with HCVR (p < 0.0001) and vomiting (p = 0.0339). HCVR was more depressed in patients who developed RD compared with those who did not (p = 0.0034), thus FAAH-HCVR association predicts risk of impending RD from morphine use. CONCLUSION FAAH genotypes predict risk for morphine-related adverse outcomes.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesia, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristie Spruance
- Department of Anesthesia, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Raja Venkatasubramanian
- Department of Anesthesia, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jing Niu
- Department of Anesthesia, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tsuyoshi Fukuda
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tomoyuki Mizuno
- Division of Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kejian Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth Kaufman
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander A Vinks
- Division of Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
33
|
Rodríguez-Cueto C, Hernández-Gálvez M, Hillard CJ, Maciel P, García-García L, Valdeolivas S, Pozo MA, Ramos JA, Gómez-Ruiz M, Fernández-Ruiz J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 2016; 339:191-209. [PMID: 27717809 DOI: 10.1016/j.neuroscience.2016.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Valdeolivas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
34
|
The endocannabinoid system and Post Traumatic Stress Disorder (PTSD): From preclinical findings to innovative therapeutic approaches in clinical settings. Pharmacol Res 2016; 111:668-678. [DOI: 10.1016/j.phrs.2016.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 02/01/2023]
|
35
|
Dean C, Hillard CJ, Seagard JL, Hopp FA, Hogan QH. Components of the cannabinoid system in the dorsal periaqueductal gray are related to resting heart rate. Am J Physiol Regul Integr Comp Physiol 2016; 311:R254-62. [PMID: 27280429 DOI: 10.1152/ajpregu.00154.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/05/2016] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to examine whether variations in endocannabinoid signaling in the dorsal periaqueductal gray (dPAG) are associated with baseline autonomic nerve activity, heart rate, and blood pressure. Blood pressure was recorded telemetrically in rats, and heart rate and power spectral analysis of heart rate variability were determined. Natural variations from animal to animal provided a range of baseline values for analysis. Transcript levels of endocannabinoid signaling components in the dPAG were analyzed, and endocannabinoid content and catabolic enzyme activity were measured. Higher baseline heart rate was associated with increased anandamide content and with decreased activity of the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), and it was negatively correlated with transcript levels of both FAAH and monoacylglycerol lipase (MAGL), a catabolic enzyme for 2-arachidonoylglycerol (2-AG). Autonomic tone and heart rate, but not blood pressure, were correlated to levels of FAAH mRNA. In accordance with these data, exogenous anandamide in the dPAG of anesthetized rats increased heart rate. These data indicate that in the dPAG, anandamide, a FAAH-regulated lipid, contributes to regulation of baseline heart rate through influences on autonomic outflow.
Collapse
Affiliation(s)
- Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Cecilia J Hillard
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Jeanne L Seagard
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Francis A Hopp
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
36
|
Hantson P, Bonbled F. Le propofol comme agent de suicide ou d’abus. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2016. [DOI: 10.1016/j.toxac.2015.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Abstract
One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective. Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals. In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.
Collapse
|
38
|
Petrenko AB, Yamazaki M, Sakimura K, Kano M, Baba H. Genetic inactivation and prolonged pharmacologic inhibition of monoacylglycerol lipase have opposite effects on anesthetic sensitivity to propofol. Eur J Pharmacol 2015; 765:268-73. [PMID: 26318148 DOI: 10.1016/j.ejphar.2015.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
Monoacylglycerol lipase (MGL) is a major enzyme involved in degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective inhibitors of MGL are regarded as promising analgesics and anticancer agents. To gain insight into the possible consequences of their prolonged administration for anesthetic action, the effects of several inhalational and intravenous anesthetics were tested in knockout mice lacking the MGL gene in the loss of righting reflex (LORR) assay. Sensitivity to inhalational and most intravenous anesthetics was not altered in knockout mice. However, compared with wild-type littermates, they showed increased sensitivity to the intravenous anesthetic propofol. Permanently elevated levels of 2-AG after MGL knockout are known to cause desensitization of cannabinoid (CB1) receptors, which have been advocated as possible mediators of propofol anesthesia. Therefore, increased sensitivity to propofol in knockout mice at first suggested that 2-AG may potentiate CB1 receptors despite their hypofunction in these animals. Pharmacologic inhibition of MGL also causes desensitization of CB1 receptors, so sensitivity to propofol was tested further in C57BL/6N mice pretreated chronically with the selective MGL inhibitor JZL 184. Contrary to the results in knockout mice, these animals showed drastically reduced sensitivity to propofol. The reason for increased sensitivity to propofol after MGL knockout remains unclear, but may result from changes occurring in these animals during development. However, our results in C57BL/6N mice pretreated with JZL 184 confirmed the role of CB1 receptors in propofol anesthesia advocated previously, and also suggest that prolonged use of MGL inhibitors may be associated with the development of resistance to propofol.
Collapse
Affiliation(s)
- Andrey B Petrenko
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
39
|
Qin M, Zeidler Z, Moulton K, Krych L, Xia Z, Smith CB. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. Behav Brain Res 2015; 291:164-171. [PMID: 25979787 DOI: 10.1016/j.bbr.2015.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Kristen Moulton
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Leland Krych
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Vähätalo LH, Ruohonen ST, Mäkelä S, Ailanen L, Penttinen AM, Stormi T, Kauko T, Piscitelli F, Silvestri C, Savontaus E, Di Marzo V. Role of the endocannabinoid system in obesity induced by neuropeptide Y overexpression in noradrenergic neurons. Nutr Diabetes 2015; 5:e151. [PMID: 25915740 PMCID: PMC4423197 DOI: 10.1038/nutd.2015.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective: Endocannabinoids and neuropeptide Y (NPY) promote energy storage via central and peripheral mechanisms. In the hypothalamus, the two systems were suggested to interact. To investigate such interplay also in non-hypothalamic tissues, we evaluated endocannabinoid levels in obese OE-NPYDβH mice, which overexpress NPY in the noradrenergic neurons in the sympathetic nervous system and the brain. Methods: The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were measured in key regulatory tissues, that is, hypothalamus, pancreas, epididymal white adipose tissue (WAT), liver and soleus muscle, over the development of metabolic dysfunctions in OE-NPYDβH mice. The effects of a 5-week treatment with the CB1 receptor inverse agonist AM251 on adiposity and glucose metabolism were studied. Results: 2-AG levels were increased in the hypothalamus and epididymal WAT of pre-obese and obese OE-NPYDβH mice. Anandamide levels in adipose tissue and pancreas were increased at 4 months concomitantly with higher fat mass and impaired glucose tolerance. CB1 receptor blockage reduced body weight gain and glucose intolerance in OE-NPYDβH to the level of vehicle-treated wild-type mice. Conclusions: Altered endocannabinoid tone may underlie some of the metabolic dysfunctions in OE-NPYDβH mice, which can be attenuated with CB1 inverse agonism suggesting interactions between endocannabinoids and NPY also in the periphery. CB1 receptors may offer a target for the pharmacological treatment of the metabolic syndrome with altered NPY levels.
Collapse
Affiliation(s)
- L H Vähätalo
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - S T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S Mäkelä
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Ailanen
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - A-M Penttinen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - T Stormi
- Department of Biostatistics, University of Turku, Turku, Finland
| | - T Kauko
- Department of Biostatistics, University of Turku, Turku, Finland
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - C Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - E Savontaus
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
41
|
Weiser BP, Eckenhoff RG. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. J Biol Chem 2015; 290:8559-68. [PMID: 25666612 DOI: 10.1074/jbc.m114.620732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [(3)H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr(139), Phe(190), and Met(206)) that are located in a single allosteric protein site, and propofol inhibited [(3)H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [(3)H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [(3)H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD(+) during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.
Collapse
Affiliation(s)
- Brian P Weiser
- From the Departments of Anesthesiology and Critical Care and Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
42
|
Ren Y, Wang J, Xu PB, Xu YJ, Miao CH. Systemic or intra-amygdala infusion of an endocannabinoid CB1 receptor antagonist AM251 blocked propofol-induced anterograde amnesia. Neurosci Lett 2014; 584:287-91. [PMID: 25445359 DOI: 10.1016/j.neulet.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Propofol is well-known for its anterograde amnesic actions. However, a recent experiment showed that propofol can also produce retrograde memory enhancement effects via an interaction with the endocannabinoid CB1 system. Therefore, the authors hypothesized that the regulating effect of propofol on the endocannabinoid CB1 system might also decrease the anterograde amnesic effect of propofol under some conditions, which might be a risk factor for intraoperative awareness. Since, the basolateral amygdala (BLA) has been confirmed to mediate propofol-induced anterograde amnesia and the BLA contains a high concentration of CB1 receptors, the authors investigated whether and how the endocannabinoid system, particularly the CB1 receptor within BLA, influences propofol-induced anterograde amnesia. Male Sprague-Dawley rats trained with inhibitory avoidance (IA) were systematically pre-trained using a memory-impairing dose of propofol (25 mg/kg). Before propofol administration, rats received an intraperitoneal injection of a CB1 receptor antagonist AM251 (1 mg/kg or 2 mg/kg) or a bilateral intra-BLA injection of AM251 (0.6 ng or 6 ng per 0.5 μl). Twenty-four hours after IA training, the IA retention latency was tested. It was found that systemic or intra-BLA injection of a non-regulating dose of AM251 (2 mg/kg or 6 ng per 0.5 μl, respectively) blocked the memory-impairing effect of propofol. These results indicate that the anterograde amnesic effect of propofol is mediated, in part, by activation of the CB1 cannabinoid receptors in the BLA.
Collapse
Affiliation(s)
- Y Ren
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - J Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - P B Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Y J Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - C H Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
43
|
Zhang Q, Pan J, Lubet RA, Wang Y, You M. Targeting the insulin-like growth factor-1 receptor by picropodophyllin for lung cancer chemoprevention. Mol Carcinog 2014; 54 Suppl 1:E129-37. [PMID: 25163779 DOI: 10.1002/mc.22206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/24/2014] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane heterotetramer that is activated by Insulin-like growth factor 1 and is crucial for tumor transformation and survival of malignant cells. Importantly, IGF-1R overexpression has been reported in many different cancers, implicating this receptor as a potential target for anticancer therapy. Picropodophyllin (PPP) is a potent inhibitor of IGF-1R and has antitumor efficacy in several cancer types. However, the chemopreventive effect of PPP in lung tumorigenesis has not been investigated. In this study, we investigated the chemopreventive activity of PPP in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and PPP was given by nasal inhalation to female A/J mice. Lung tumorigenesis was assessed by tumor multiplicity and tumor load. PPP significantly decreased tumor multiplicity and tumor load. Tumor multiplicity and load were decreased by 52% and 78% respectively by 4 mg/ml aerosolized PPP. Pharmacokinetics analysis showed good bioavailability of PPP in lung and plasma. Treatment with PPP increased staining for cleaved caspase-3 and decreased Ki-67 in lung tumors, suggesting that the lung tumor inhibitory effects of PPP were partially through inhibition of proliferation and induction of apoptosis. In human lung cancer cell lines, PPP inhibited cell proliferation, and also inhibited phosphorylation of IGF-1R downstream targets, AKT and MAPK, ultimately resulting in increased apoptosis. PPP also reduced cell invasion in lung cancer cell lines. In view of our data, PPP merits further investigation as a promising chemopreventive agent for human lung cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Medical College of Wisconsin Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jing Pan
- Medical College of Wisconsin Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ronald A Lubet
- Chemoprevention Branch, National Cancer Institute, Bethesda, Maryland
| | - Yian Wang
- Medical College of Wisconsin Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming You
- Medical College of Wisconsin Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
44
|
Liput DJ, Tsakalozou E, Hammell DC, Paudel KS, Nixon K, Stinchcomb AL. Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography-electrospray mass spectroscopy. J Pharm Anal 2014; 4:234-241. [PMID: 25506470 PMCID: PMC4260322 DOI: 10.1016/j.jpha.2013.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reported concentrations for endocannabinoids and related lipids in biological tissues can vary greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a method to quantify anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) from rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18 reverse-phase column using a gradient mobile phase and detected using electrospray ionization in positive selected ion monitoring mode on a single quadrupole mass spectrometer. The method produced high recovery rates for AEA, OEA and PEA, ranging from 98.1% to 106.2%, 98.5% to 102.2% and 85.4% to 89.5%, respectively. The method resulted in adequate sensitivity with a lower limit of quantification for AEA, OEA and PEA of 1.4 ng/mL, 0.6 ng/mL and 0.5 ng/mL, respectively. The method was reproducible as intraday and interday accuracies and precisions were under 15%. This method was suitable for quantifying AEA, OEA and PEA from rat brain following pharmacological inhibition of fatty acid amide hydrolase.
Collapse
Affiliation(s)
- Daniel J Liput
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | - Kalpana S Paudel
- Department of Pharmaceutical Sciences, College of Pharmacy, South College, Knoxville, TN 37922, USA
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Audra L Stinchcomb
- AllTranz, Lexington, KY 40505, USA ; Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Jiang YH, Ni XQ, Xiong WW, Wang H, Tan Y, Huang ZH, Yao XY. Different effects of etomidate and propofol on memory in immature rats. Int J Neurosci 2014; 125:66-9. [PMID: 24670258 DOI: 10.3109/00207454.2014.901968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study is to investigate the effects of etomidate and propofol on memory and possible involved mechanisms using immature rats. Forty-eight rats randomly received intraperitoneal injection of 5 mg/kg etomidate (n = 16), 50 mg/kg propofol (n = 16) or normal saline (control, n = 16). Three hours after awakening, memory was assessed by Y-maze test using 10 rats in each drug group. Gamma-aminobutyric acid (GABA) content in hippocampal tissue was measured using six rats in each group. Etomidate group had more total reaction time (TRT) compared with the control group in Y-maze test ( p < 0.05). No other difference between these two groups was observed. Propofol group had less number of correct response ( p < 0.01) and more TRT ( p < 0.05) in Y-maze test, as well as more GABA concentration detected in hippocampal tissue ( p < 0.01) than the control group. Propofol group also showed less number of correct response ( p < 0.05) and more hippocampal GABA concentration ( p < 0.01) compared with etomidate group. Etomidate does not show significant effects on memory in rat and further investigation is required. Propofol can affect memory in rat possibly via increasing the synthesis and/or secretion of GABA as one of the factors.
Collapse
Affiliation(s)
- Yi-Hong Jiang
- 1Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu X, Zhang J, Zhao H, Mei H, Lian Q, Shangguan W. The effect of propofol on intrathecal morphine-induced pruritus and its mechanism. Anesth Analg 2014; 118:303-309. [PMID: 24445631 DOI: 10.1213/ane.0000000000000086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have shown that a low dose of propofol IV bolus had a beneficial effect on intrathecal morphine-induced pruritus in humans. However, its exact mechanism has not been fully understood. In this study, we hypothesized that propofol relieved intrathecal morphine-induced pruritus in rats by upregulating the expression of cannabinoid-1 (CB[1]) receptors in anterior cingulate cortex (ACC). METHODS Twenty-four Sprague-Dawley rats were divided into a control group and 20, 40, 80 μg/kg morphine groups to create an intrathecal morphine-induced scratching model. The effects of propofol on intrathecal 40 μg/kg morphine-induced scratching responses were then evaluated. Sixty rats were randomly assigned to control, normal saline, intralipid, and propofol groups, with pruritus behavior observation or killed 8 minutes after venous injection of normal saline, intralipid, or propofol, and brain tissues were then collected for assay. Immunohistochemistry was then performed to identify the expression of CB (1) receptor in ACC, and the concentration of CB(1) receptor in ACC was determined by Western blot analysis. RESULTS Compared with the control group, rats in the 20, 40, 80 μg/kg morphine groups had higher mean scratching response rates after intrathecal morphine injection (P =0.020, 0.005, and 0.002, respectively). There was a statistical difference between 20 and 40 μg/kg morphine groups at 10 to 15 and 15 to 20 timepoints after intrathecal morphine injection (P = 0.049 and 0.017, respectively). Propofol almost abolished the scratching response that was induced by 40 μg/kg intrathecal morphine injection (F[2, 15] = 46.87, P < 0.001; F[22, 165] = 2.37, P = 0.001). Compared with the intralipid and normal saline groups, the scratching behavior was significantly attenuated in the propofol group (P < 0.001). Compared with control, normal saline, and intralipid groups, the protein expression of CB(1) receptor in ACC (Western blot) in the propofol group increased (0.86 ± 0.21, 0.94 ± 0.18, 0.86 ± 0.13, and 1.34 ± 0.32, respectively, P < 0.001). There was no significant difference among control, normal saline, and intralipid groups. Compared with the control, normal saline, and intralipid groups, the average number of neurons of CB(1) receptor in the ACC area were higher in the propofol group (21.0 ± 1.4, 19.3 ± 1.8, 24.8 ± 7.7, and 37.2 ± 3.3, respectively, P < 0.001). CONCLUSIONS Morphine elicits dose-independent scratching responses after intrathecal injection in rats. Morphine 40 μg/kg intrathecal injection-induced scratching responses can be prevented by propofol. Increased protein expression of CB(1) receptors in ACC may contribute to the reversal of intrathecal morphine-induced scratching.
Collapse
Affiliation(s)
- Xiulan Liu
- From the Department of Anesthesiology, the 2nd Affiliated Hospital of WenZhou Medical College, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
47
|
Karasu T, Marczylo TH, Marczylo EL, Taylor AH, Oloto E, Konje JC. The effect of mifepristone (RU486) on the endocannabinoid system in human plasma and first-trimester trophoblast of women undergoing termination of pregnancy. J Clin Endocrinol Metab 2014; 99:871-80. [PMID: 24423290 DOI: 10.1210/jc.2013-2922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION High anandamide (AEA) concentrations are detrimental for implantation and early pregnancy. Progesterone, essential for pregnancy, may keep AEA levels low by increasing fatty acid amide hydrolase (FAAH) expression. Here the effect of RU486, a P4 antagonist used to initiate medical termination of pregnancy (MTOP), on plasma AEA concentrations and the endocannabinoid system (ECS) in trophoblasts was examined. OBJECTIVE Quantification of the endocannabinoid concentrations and expression of the ECS in trophoblast tissue of MTOP women and women undergoing surgical termination of pregnancy (STOP). DESIGN AND SETTING A prospective study at the University Hospitals of Leicester National Health Service Trust. PATIENTS AND METHODS AEA, N-oleoylethanolamine (OEA), and N-palmitolylethanolamine (PEA) concentrations in trophoblast tissues and blood samples from 68 MTOP and 15 STOP were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. ECS expression was determined by immunohistochemistry, quantitative RT-PCR, and Western blotting. RESULTS Concentrations of AEA, OEA, and PEA were significantly higher in MTOP than STOP trophoblasts (P = .0062, P = .016, and P = .0029, respectively), whereas no significant differences in plasma AEA, OEA, and PEA concentrations were observed even though plasma AEA and PEA concentrations were significantly (P = .005 and P = .025, respectively) increased the day after RU486 administration in women undergoing MTOP. Changes in the immunohistochemical densities of the AEA modifying enzymes N-acylphophatidylethanolamine-phospholipase D (NAPE-PLD) and FAAH, and the cannabinoid receptors (CB1 and CB2) were observed with increased NAPE-PLD, FAAH, and CB1 expression seen in the trophoblast of MTOP patients. CONCLUSIONS Trophoblast after MTOP demonstrated high AEA concentrations with increased expression of NAPE-PLD, FAAH, and CB1.
Collapse
Affiliation(s)
- Tülay Karasu
- Endocannabinoid Research Group (T.K., T.H.M., A.H.T., J.C.K.), Reproductive Sciences, Leicester Royal Infirmary, Leicester, Leicestershire, LE2 7LX, United Kingdom; Systems Toxicology (E.L.M.), Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom; and Contraception, Sexual, and Reproductive Health Services (E.O.), University Hospitals of Leicester National Health Service (NHS) Trust, St Peters Health Centre, Leicester, LE2 0TA, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Hauer D, Kaufmann I, Strewe C, Briegel I, Campolongo P, Schelling G. The role of glucocorticoids, catecholamines and endocannabinoids in the development of traumatic memories and posttraumatic stress symptoms in survivors of critical illness. Neurobiol Learn Mem 2013; 112:68-74. [PMID: 24125890 DOI: 10.1016/j.nlm.2013.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/23/2022]
Abstract
Critically ill patients are at an increased risk for traumatic memories and post-traumatic stress disorder (PTSD). Memories of one or more traumatic events play an important part in the symptom pattern of PTSD. Studies in long-term survivors of intensive care unit (ICU) treatment demonstrated a clear and vivid recall of traumatic experiences and the incidence and intensity of PTSD symptoms increased with the number of traumatic memories present. Preclinical evidence has clearly shown that the consolidation and retrieval of traumatic memories is regulated by an interaction between the noradrenergic, the glucocorticoid and the endocannabinoid system. Critically ill patients in the ICU frequently require treatment with adrenenergic or glucocorticoid drugs and often receive sedative medications; among them propofol is known to influence endocannabinoid signaling. Critical illness could therefore represent a useful model for investigating adrenergic, glucocorticoid as well as endocannabinoid effects on traumatic memory and PTSD development in stressed humans. The endocannabinoid system is an important regulator of HPA-axis activity during stress, an effect which has also been demonstrated in humans. Likewise, a single nucleotide polymorphism (SNP) of the glucocorticoid receptor (GR) gene (the BclI-SNP), which enhances the sensitivity of the glucocorticoid receptors to cortisol and possibly HPA-axis feedback function, was associated with enhanced emotional memory performance in healthy volunteers. The presence of the BclI-SNP increased the risk for traumatic memories and PTSD symptoms in patients after ICU therapy and was linked to lower basal cortisol levels. A number of small studies have demonstrated that the administration of cortisol to critically ill or injured patients results in a significant reduction of PTSD symptoms after recovery without influencing the number of traumatic memories. These glucocorticoid effects can possibly be explained by a cortisol-induced temporary impairment in traumatic memory retrieval which has previously been demonstrated in both rats and humans. The hypothesis that stress doses of glucocorticoids or the pharmacologic manipulation of glucocorticoid-endocannabinoid interaction during traumatic memory consolidation and retrieval could be useful for prophylaxis and treatment of PTSD after critical illness should be tested in larger controlled studies.
Collapse
Affiliation(s)
- Daniela Hauer
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Ines Kaufmann
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Claudia Strewe
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Isabel Briegel
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Patrizia Campolongo
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Gustav Schelling
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany.
| |
Collapse
|
49
|
Ko HM, Kim SY, Joo SH, Cheong JH, Yang SI, Shin CY, Koo BN. Synergistic activation of lipopolysaccharide-stimulated glial cells by propofol. Biochem Biophys Res Commun 2013; 438:420-6. [PMID: 23899524 DOI: 10.1016/j.bbrc.2013.07.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 02/08/2023]
Abstract
Despite the extensive use of propofol in general anesthetic procedures, the effects of propofol on glial cell were not completely understood. In lipopolysaccharide (LPS)-stimulated rat primary astrocytes and BV2 microglial cell lines, co-treatment of propofol synergistically induced inflammatory activation as evidenced by the increased production of NO, ROS and expression of iNOS, MMP-9 and several cytokines. Propofol augmented the activation of JNK and p38 MAPKs induced by LPS and the synergistic activation of glial cells by propofol was prevented by pretreatment of JNK and p38 inhibitors. When we treated BV2 cell culture supernatants treated with LPS plus propofol on cultured rat primary neuron, it induced a significant neuronal cell death. The results suggest that the repeated use of propofol in immunologically challenged situation may induce glial activation in brain.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Pharmacology, School of Medicine and SMART-IABS, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
A critical role for the retinoic acid signaling pathway in the pathophysiology of gastrointestinal graft-versus-host disease. Blood 2013; 121:3970-80. [PMID: 23529927 DOI: 10.1182/blood-2012-08-445130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Damage to the gastrointestinal tract during graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. In the current study, we identified a critical role for the retinoic acid (RA) signaling pathway in the induction and propagation of gastrointestinal GVHD. The administration of exogenous RA significantly increased expression of the gut-homing molecules, CCR9 and α4β7, on donor T cells in mesenteric lymph nodes, and augmented the accumulation of proinflammatory CD4(+) and CD8(+) T cells within the gut mucosa, leading to a selective exacerbation of colonic GVHD and increased overall mortality. Conversely, depletion of RA in recipient mice by vitamin A deprivation resulted in a dramatic reduction of gut-homing molecule expression on donor T cells after HSCT. Significantly, absence of the RA receptor-α on donor T cells markedly attenuated the ability of these cells to cause lethal GVHD. This observation was attributable to a significant reduction in pathological damage within the colon. These findings identify an organ-specific role for RA in GVHD and provide evidence that blockade of the RA signaling pathway may represent a novel strategy for mitigating the severity of colonic GVHD.
Collapse
|