1
|
Dean AC, Randle EH, Lacey AJD, Marczak Giorio GA, Doobary S, Cons BD, Lennox AJJ. Alkene 1,3-Difluorination via Transient Oxonium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404666. [PMID: 38695434 DOI: 10.1002/anie.202404666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 06/21/2024]
Abstract
The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.
Collapse
Affiliation(s)
- Alice C Dean
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - E Harvey Randle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Andrew J D Lacey
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Sayad Doobary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | |
Collapse
|
2
|
Jarocka-Karpowicz I, Markowska A. Therapeutic Potential of Jasmonic Acid and Its Derivatives. Int J Mol Sci 2021; 22:ijms22168437. [PMID: 34445138 PMCID: PMC8395089 DOI: 10.3390/ijms22168437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
A modern method of therapeutic use of natural compounds that would protect the body are jasmonates. The main representatives of jasmonate compounds include jasmonic acid and its derivatives, mainly methyl jasmonate. Extracts from plants rich in jasmonic compounds show a broad spectrum of activity, i.e., anti-cancer, anti-inflammatory and cosmetic. Studies of the biological activity of jasmonic acid and its derivatives in mammals are based on their structural similarity to prostaglandins and the compounds can be used as natural therapeutics for inflammation. Jasmonates also constitute a potential group of anti-cancer drugs that can be used alone or in combination with other known chemotherapeutic agents. Moreover, due to their ability to stimulate exfoliation of the epidermis, remove discoloration, regulate the function of the sebaceous glands and reduce the visible signs of aging, they are considered for possible use in cosmetics and dermatology. The paper presents a review of literature data on the biological activity of jasmonates that may be helpful in treatment and prevention.
Collapse
|
3
|
Jarocka-Karpowicz I, Markowska A. Jasmonate Compounds and Their Derivatives in the Regulation of the Neoplastic Processes. Molecules 2021; 26:2901. [PMID: 34068337 PMCID: PMC8153294 DOI: 10.3390/molecules26102901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One such compound is jasmonic acid (3-oxo-2-(pent-2'-enyl)cyclopentane acetic acid; isolated active form: trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review of literature data on the biological activity of jasmonates was prepared, with particular emphasis on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate compounds is based on altered cellular ATP levels; induction of re-differentiation through the action of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs, such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure-activity relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects is also shown.
Collapse
Affiliation(s)
- Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | | |
Collapse
|
4
|
Goel Y, Yadav S, Pandey SK, Temre MK, Maurya BN, Verma A, Kumar A, Singh SM. Tumor Decelerating and Chemo-Potentiating Action of Methyl Jasmonate on a T Cell Lymphoma In Vivo: Role of Altered Regulation of Metabolism, Cell Survival, Drug Resistance, and Intratumoral Blood Flow. Front Oncol 2021; 11:619351. [PMID: 33718176 PMCID: PMC7947686 DOI: 10.3389/fonc.2021.619351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Methyl jasmonate (MJ), a natural oxylipin, possesses a broad spectrum of antineoplastic potential in vitro. However, its tumor growth impeding and chemo-potentiating action has not been adequately investigated in vivo. Using a murine thymus-derived tumor named Dalton’s Lymphoma (DL), in the present study, we examined if intra-tumoral administration of MJ can cause tumor growth impedance. We also explored the associated molecular mechanisms governing cell survival, carbohydrate & lipid metabolism, chemo-potentiation, and angiogenesis. MJ administration to tumor-transplanted mice caused deceleration of tumor growth accompanying prolonged survival of the tumor-bearing mice. MJ-dependent tumor growth retardation was associated with the declined blood supply in tumor milieu, cell cycle arrest, augmented induction of apoptosis and necrosis, deregulated glucose and lipid metabolism, enhanced membrane fragility of tumor cells, and altered cytokine repertoire in the tumor microenvironment. MJ administration modulated molecular network implicating Hsp70, Bcl-2, TERT, p53, Cyt c, BAX, GLUT-1, HK 2, LDH A, PDK-1, HIF-1α, ROS, MCT-1, FASN, ACSS2, SREBP1c, VEGF, cytokine repertoire, and MDR1, involved in the regulation of cell survival, carbohydrate and fatty acid metabolism, pH homeostasis, and drug resistance. Thus, the present study unveils novel molecular mechanisms of the tumor growth decelerating action of MJ. Besides, this preclinical study also establishes the adjunct therapeutic potential of MJ. Hence, the present investigation will help to design novel anti-cancer therapeutic regimens for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Babu Nandan Maurya
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Bömer M, Pérez‐Salamó I, Florance HV, Salmon D, Dudenhoffer J, Finch P, Cinar A, Smirnoff N, Harvey A, Devoto A. Jasmonates induce Arabidopsis bioactivities selectively inhibiting the growth of breast cancer cells through CDC6 and mTOR. THE NEW PHYTOLOGIST 2021; 229:2120-2134. [PMID: 33124043 PMCID: PMC8022592 DOI: 10.1111/nph.17031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells. Here, direct incubation of leaf explants from the non-medicinal plant Arabidopsis thaliana with human breast cancer cells, selectively suppresses cancer cell growth. High-throughput LC-MS identified Arabidopsis metabolites. Protein and transcript levels of cell cycle regulators were examined in breast cancer cells. A synergistic effect by methyljasmonate (MeJA) and by compounds upregulated in the metabolome of MeJA-treated Arabidopsis leaves, on the breast cancer cell cycle, is associated with Cell Division Cycle 6 (CDC6), Cyclin-dependent kinase 2 (CDK2), Cyclins D1 and D3, indicating that key cell cycle components mediate cell viability reduction. Bioactives such as indoles, quinolines and cis-(+)-12-oxophytodienoic acid, in synergy, could act as anticancer compounds. Our work suggests a universal role for MeJA-treatment of Arabidopsis in altering the DNA replication regulator CDC6, supporting conservation, across kingdoms, of cell cycle regulation, through the crosstalk between the mechanistic target of rapamycin, mTOR and JAs. This study has important implications for the identification of metabolites with anti-cancer bioactivities in plants with no known medicinal pedigree and it will have applications in developing disease treatments.
Collapse
Affiliation(s)
- Moritz Bömer
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeME4 4TBUK
| | - Imma Pérez‐Salamó
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Hannah V. Florance
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Deborah Salmon
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | | | - Paul Finch
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Aycan Cinar
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Amanda Harvey
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Alessandra Devoto
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| |
Collapse
|
6
|
Natural Agents Targeting Mitochondria in Cancer. Int J Mol Sci 2020; 21:ijms21196992. [PMID: 32977472 PMCID: PMC7582837 DOI: 10.3390/ijms21196992] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the key energy provider to highly proliferating cancer cells, and are subsequently considered one of the critical targets in cancer therapeutics. Several compounds have been studied for their mitochondria-targeting ability in cancer cells. These studies’ outcomes have led to the invention of “mitocans”, a category of drug known to precisely target the cancer cells’ mitochondria. Based upon their mode of action, mitocans have been divided into eight classes. To date, different synthetic compounds have been suggested to be potential mitocans, but unfortunately, they are observed to exert adverse effects. Many studies have been published justifying the medicinal significance of large numbers of natural agents for their mitochondria-targeting ability and anticancer activities with minimal or no side effects. However, these natural agents have never been critically analyzed for their mitochondria-targeting activity. This review aims to evaluate the various natural agents affecting mitochondria and categorize them in different classes. Henceforth, our study may further support the potential mitocan behavior of various natural agents and highlight their significance in formulating novel potential anticancer therapeutics.
Collapse
|
7
|
The influence of exogenous methyl jasmonate on the germination and, content and composition of flavonoids in extracts from seedlings of yellow and narrow-leafed lupine. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Kim HY, Jin H, Bae J, Choi HK. Metabolic and lipidomic investigation of the antiproliferative effects of coronatine against human melanoma cells. Sci Rep 2019; 9:3140. [PMID: 30816283 PMCID: PMC6395766 DOI: 10.1038/s41598-019-39990-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer, with metastatic melanoma being refractory to currently available conventional therapies. In this study, we evaluated the inhibitory effect of coronatine (COR) on the proliferation of metastatic melanoma cells. COR inhibited the proliferation of melanoma cells but negligibly affected the proliferation of normal melanocytes. Comparative metabolic and lipidomic profiling using gas chromatography-mass spectrometry and direct infusion-mass spectrometry was performed to investigate COR-induced metabolic changes. These analyses identified 33 metabolites and 82 lipids. Of these, the levels of lactic acid and glutamic acid, which are involved in energy metabolism, significantly decreased in COR-treated melanoma cells. Lipidomic profiling indicated that ceramide levels increased in COR-treated melanoma cells, suggesting that ceramides could function as a suppressor of cancer cell proliferation. In contrast, the levels of phosphatidylinositol (PI) species, including PI 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, which were found to be potential biomarkers of melanoma metastasis in our previous study, were lower in the COR-treated cells than in control cells. The findings of metabolomic and lipidomic profiling performed in the present study provide new insights on the anticancer mechanisms of COR and can be used to apply COR in cancer treatment.
Collapse
Affiliation(s)
- Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hanyong Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Chapuis C, Richard CA. A One Pot Synthesis of Dehydrohedione (DHH) from a Hedione
®
Precursor. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Chapuis
- Corporate R&D Division, New Ingredients; Firmenich SA; P.O.Box 239 CH-1211 Geneva 8 Switzerland
| | - Claude-Alain Richard
- Corporate R&D Division, New Ingredients; Firmenich SA; P.O.Box 239 CH-1211 Geneva 8 Switzerland
| |
Collapse
|
10
|
da Silva GBRF, Alécio AC, Scarpa MVC, do Egito EST, Sequinel R, Hatanaka RR, Oliveira JE, Oliveira AGD. An analytical GC-MS method to quantify methyl dihydrojasmonate in biocompatible oil-in-water microemulsions: physicochemical characterization and in vitro release studies. Pharm Dev Technol 2017; 23:151-157. [PMID: 28565943 DOI: 10.1080/10837450.2017.1337792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microemulsions (MEs) loaded with methyl dihydrojasmonate (MJ) were developed to improve the aqueous solubility of this drug. The composition of the formulations ranged according to the oil/surfactant ratio (O/S). The MEs were characterized according to diameter of droplets, X-ray diffraction and polarized light microscopy. The MJ identification and quantification was performed by gas chromatography-mass spectrometry (GC-MS). The MJ showed a retention time of ∼16.7 min for all samples. The obtained correlation coefficient from the calibration graph was 0.991. The developed analytical method was effective enough to quantify low and high concentrations of MJ. The increase of the O/S ME ratio led to a reduction of the droplet diameter. All formulations showed an amorphous structure and the behavior varied between isotropic and anisotropic systems. A decrease in the release of MJ with the increase of the O/S ratio in the formulations was observed. The analytical method developed for the quantitative determination of MJ is suitable to detect and quantify the drug compound from different compositions of MEs in the in vitro release test, and by analogy in other prolonged effects related to the drug reservoir effect of these systems was observed, revealing that ME can be a promising nanocarrier for MJ delivery to tumor cells.
Collapse
Affiliation(s)
- Gisela Bevilacqua Rolfsen Ferreira da Silva
- a Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, PPG em Ciências Farmacêuticas , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | - Alberto Camilo Alécio
- b Instituto de Quimica, Centro de Monitoramento e Pesquisa da Qualidade de Combustíveis (CEMPEQC) , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | - Maria Virginia Costa Scarpa
- a Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, PPG em Ciências Farmacêuticas , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | | | - Rodrigo Sequinel
- b Instituto de Quimica, Centro de Monitoramento e Pesquisa da Qualidade de Combustíveis (CEMPEQC) , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | - Rafael Rodrigues Hatanaka
- b Instituto de Quimica, Centro de Monitoramento e Pesquisa da Qualidade de Combustíveis (CEMPEQC) , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | - José Eduardo Oliveira
- b Instituto de Quimica, Centro de Monitoramento e Pesquisa da Qualidade de Combustíveis (CEMPEQC) , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| | - Anselmo Gomes de Oliveira
- a Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, PPG em Ciências Farmacêuticas , Unesp-Universidade Estadual Paulista , Araraquara , SP , Brazil
| |
Collapse
|
11
|
Ávila-Román J, Talero E, de los Reyes C, Zubía E, Motilva V, García-Mauriño S. Cytotoxic Activity of Microalgal-derived Oxylipins against Human Cancer Cell lines and their Impact on ATP Levels. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oxylipins are metabolites derived from lipid peroxidation. The plant oxylipin methyl jasmonate (MJ) shows cytotoxic activity against cancer cell lines of various origins, with ATP-depletion being one of the mechanisms responsible for this effect. The cytotoxic activity of oxylipins (OXLs) isolated from the microalgae Chlamydomonas debaryana (13-HOTE) and Nannochloropsis gaditana (15-HEPE) was higher against UACC-62 (melanoma) than towards HT-29 (colon adenocarcinoma) cells. OXLs lowered the ATP levels of HT-29 and UACC-62 cells, but the effect was higher on the second cell line, which had higher basal ATP. This result proves a link between the cytotoxicity and the capability of these compounds to deplete ATP. In addition, the combination of 13-HOTE with the anticancer drug 5-fluorouracil (5-FU) induced a synergistic toxicity against HT-29 cells. These results highlight the therapeutic potential of oxylipins derived from microalgae.
Collapse
Affiliation(s)
| | - Elena Talero
- Department of Pharmacology, University of Seville, Seville, Spain
| | | | - Eva Zubía
- Departament of Organic Chemistry, University of Cádiz, Puerto Real, Spain
| | - Virginia Motilva
- Department of Pharmacology, University of Seville, Seville, Spain
| | | |
Collapse
|
12
|
Methyl Jasmonate: An Alternative for Improving the Quality and Health Properties of Fresh Fruits. Molecules 2016; 21:molecules21060567. [PMID: 27258240 PMCID: PMC6273056 DOI: 10.3390/molecules21060567] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
Methyl jasmonate (MeJA) is a plant growth regulator belonging to the jasmonate family. It plays an important role as a possible airborne signaling molecule mediating intra- and inter-plant communications and modulating plant defense responses, including antioxidant systems. Most assessments of this compound have dealt with post-harvest fruit applications, demonstrating induced plant resistance against the detrimental impacts of storage (chilling injuries and pathogen attacks), enhancing secondary metabolites and antioxidant activity. On the other hand, the interactions between MeJA and other compounds or technological tools for enhancing antioxidant capacity and quality of fruits were also reviewed. The pleiotropic effects of MeJA have raisen numerous as-yet unanswered questions about its mode of action. The aim of this review was endeavored to clarify the role of MeJA on improving pre- and post-harvest fresh fruit quality and health properties. Interestingly, the influence of MeJA on human health will be also discussed.
Collapse
|
13
|
da Silva GBRF, Scarpa MV, Carlos IZ, Quilles MB, Lia RCC, do Egito EST, de Oliveira AG. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate. Int J Nanomedicine 2015; 10:585-94. [PMID: 25609963 PMCID: PMC4298349 DOI: 10.2147/ijn.s67652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.
Collapse
Affiliation(s)
- Gisela Bevilacqua Rolfsen Ferreira da Silva
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Maria Virginia Scarpa
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Iracilda Zepone Carlos
- Departamento de Análises Clínicas, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Marcela Bassi Quilles
- Departamento de Análises Clínicas, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | | | | | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| |
Collapse
|
14
|
Modulatory roles of glycolytic enzymes in cell death. Biochem Pharmacol 2014; 92:22-30. [PMID: 25034412 DOI: 10.1016/j.bcp.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Cancer cells depend on an altered energy metabolism characterized by increased rates of both glycolysis and glutaminolysis. Accordingly, corresponding key metabolic enzymes are overexpressed or hyperactivated. As a result, this newly acquired metabolic profile determines most other cancer hallmarks including resistance to cell death. Recent findings highlighted metabolic enzymes as direct modulators of cell death pathways. Conversely, key mediators of cell death mechanisms are emerging as new binding partners of glycolytic actors; moreover, there is evidence that metabolic regulators re-localize to specific subcellular compartments or organelles to modulate various types of cell demise. The final outcome is the resistance against cell death programs. Current findings give a new meaning to metabolic pathways and allow understanding how they affect cancer-specific pathological alterations. Furthermore, they shed light on potentially targetable functions of metabolic actors to restore susceptibility of cancer cells to death. Here, we discuss an emerging interplay between cell metabolism and cell death, focusing on interactions that may offer new options of targeted therapies in cancer treatment involving more specifically hexokinases and glyceraldehyde-3-phosphate dehydrogenase.
Collapse
|
15
|
Ghasemi Pirbalouti A, Sajjadi SE, Parang K. A review (research and patents) on jasmonic acid and its derivatives. Arch Pharm (Weinheim) 2014; 347:229-239. [PMID: 24470216 DOI: 10.1002/ardp.201300287] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/03/2023]
Abstract
In medicinal chemistry there is a growing interest in using small molecules, including plant stress hormones. Jasmonic acid (JA) and its volatile methyl ester (MJ), collectively termed jasmonates, are lipid-derived cyclopentanone compounds that occur ubiquitously and exclusively in the plant kingdom. This review covers the synthesis, usage, and biological activities of JA and its derivatives. A brief overview of the available information on JA and its features is given, followed by a detailed review of JA and its derivatives as drugs and prodrugs; the properties in plants and the synthesis in recent patents are described. This review shows the direction of long-term drug/nutraceutical safety trials and provides insights for future research in this area. Research on JA continues to be of major interest. Recent innovations offer hope for the development of new therapeutics in related fields. It is anticipated that several analogs can be advanced to preclinical and clinical studies.
Collapse
Affiliation(s)
- Abdollah Ghasemi Pirbalouti
- Department of Medicinal Plants, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Medicinal Plants Program, Stockbridge School of Agriculture, College of Natural Science, Massachusetts University, Amherst, MA, USA
| | | | | |
Collapse
|
16
|
KIM SELIM, LEE SOOTEIK, TRANG KIEUTHITHU, KIM SEONGHUN, KIM INHEE, LEE SEUNGOK, KIM DAEGHON, KIM SANGWOOK. Parthenolide exerts inhibitory effects on angiogenesis through the downregulation of VEGF/VEGFRs in colorectal cancer. Int J Mol Med 2014; 33:1261-7. [DOI: 10.3892/ijmm.2014.1669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
|
17
|
da Silva GBRF, Scarpa MV, Rossanezi G, do Egito EST, de Oliveira AG. Development and characterization of biocompatible isotropic and anisotropic oil-in-water colloidal dispersions as a new delivery system for methyl dihydrojasmonate antitumor drug. Int J Nanomedicine 2014; 9:867-76. [PMID: 24596463 PMCID: PMC3930478 DOI: 10.2147/ijn.s46055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microemulsions (MEs) are colloidal systems that can be used for drug-delivery and drug-targeting purposes. These systems are able to incorporate drugs modifying bioavailability and stability and reducing toxic effects. The jasmonate compounds belong to a group of plant stress hormones, and the jasmonic acid and its methyl ester derivative have been described as having anticancer activity. However, these compounds are very poorly water-soluble, not allowing administration by an intravenous route without an efficient nanostructured carrier system. In this work, biocompatible MEs of appropriate diameter size for intravenous route administration, loaded and unloaded with methyl dihydrojasmonate (MJ), were developed and described in a pseudo-ternary phase diagram. The compositions of the MEs were carefully selected from their own regions in the pseudo-ternary phase diagram. The formulations were analyzed by light scattering, polarized light microscopy, and X-ray diffraction. Also, a study on rheological profile was performed. The results showed that the droplet size decreased with both MJ incorporation and oil phase/surfactant ratio. All compositions of the studied MEs showed rheological behavior of pseudoplastic fluid and amorphous structures. In the absence of MJ, most of the studied MEs had thixotropic characteristics, which became antithixotropic in the presence of the drug. Almost all MJ-unloaded MEs presented anisotropic characteristics, but some formulations became isotropic, especially in the presence of MJ. The results of this study support the conclusion that the studied system represents a promising vehicle for in vivo administration of the MJ antitumor drug.
Collapse
Affiliation(s)
| | - Maria Virginia Scarpa
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Gustavo Rossanezi
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
18
|
Cesari IM, Carvalho E, Figueiredo Rodrigues M, Mendonça BDS, Amôedo ND, Rumjanek FD. Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014; 2014:572097. [PMID: 24648844 PMCID: PMC3933403 DOI: 10.1155/2014/572097] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MJ), an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1) arrests cell cycle, inhibiting cell growth and proliferation, (2) causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis) pathways, (3) detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4) induces reactive oxygen species mediated responses, (5) stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6) inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7) inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.
Collapse
Affiliation(s)
- Italo Mario Cesari
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Erika Carvalho
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mariana Figueiredo Rodrigues
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Bruna dos Santos Mendonça
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Nivea Dias Amôedo
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets 2013; 17:1221-33. [DOI: 10.1517/14728222.2013.833607] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Zheng L, Li D, Xiang X, Tong L, Qi M, Pu J, Huang K, Tong Q. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. BMC Cancer 2013; 13:74. [PMID: 23394613 PMCID: PMC3576238 DOI: 10.1186/1471-2407-13-74] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/30/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. METHODS Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. RESULTS Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. CONCLUSIONS Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Russo A, Espinoza CL, Caggia S, Garbarino JA, Peña-Cortés H, Carvajal TM, Cardile V. A new jasmonic acid stereoisomeric derivative induces apoptosis via reactive oxygen species in human prostate cancer cells. Cancer Lett 2012; 326:199-205. [PMID: 22935678 DOI: 10.1016/j.canlet.2012.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on prostate cancer cells, in the present study, we evaluated the effect of a (-)-jasmonic acid derivative, the 3-hydroxy-2(S)-(2Z-butenyl)-cyclopentane-1(S)-acetic acid, obtained by biotransformation, on cell growth in androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. The results obtained show that the new compound was able to inhibit the growth of both prostate cancer cells. In addition, our data seem to indicate that the apoptosis evocated by this new molecule, at least in part, appears to be associated with an increase of reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, Biochemistry Section, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Jasmonates, plant stress hormones protecting the plant from microbial pathogens and environmental stresses, were also discovered to have toxic activities toward mammalian cancer cells. Methyl jasmonate (MJ) was found to be the most active anti-cancer derivate among natural jasmonates, exhibiting a specific cell death-induction effect toward several cancer cells. Since that discovery of jasmonates-inducing cancer cell death, the molecular mechanism of action of jasmonates leading to cell death was deciphered. Moreover, in addition to the direct effects of MJ on cancer cell death, it was found to deregulate several genes and affect various intracellular factors and cellular processes, such as sensitization of apoptotic cell death induced by TRAIL, cancer cell migration attenuation, cell cycle arrest, and differentiation. This mini-review summarizes over a decade of research of jasmonates as anti-cancer agents.
Collapse
Affiliation(s)
- Ziv Raviv
- Department of Clinical Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
23
|
Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α. Eur J Pharmacol 2012; 691:28-37. [DOI: 10.1016/j.ejphar.2012.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
|
24
|
Raviv Z, Zilberberg A, Cohen S, Reischer-Pelech D, Horrix C, Berger MR, Rosin-Arbesfeld R, Flescher E. Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity. Br J Pharmacol 2012; 164:1433-44. [PMID: 21486277 DOI: 10.1111/j.1476-5381.2011.01419.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Methyl jasmonate (MJ) is a plant stress hormone with selective cytotoxic anti-cancer activities. The TNF-related apoptosis-inducing ligand (TRAIL) death pathway is an attractive target for cancer therapy. Although TRAIL receptors are specifically expressed in primary cancer cells and cancer cell lines, many types of cancer cells remain resistant to TRAIL-induced cytotoxicity. Here we have assessed a possible synergy between MJ and TRAIL cytotoxicity in colorectal cancer (CRC) cell lines. EXPERIMENTAL APPROACH CRC cell lines were pre-incubated with sub-cytotoxic concentrations of MJ followed by TRAIL administration. Cell death was determined by XTT assay and microscopy. Cytochrome c release, caspase cleavage, TRAIL-associated factors, X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were detected by immunoblotting. Survivin transcription was examined by RT-PCR. KEY RESULTS Pre-treatment with MJ resulted in increased TRAIL-induced apoptotic cell death, increased cytochrome c release and caspase cleavage. TNFRSF10A, TNFRSF10B, TNFRSF10D, Fas-associated death domain and cellular FLICE-like inhibitory protein remained unchanged during MJ-induced TRAIL sensitization, whereas MJ induced a significant decrease in survivin protein levels. Overexpression of survivin prevented MJ-induced TRAIL cytotoxicity, implying a role for survivin in MJ-induced TRAIL sensitization. MJ decreased survivin mRNA indicating that MJ may affect survivin transcription. In a β-catenin/transcription factor (TCF)-dependent luciferase activity assay, MJ decreased TCF-dependent transcriptional activity. CONCLUSION AND IMPLICATIONS MJ, at sub-cytotoxic levels, sensitized CRC cells to TRAIL-induced apoptosis. Thus, combinations of MJ and TRAIL, both selective anti-cancer agents, have potential as novel treatments for CRC.
Collapse
Affiliation(s)
- Z Raviv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ramsay EE, Hogg PJ, Dilda PJ. Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 2011; 28:2731-44. [PMID: 21918915 DOI: 10.1007/s11095-011-0584-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Cancer cells catabolise nutrients in a different way than healthy cells. Healthy cells mainly rely on oxidative phosphorylation, while cancer cells employ aerobic glycolysis. Glucose is the main nutrient catabolised by healthy cells, while cancer cells often depend on catabolism of both glucose and glutamine. A key organelle involved in this altered metabolism is mitochondria. Mitochondria coordinate the catabolism of glucose and glutamine across the cancer cell. Targeting mitochondrial metabolism in cancer cells has potential for the treatment of this disease. Perhaps the most promising target is the hexokinase-voltage dependent anion channel-adenine nucleotide translocase complex that spans the outer- and inner-mitochondrial membranes. This complex links glycolysis, oxidative phosphorylation and mitochondrial-mediated apoptosis in cancer cells. This review discusses cancer cell mitochondrial metabolism and the small molecule inhibitors of this metabolism that are in pre-clinical or clinical development.
Collapse
Affiliation(s)
- Emma E Ramsay
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
26
|
Lin HH, Chen JH, Chou FP, Wang CJ. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br J Pharmacol 2011; 162:237-54. [PMID: 20840540 DOI: 10.1111/j.1476-5381.2010.01022.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Protocatechuic acid (PCA) is plentiful in edible fruits and vegetables and is thus one anti-oxidative component of normal human diets. However, the molecular mechanisms involved in the chemopreventive activity of PCA are poorly understood. Here, we investigated the mechanism(s) underlying the anti-metastatic potential of PCA. EXPERIMENTAL APPROACH We used AGS cells in a wound healing model and Boyden chamber assays in vitro and injection of B16/F10 melanoma cells in mice (metastasis model in vivo) to analyse the effect of PCA on cancer cell invasion and metastasis. The activities and expression of molecular proteins were measured by zymographic assay, real-time RT-PCR and Western blotting. KEY RESULTS PCA inhibited cell migration and invasion at non-cytotoxic concentrations. Decreased expression of matrix metalloproteinase (MMP)-2 and a coincident increase in tissue inhibitor of MMP followed treatment with PCA. The PCA-inhibited MMP-2 activity and expression was accompanied by inactivation of NF-κB. All these effects of PCA could be mediated via the RhoB/ protein kinase Cε (PKCε) and Ras/Akt cascade pathways, as demonstrated by inhibition of PKCε and transfection of PKCε siRNA and ras overexpression vector. Finally, PCA inhibited metastasis of B16/F10 melanoma cells to the liver in mice. CONCLUSION AND IMPLICATIONS Our data imply that PCA down-regulated the Ras/Akt/NF-κB pathway by targeting RhoB activation, which in turn led to a reduction of MMP-mediated cellular events in cancer cells and provides a new mechanism for the anti-cancer activity of PCA.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
27
|
Park C, Jin CY, Kim GY, Cheong J, Jung JH, Yoo YH, Choi YH. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro. Toxicol In Vitro 2010; 24:1920-6. [PMID: 20696234 DOI: 10.1016/j.tiv.2010.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 08/02/2010] [Indexed: 01/28/2023]
Abstract
The pro-apoptotic activity of J-7, a synthetic methyl jasmonate derivative, on the Hep3B human hepatocarcinoma cell line was investigated. Treatment of Hep3B cells with J-7 resulted in growth inhibition and the induction of apoptosis as measured by trypan blue-excluding cells, MTT assay, nuclear staining, DNA fragmentation, and flow cytometry analysis. The increased apoptotic events in Hep3B cells caused by J-7 were associated with the alteration in the ratio of Bax/Bcl-2 protein expression. J-7 treatment induced the expression of death receptor-related proteins such as death receptor 5, which triggered the activation of caspase-8 and the down-regulation of the whole Bid expression. In addition, the apoptosis induction by J-7 was correlated with the activation of caspase-9 and caspase-3, down-regulation IAP family proteins such as XIAP and cIAP-1, and concomitant degradation of poly (ADP-ribose) polymerase. However, the cytotoxic and apoptotic effects induced by J-7 were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role that caspase-3 plays in the process. Furthermore, blocking the extracellular signal-regulated protein kinase and c-Jun N-terminal kinase pathways showed increased apoptosis and the activation of caspases in J-7-induced apoptosis. The results indicated that J-7 induces the apoptosis of Hep3B cells through a signaling cascade of death-receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways, which are associated with the activation of the mitogen-activated protein kinases signal pathway.
Collapse
Affiliation(s)
- Cheol Park
- Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan 614-714, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Tomihari M, Chung JS, Akiyoshi H, Cruz PD, Ariizumi K. DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 2010; 70:5778-87. [PMID: 20570888 PMCID: PMC2905472 DOI: 10.1158/0008-5472.can-09-2538] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DC-HIL/glycoprotein nmb (Gpnmb) expressed on antigen-presenting cells attenuates T-cell activation by binding to syndecan-4 (SD-4) on activated T cells. Because DC-HIL/Gpnmb is expressed abundantly by mouse and human melanoma lines, we posited that melanoma-associated DC-HIL/Gpnmb exerts similar inhibitory function on melanoma-reactive T cells. We generated small interfering RNA-transfected B16F10 melanoma cells to completely knock down DC-HIL/Gpnmb expression, with no alteration in cell morphology, melanin synthesis, or MHC class I expression. This knockdown had no effect on B16F10 proliferation in vitro or entry into the cell cycle following growth stimulation, but it markedly reduced the growth of these cells in vivo following their s.c. injection into syngeneic immunocompetent (but not immunodeficient) mice. This reduction in tumor growth was due most likely to an augmented capacity of DC-HIL-knocked down B16F10 cells (compared with controls) to activate melanoma-reactive T cells as documented in vitro and in mice. Whereas DC-HIL knockdown had no effect on susceptibility of melanoma to killing by cytotoxic T cells, blocking SD-4 function enhanced the reactivity of CD8(+) T cells to melanoma-associated antigens on parental B16F10 cells. Using an assay examining the spread to the lung following i.v. injection, DC-HIL-knocked down cells produced lung foci at similar numbers compared with that produced by control cells, but the size of the former foci was significantly smaller than the latter. We conclude that DC-HIL/Gpnmb confers upon melanoma the ability to downregulate the activation of melanoma-reactive T cells, thereby allowing melanoma to evade immunologic recognition and destruction. As such, the DC-HIL/SD-4 pathway is a potentially useful target for antimelanoma immunotherapy.
Collapse
Affiliation(s)
- Mizuki Tomihari
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX
| | - Hideo Akiyoshi
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX
- Laboratory of Advanced Diagnosis and Treatment, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ponciano D. Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX
| |
Collapse
|
29
|
Current research and development of chemotherapeutic agents for melanoma. Cancers (Basel) 2010; 2:397-419. [PMID: 24281076 PMCID: PMC3835084 DOI: 10.3390/cancers2020397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 12/27/2022] Open
Abstract
Cutaneous malignant melanoma is the most lethal form of skin cancer and an increasingly common disease worldwide. It remains one of the most treatment-refractory malignancies. The current treatment options for patients with metastatic melanoma are limited and in most cases non-curative. This review focuses on conventional chemotherapeutic drugs for melanoma treatment, by a single or combinational agent approach, but also summarizes some potential novel phytoagents discovered from dietary vegetables or traditional herbal medicines as alternative options or future medicine for melanoma prevention. We explore the mode of actions of these natural phytoagents against metastatic melanoma.
Collapse
|
30
|
Uziel O, Beery E, Dronichev V, Samocha K, Gryaznov S, Weiss L, Slavin S, Kushnir M, Nordenberg Y, Rabinowitz C, Rinkevich B, Zehavi T, Lahav M. Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms. PLoS One 2010; 5:e9132. [PMID: 20161752 PMCID: PMC2817744 DOI: 10.1371/journal.pone.0009132] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/06/2009] [Indexed: 12/17/2022] Open
Abstract
Background Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner. Methodology/Principal Findings In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening. Conclusions/Significance To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.
Collapse
Affiliation(s)
- Orit Uziel
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Beery
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vladimir Dronichev
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katty Samocha
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sergei Gryaznov
- Geron Corporation, Menlo Park, California, United States of America
| | - Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | - Shimon Slavin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | - Yardena Nordenberg
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Tania Zehavi
- Department of Pathology, Meir Medical Center, Kfar-Saba, Israel
| | - Meir Lahav
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
31
|
Cohen S, Flescher E. Methyl jasmonate: a plant stress hormone as an anti-cancer drug. PHYTOCHEMISTRY 2009; 70:1600-9. [PMID: 19660769 DOI: 10.1016/j.phytochem.2009.06.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 05/20/2023]
Abstract
Jasmonates act as signal transduction intermediates when plants are subjected to environmental stresses such as UV radiation, osmotic shock and heat. In the past few years several groups have reported that jasmonates exhibit anti-cancer activity in vitro and in vivo and induce growth inhibition in cancer cells, while leaving the non-transformed cells intact. Recently, jasmonates were also discovered to have cytotoxic effects towards metastatic melanoma both in vitro and in vivo. Three mechanisms of action have been proposed to explain this anti-cancer activity. The bio-energetic mechanism - jasmonates induce severe ATP depletion in cancer cells via mitochondrial perturbation. Furthermore, methyl jasmonate (MJ) has the ability to detach hexokinase from the mitochondria. Second, jasmonates induce re-differentiation in human myeloid leukemia cells via mitogen-activated protein kinase (MAPK) activity and were found to act similar to the cytokinin isopentenyladenine (IPA). Third, jasmonates induce apoptosis in lung carcinoma cells via the generation of hydrogen peroxide, and pro-apoptotic proteins of the Bcl-2 family. Combination of MJ with the glycolysis inhibitor 2-deoxy-d-glucose (2DG) and with four conventional chemotherapeutic drugs resulted in super-additive cytotoxic effects on several types of cancer cells. Finally, jasmonates have the ability to induce death in spite of drug-resistance conferred by either p53 mutation or P-glycoprotein (P-gp) over-expression. In summary, the jasmonates are anti-cancer agents that exhibit selective cytotoxicity towards cancer cells, and thus present hope for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sharon Cohen
- Department of Clinical Microbiology and Immunology, Sacker Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
32
|
Abstract
The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway.
Collapse
|
33
|
Tsumura H, Akimoto M, Kiyota H, Ishii Y, Ishikura H, Honma Y. Gene expression profiles in differentiating leukemia cells induced by methyl jasmonate are similar to those of cytokinins and methyl jasmonate analogs induce the differentiation of human leukemia cells in primary culture. Leukemia 2008; 23:753-60. [DOI: 10.1038/leu.2008.347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Ofer K, Gold D, Flescher E. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol 2008; 38:959-68. [DOI: 10.1016/j.ijpara.2007.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 11/30/2022]
|
35
|
Ezekwudo D, Shashidharamurthy R, Devineni D, Bozeman E, Palaniappan R, Selvaraj P. Inhibition of expression of anti-apoptotic protein Bcl-2 and induction of cell death in radioresistant human prostate adenocarcinoma cell line (PC-3) by methyl jasmonate. Cancer Lett 2008; 270:277-85. [PMID: 18573594 DOI: 10.1016/j.canlet.2008.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/03/2007] [Accepted: 05/09/2008] [Indexed: 12/20/2022]
Abstract
Hormone refractory human prostate cancer cell lines are known to be radioresistant, a feature attributed to their ability to induce anti-apoptotic proteins of the Bcl-2 family when exposed to radiation. We investigated whether pro-apoptotic compounds such as methyl jasmonate, a plant stress hormone, can counteract the radiation-induced anti-apoptotic mechanism in a human prostate cancer cell line PC-3. Significant (p<0.05) increase in cytotoxicity was observed in the combined treatment groups compared to single treatments with methyl jasmonate or gamma-radiation. Treatment of irradiated PC-3 cells with methyl jasmonate resulted in suppression of anti-apoptotic Bcl-2 protein and elevation of caspase-3 activity. Our results showed increased apoptosis in the combined treatment group as compared to the irradiated group or the untreated control. In summary, methyl jasmonate suppressed the radiation-induced Bcl-2 expression and enhanced the radiation sensitivity of human prostate cancer cells.
Collapse
Affiliation(s)
- Daniel Ezekwudo
- Department of Pathology and Laboratory Medicine, Woodruff Memorial Research Building, 101 Woodruff Circle, WMB Rm 7309, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
36
|
Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 2008; 27:4636-43. [PMID: 18408762 DOI: 10.1038/onc.2008.108] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular bio-energetic metabolism and mitochondria are recognized as potential targets for anticancer agents, due to the numerous relevant peculiarities cancer cells exhibit. Jasmonates are anticancer agents that interact directly with mitochondria. The aim of this study was to identify mitochondrial molecular targets of jasmonates. We report that jasmonates bind to hexokinase and detach it from the mitochondria and its mitochondrial anchor-the voltage-dependent anion channel (VDAC), as judged by hexokinase immunochemical and activity determinations, surface plasmon resonance analysis and planar lipid bilayer VDAC-activity analysis. Furthermore, the susceptibility of cancer cells and mitochondria to jasmonates is dependent on the expression of hexokinase, evaluated using hexokinase-overexpressing transfectants and its mitochondrial association. Many types of cancer cells exhibit overexpression of the key glycolytic enzyme, hexokinase, and its excessive binding to mitochondria. These characteristics are considered to play a pivotal role in cancer cell growth rate and survival. Thus, our findings provide an explanation for the selective effects of jasmonates on cancer cells. Most importantly, this is the first demonstration of a cytotoxic mechanism based on direct interaction between an anticancer agent and hexokinase. The proposed mechanism can serve to guide development of a new selective approach for cancer therapy.
Collapse
Affiliation(s)
- N Goldin
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2007; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|