1
|
Therapeutic potential of bromhexine for acute itch in mice: Involvement of TMPRSS2 and kynurenine pathway. Int Immunopharmacol 2023; 117:109919. [PMID: 36842232 DOI: 10.1016/j.intimp.2023.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Itching is an unpleasant sensation on the skin that could negatively impact the quality of life. Over the years, many non-pharmacological and pharmacological approaches have been introduced to mitigate this burdensome condition; However, the effectiveness of these methods remains questioned. Bromhexine, derived from the Adhatoda vasica plant, is a safe drug with minimal side effects. It has been widely used in managing respiratory symptoms over the years. The results of our study revealed that bromhexine has the potential to alleviate acute itch induced by Compound 48/80, a known mast cell destabilizer. According to our findings, bromhexine exerts its antipruritic effects primarily by inhibiting the Transmembrane Protein Serine Protease 2 (TMPRSS2) and, to a lesser extent, by decreasing the activation of the Kynurenine Pathway (KP). We further investigated the KP involvement by administrating 1-Methyl Tryptophan (1-MT), a known indoleamine-2,3-dioxygenase (IDO) inhibitor. 1-MT was found to be effective in reducing the itch itself. Moreover, co-administration of bromhexine and 1-MT resulted in synergistic antipruritic effects, suggesting that KP plays a role in acute itch. To conclude, we have presented for the first time a repositioning of bromhexine as a treatment for acute itch. In addition, we addressed the involvement of TMPRSS2 and KP in this process.
Collapse
|
2
|
Jang EH, Bae HD, Jeon Y, Shin DH, Kang S, Lee K. Meclizine, a piperazine-derivative antihistamine, binds to dimerized translationally controlled tumor protein and attenuates allergic reactions in a mouse model. Biomed Pharmacother 2023; 157:114072. [PMID: 36493627 DOI: 10.1016/j.biopha.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a highly conserved protein present in most eukaryotes, is involved in numerous biological processes. Only the dimeric form of TCTP (dTCTP) formed during inflammatory conditions exhibits cytokine-like activity. Therefore, dTCTP is considered as a therapeutic target for allergic diseases. Because monomeric TCTP (mTCTP) and dTCTP share a high topological similarity, we hypothesized that small molecules interacting with mTCTP would also bind to dTCTP and interfere with dTCTP-based cellular processes. In this study, nine compounds listed in the literature as interacting with mTCTP were investigated for their ability to suppress the activity of extracellular dTCTP in bronchial epithelial cells. It was found that one of the nine, meclizine, a piperazine-derivative antihistamine, significantly reduced IL-8 release and suppressed the NF-κB pathway. The direct interaction of meclizine with dTCTP was confirmed by surface plasmon resonance (SPR). Also, we found that meclizine can attenuate ovalbumin (OVA)-induced airway inflammation in mice. Therefore, meclizine might be a potential anti-allergic drug as an inhibitor for dTCTP.
Collapse
Affiliation(s)
- Eun-Hwa Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hae-Duck Bae
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- Bone Science R&D Center, 3, Magokjungang 12-ro, Gangseo-gu, Seoul 07789, South Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
3
|
Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV. The implications of histamine metabolism and signaling in renal function. Physiol Rep 2021; 9:e14845. [PMID: 33932106 PMCID: PMC8087988 DOI: 10.14814/phy2.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Inflammation is an essential part of the immune response; it has been found to be central to the disruption of kidney function in acute kidney injury, diabetic nephropathy, hypertension, and other renal conditions. One of the well‐known mediators of the inflammatory response is histamine. Histamine receptors are expressed throughout different tissues, including the kidney, and their inhibition has proven to be a viable strategy for the treatment of many inflammation‐associated diseases. Here, we provide an overview of the current knowledge regarding the role of histamine and its metabolism in the kidney. Establishing the importance of histamine signaling for kidney function will enable new approaches for the treatment of kidney diseases associated with inflammation.
Collapse
Affiliation(s)
| | - Mikhail V Fomin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Irina A Yankelevich
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Peddapalli A, Gehani M, Kalle AM, Peddapalli SR, Peter AE, Sharad S. Demystifying Excess Immune Response in COVID-19 to Reposition an Orphan Drug for Down-Regulation of NF-κB: A Systematic Review. Viruses 2021; 13:378. [PMID: 33673529 PMCID: PMC7997247 DOI: 10.3390/v13030378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
The immunological findings from autopsies, biopsies, and various studies in COVID-19 patients show that the major cause of morbidity and mortality in COVID-19 is excess immune response resulting in hyper-inflammation. With the objective to review various mechanisms of excess immune response in adult COVID-19 patients, Pubmed was searched for free full articles not related to therapeutics or co-morbid sub-groups, published in English until 27.10.2020, irrespective of type of article, country, or region. Joanna Briggs Institute's design-specific checklists were used to assess the risk of bias. Out of 122 records screened for eligibility, 42 articles were included in the final review. The review found that eventually, most mechanisms result in cytokine excess and up-regulation of Nuclear Factor-κB (NF-κB) signaling as a common pathway of excess immune response. Molecules blocking NF-κB or targeting downstream effectors like Tumour Necrosis Factor α (TNFα) are either undergoing clinical trials or lack specificity and cause unwanted side effects. Neutralization of upstream histamine by histamine-conjugated normal human immunoglobulin has been demonstrated to inhibit the nuclear translocation of NF-κB, thereby preventing the release of pro-inflammatory cytokines Interleukin (IL) 1β, TNF-α, and IL-6 and IL-10 in a safer manner. The authors recommend repositioning it in COVID-19.
Collapse
Affiliation(s)
- Apparao Peddapalli
- Department of Microbiology, King George Hospital, Visakhapatnam 531011, Andhra Pradesh, India;
| | - Manish Gehani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, Telangana, India;
| | - Arunasree M. Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India;
| | - Siva R. Peddapalli
- Department of Biological Sciences-Biotechnology, Florida Institute of Technology, Melbourne, FL 32901, USA;
| | - Angela E. Peter
- Department of Biotechnology, College of Science & Technology, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India;
| | - Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| |
Collapse
|
6
|
Pal S, Gasheva OY, Zawieja DC, Meininger CJ, Gashev AA. Histamine-mediated autocrine signaling in mesenteric perilymphatic mast cells. Am J Physiol Regul Integr Comp Physiol 2020; 318:R590-R604. [PMID: 31913658 PMCID: PMC7099465 DOI: 10.1152/ajpregu.00255.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022]
Abstract
Lymphatic vessels play a critical role in mounting a proper immune response by trafficking peripheral immune cells to draining lymph nodes. Mast cells (MCs) are well known for their roles in type I hypersensitivity reactions, but little is known about their secretory regulation in the lymphatic niche. MCs, as innate sensor and effector cells, reside close to mesenteric lymphatic vessels (MLVs), and their activation and ability to release histamine influences the lymphatic microenvironment in a histamine-NF-κB-dependent manner. Using an established experimental protocol involving surgical isolation of rat mesenteric tissue segments, including MLVs and surrounding perilymphatic tissues, we tested the hypothesis that perilymphatic mesenteric MCs possess histamine receptors (HRs) that bind and respond to the histamine released from these same MCs. Under various experimental conditions, including inflammatory stimulation by LPS, we measured histamine in mesenteric perilymphatic tissues, evaluated expression of histidine decarboxylase in MCs along with the degree of MC degranulation, assessed the functional status of HRs in MCs, and evaluated the ability of histamine itself to induce MC activation. Finally, we evaluated the importance of MCs and HR1 and -2 for MLV-directed trafficking of CD11b/c-positive cells during acute tissue inflammation. Our data indicate the existence of a functionally potent MC-histamine autocrine regulatory loop, the elements of which are crucially important for acute inflammation-induced trafficking of the CD11b/c-positive cells toward MLVs. This MC-histamine loop serves as a first-line cellular servo control system, playing a key role in the innate and adaptive immune response as well as NF-κB-mediated maintenance of body homeostasis.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Olga Y Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| |
Collapse
|
7
|
Hanieh H, Hairul Islam VI, Saravanan S, Chellappandian M, Ragul K, Durga A, Venugopal K, Senthilkumar V, Senthilkumar P, Thirugnanasambantham K. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro. Eur J Pharmacol 2017; 814:178-186. [PMID: 28821452 DOI: 10.1016/j.ejphar.2017.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/13/2017] [Accepted: 08/14/2017] [Indexed: 11/15/2022]
Abstract
Pinocembrin (5, 7- dihydroxy flavanone) is the most abundant chiral flavonoid found in propolis, exhibiting antioxidant, antimicrobial and anti-inflammatory properties. However, the effect of Pinocembrin on allergic response is unexplored. Thus, current study aimed at investigating the effects of Pinocembrin on IgE-mediated allergic response in vitro. A special emphasis was directed toward histidine decarboxylase (HDC) and other pro-allergic and pro-inflammatory mediators. Preliminary studies, using a microbiological model of Klebsiella pneumoniae, provided first evidences that suggest Pinocembrin as a potential thermal stable inhibitor for HDC. Applying docking analysis revealed possible interaction between Pinocembrin and mammalian HDC. In vitro studies validated the predicted interaction and showed that Pinocembrin inhibits HDC activity and histamine in IgE-sensitized RBL-2H3 in response to dinitrophenol (DNP)-bovine serum albumin (BSA) stimulation. In addition, Pinocembrin mitigated the damage in the mitochondrial membrane, formation of cytoplasmic granules and degranulation as indicated by lower β-hexoseaminidase level. Interestingly, it reduced range of pro-inflammatory mediators in the IgE-mediated allergic response including tumor necrosis factor (TNF)-α, interleukin (IL)-6, nitric oxide (NO), inducible NO synthase (iNOS), phosphorylation of inhibitory kappa B (IкB)-α, prostaglandin (PGE)-2 and cyclooxygenase (COX)-2. In conclusion, current study suggests Pinocembrin as a potential HDC inhibitor, and provides the first evidences it is in vitro anti-allergic properties, suggesting Pinocembrin as a new candidate for natural anti-allergic drugs.
Collapse
Affiliation(s)
- Hamza Hanieh
- Biological Sciences Department, College of Science, King Faisal University, Al Hassa, Saudi Arabia
| | - Villianur Ibrahim Hairul Islam
- Biological Sciences Department, College of Science, King Faisal University, Al Hassa, Saudi Arabia; Pondicherry Centre For Biological Science and Educational trust, Jawahar Nagar, Pondicherry, India
| | - Subramanian Saravanan
- Pondicherry Centre For Biological Science and Educational trust, Jawahar Nagar, Pondicherry, India
| | - Muthiah Chellappandian
- Sri Paramakalyani Centre for Environmental Sciences, Alwarkurichi, Manonmaniam Sundaranar University, Tamil Nadu, India
| | - Kessavane Ragul
- Pondicherry Centre For Biological Science and Educational trust, Jawahar Nagar, Pondicherry, India
| | - Arumugam Durga
- Pondicherry Centre For Biological Science and Educational trust, Jawahar Nagar, Pondicherry, India
| | - Kaliyamoorthy Venugopal
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Tamil Nadu, India
| | - Venugopal Senthilkumar
- Pondicherry Centre For Biological Science and Educational trust, Jawahar Nagar, Pondicherry, India
| | - Palanisamy Senthilkumar
- Department of Genetic Engineering, School of Bioengineering, SRM University, SRM Nagar, Tamil Nadu, India
| | | |
Collapse
|
8
|
Liu SC, Lin CS, Chen SG, Chu YH, Lee FP, Lu HH, Wang HW. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells. Eur Arch Otorhinolaryngol 2016; 274:845-853. [PMID: 27623823 DOI: 10.1007/s00405-016-4295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022]
Abstract
Both glucocorticoids and H1-antihistamines are widely used on patients with airway diseases. However, their direct effects on airway epithelial cells are not fully explored. Therefore, we use the primary culture of human nasal epithelial cells (HNEpC) to delineate in vitro mucosal responses to above two drugs. HNEpC cells were cultured with/without budesonide and azelastine. The growth rate at each group was recorded and measured as population double time (PDT). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. Then, we used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Concentration-dependent treatment-induced inhibition of HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs led to significant PDT prolong. The immunocytochemistry showed the H1R, M1R and M3R were obviously located in the cell membrane without apparent difference after treatment. However, western blotting showed that budesonide can significantly up-regulate the H1R, M1R and M3R level while azelastine had opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but was lesser in those treated with azelastine, as compared to controls. Our data suggest that both budesonide and azelastine can significantly inhibit HNEpC proliferation, and therefore, be helpful in against airway remodeling. Long-term use of budesonide might amplify histamine signaling and result in airway hyperreactivity to stimulants by enhancing H1R, M1R and M3R expression while azelastine can oppose this effect. Therefore, combined use of those two drugs in patients with chronic inflammatory airway diseases may be an ideal option.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Shu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Radiation Oncology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shyi-Gen Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fei-Peng Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsuan-Hsuan Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsing-Won Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC. .,Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, No. 291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan, ROC.
| |
Collapse
|
9
|
Wang W, Shao S, Wang S. The role for human nasal epithelial nuclear factor kappa B activation in histamine-induced mucin 5 subtype B overproduction. Int Forum Allergy Rhinol 2015; 6:264-70. [PMID: 26574733 DOI: 10.1002/alr.21665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mucin 5 subtype B (MUC5B) is 1 of the major mucins secreted by airway epithelial cells. We sought to determine the effect of histamine on MUC5B expression in human nasal epithelial cells. METHODS Human nasal epithelial cells from allergic rhinitis patients were cultured, and stimulated with 4 concentrations of histamine, or pretreated with a specific nuclear factor-kappa B (NF-κB) inhibitor (Bay11-7082) before histamine stimulation. Immunocytochemistry and Western blotting were used to detect phosphorylated inhibitor of kappa B alpha (p-IκBα), NF-κBp65 and MUC5B protein. MUC5B content in supernatants was assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Histamine promoted IκBα phosphorylation and NF-κBp65 nuclear translocation. A concentration-dependent histamine-induced increase of MUC5B protein was observed, and its content in supernatants was upregulated in a concentration-dependent fashion, but these effects were attenuated by Bay11-7082. CONCLUSION Histamine activated the IκBα/NF-κB pathway by promoting IκBα phosphorylation and inducing NF-κBp65 nuclear translocation, contributing to MUC5B overproduction and secretion.
Collapse
Affiliation(s)
- Weiwei Wang
- Program in Molecular and Translational Medicine and Department of Anatomy, Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| | - Shengwen Shao
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| | - Sha Wang
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| |
Collapse
|
10
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
11
|
Hoppe K, Schleip R, Lehmann-Horn F, Jäger H, Klingler W. Contractile elements in muscular fascial tissue - implications for in-vitro contracture testing for malignant hyperthermia. Anaesthesia 2014; 69:1002-8. [DOI: 10.1111/anae.12752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2014] [Indexed: 01/11/2023]
Affiliation(s)
- K. Hoppe
- Department of Anaesthesiology; Ulm University; Ulm Germany
- Department of Anaesthesia; Intensive Care Medicine and Pain Therapy; Frankfurt University; Frankfurt am Main Germany
| | - R. Schleip
- Division of Neurophysiology; Ulm University; Ulm Germany
| | | | - H. Jäger
- Division of Neurophysiology; Ulm University; Ulm Germany
| | - W. Klingler
- Division of Neurophysiology; Ulm University; Ulm Germany
- Department of Neuroanaesthesiology; Neurosurgical University; Guenzburg Germany
| |
Collapse
|
12
|
Ho CY, Weng CJ, Jhang JJ, Cheng YT, Huang SM, Yen GC. Diallyl sulfide as a potential dietary agent to reduce TNF-α- and histamine-induced proinflammatory responses in A7r5 cells. Mol Nutr Food Res 2014; 58:1069-78. [DOI: 10.1002/mnfr.201300617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/20/2013] [Accepted: 11/24/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng-Ying Ho
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Chia-Jui Weng
- Graduate Institute of Applied Living Science; Tainan University of Technology; Yongkang Distric; Tainan City Taiwan
| | - Jhih-Jia Jhang
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Yu-Ting Cheng
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Shang-Ming Huang
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
13
|
Holden NS, George T, Rider CF, Chandrasekhar A, Shah S, Kaur M, Johnson M, Siderovski DP, Leigh R, Giembycz MA, Newton R. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells. J Pharmacol Exp Ther 2014; 348:12-24. [PMID: 24163441 DOI: 10.1124/jpet.113.204586] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and COPD.
Collapse
Affiliation(s)
- Neil S Holden
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (N.S.H., T.G., C.F.R., A.C., S.S., M.K., R.L., M.A.G., R.N.); GlaxoSmithKline Research and Development, Uxbridge, Middlesex, United Kingdom (M.J.); and Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia (D.P.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lu Q, Wang C, Pan R, Gao X, Wei Z, Xia Y, Dai Y. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor. J Cell Biochem 2013; 114:1009-19. [PMID: 23225320 DOI: 10.1002/jcb.24440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/24/2012] [Indexed: 11/06/2022]
Abstract
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pharmacology of Chinese Materia Medica, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Rider CF, Miller-Larsson A, Proud D, Giembycz MA, Newton R. Modulation of transcriptional responses by poly(I:C) and human rhinovirus: effect of long-acting β₂-adrenoceptor agonists. Eur J Pharmacol 2013; 708:60-7. [PMID: 23523474 DOI: 10.1016/j.ejphar.2013.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022]
Abstract
Exacerbations of asthma, a chronic inflammatory respiratory disease, are associated with viral upper respiratory tract infections involving human rhinovirus. Although glucocorticoids (corticosteroids) effectively control airways inflammation in many asthmatics, human rhinovirus-associated exacerbations show reduced glucocorticoid responsiveness. Using human bronchial epithelial BEAS-2B cells, we show that human rhinovirus reduced glucocorticoid-inducible activation of glucocorticoid response element (GRE) reporter systems in a time- and concentration-dependent manner. The synthetic double-stranded viral RNA mimetic, polyinosinic:polycytidylic acid (poly(I:C)), also reduced activation of GRE reporter systems in BEAS-2B and pulmonary A549 cells. In addition, poly(I:C) decreased transcription from cAMP response element (CRE)-, TATA-, simian virus 40- and nuclear factor-kappa B (NF-κB)-dependent reporter systems. The effects of poly(I:C) on GRE-reporter activation were countered by the long-acting β2-adrenoceptor agonists, formoterol and salmeterol. Likewise, increased expression of the gene cyclin-dependent kinase inhibitor 1C (CDKN1C; p57(KIP2)) by dexamethasone was reduced by poly(I:C), but was substantially enhanced by the addition of formoterol. Poly(I:C) induced the expression of interleukin-8 (IL8; CXCL8) and this was significantly decreased by dexamethasone, formoterol or their combination. This confirms that not all transcriptional responses were attenuated by poly(I:C) and that decreased glucocorticoid-dependent transcription can be counteracted by the addition of long-acting β2-adrenoceptor agonists. These data show how human rhinovirus may attenuate glucocorticoid-induced transcription to reduce anti-inflammatory activity. However, addition of long-acting β2-adrenoceptor agonist to the glucocorticoid functionally restored this response and shows how glucocorticoid plus long-acting β2-adrenoceptor agonist combinations may prove beneficial during virus-induced exacerbations of asthma.
Collapse
Affiliation(s)
- Christopher F Rider
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, 3330 Hospital Drive NW, AB, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
16
|
Glucocorticoid repression of inflammatory gene expression shows differential responsiveness by transactivation- and transrepression-dependent mechanisms. PLoS One 2013; 8:e53936. [PMID: 23349769 PMCID: PMC3545719 DOI: 10.1371/journal.pone.0053936] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022] Open
Abstract
Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes.
Collapse
|
17
|
Joanny E, Ding Q, Gong L, Kong P, Saklatvala J, Clark AR. Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1. Br J Pharmacol 2012; 165:1124-36. [PMID: 21718312 DOI: 10.1111/j.1476-5381.2011.01574.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE It is thought that the anti-inflammatory effects of glucocorticoids (GCs) are largely due to GC receptor (GR)-mediated transrepression of NF-κB and other transcription factors, whereas side effects are caused by activation of gene expression (transactivation). Selective GR modulators (SGRMs) that preferentially promote transrepression should retain anti-inflammatory properties whilst causing fewer side effects. Contradicting this model, we found that anti-inflammatory effects of the classical GC dexamethasone were partly dependent on transactivation of the dual specificity phosphatase 1 (DUSP1) gene. We wished to determine whether anti-inflammatory effects of SGRMs are also mediated by DUSP1. EXPERIMENTAL APPROACH Dissociated properties of two SGRMs were confirmed using GR- and NF-κB-dependent reporters, and capacity to activate GC-responsive elements of the DUSP1 gene was tested. Effects of SGRMs on the expression of DUSP1 and pro-inflammatory gene products were assessed in various cell lines and in primary murine Dusp1(+/+) and Dusp1(-/-) macrophages. KEY RESULTS The SGRMs were able to up-regulate DUSP1 in several cell types, and this response correlated with the ability of the compounds to suppress COX-2 expression. Several anti-inflammatory effects of SGRMs were ablated or significantly impaired in Dusp1(-/-) macrophages. CONCLUSIONS AND IMPLICATIONS Like dexamethasone, SGRMs appear to exert anti-inflammatory effects partly via the up-regulation of DUSP1. This finding has implications for how potentially therapeutic novel GR ligands are identified and assessed.
Collapse
Affiliation(s)
- Eugénie Joanny
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London, UK Roche Palo Alto LLC, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cho EJ, An HJ, Shin JS, Choi HE, Ko J, Cho YW, Kim HM, Choi JH, Lee KT. Roxatidine suppresses inflammatory responses via inhibition of NF-κB and p38 MAPK activation in LPS-induced RAW 264.7 macrophages. J Cell Biochem 2011; 112:3648-59. [DOI: 10.1002/jcb.23294] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Bachert C, Maspero J. Efficacy of Second-Generation Antihistamines in Patients with Allergic Rhinitis and Comorbid Asthma. J Asthma 2011; 48:965-73. [DOI: 10.3109/02770903.2011.616616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Histamine promotes the expression of receptors TLR2 and TLR4 and amplifies sensitivity to lipopolysaccharide and lipoteichoic acid treatment in human gingival fibroblasts. Cell Biol Int 2011; 35:1009-17. [DOI: 10.1042/cbi20100624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Haylett A, Nie Z, Brownrigg M, Taylor R, Rhodes L. Systemic photoprotection in solar urticaria with α-melanocyte-stimulating hormone analogue [Nle4-d-Phe7]-α-MSH. Br J Dermatol 2011; 164:407-14. [DOI: 10.1111/j.1365-2133.2010.10104.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Enhancement of inflammatory mediator release by beta(2)-adrenoceptor agonists in airway epithelial cells is reversed by glucocorticoid action. Br J Pharmacol 2010; 160:410-20. [PMID: 20423350 DOI: 10.1111/j.1476-5381.2010.00708.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Due to their potent bronchodilator properties, beta(2)-adrenoceptor agonists are a mainstay of therapy in asthma. However, the effects of beta(2)-adrenoceptor agonists on inflammation are less clear. Accordingly, we have investigated the effects of beta(2)-adrenoceptor agonists on inflammatory mediator release. EXPERIMENTAL APPROACH Transcription factor activation, and both release and mRNA expression of IL-6 and IL-8 were examined by luciferase reporter assay, elisa and real-time RT-PCR in bronchial human epithelial BEAS-2B cells or primary human bronchial epithelial cells grown at an air-liquid interface. KEY RESULTS Pre-incubation with beta(2)-adrenoceptor agonists (salbutamol, salmeterol, formoterol) augmented the release and mRNA expression of IL-6 and IL-8 induced by IL-1beta and IL-1beta plus histamine, whereas NF-kappaB-dependent transcription was significantly repressed, and AP-1-dependent transcription was unaffected. These effects were mimicked by other cAMP-elevating agents (PGE(2), forskolin). Enhancement of cytokine release by beta(2)-adrenoceptor agonists also occurred in primary bronchial epithelial cells. Addition of dexamethasone with salmeterol repressed IL-6 and IL-8 release to levels that were similar to the repression achieved in the absence of salmeterol. IL-6 release was enhanced when salmeterol was added before, concurrently or after IL-1beta plus histamine stimulation, whereas IL-8 release was only enhanced by salmeterol addition prior to stimulation. CONCLUSIONS AND IMPLICATIONS Enhancement of IL-6 and IL-8 release may contribute to the deleterious effects of beta(2)-adrenoceptor agonists in asthma. As increased inflammatory mediator expression is prevented by the addition of glucocorticoid to the beta(2)-adrenoceptor, our data provide further mechanistic support for the use of combination therapies in asthma management.
Collapse
|
23
|
Moriyama K, Liu J, Jang Y, Chae YJ, Wang Y, Mitchell J, Grond S, Han X, Xing Y, Xie GX, Pierce Palmer P. Receptor mediation and nociceptin inhibition of bradykinin-induced plasma extravasation in the knee joint of the rat. Inflamm Res 2009; 58:873-80. [PMID: 19544046 PMCID: PMC2773362 DOI: 10.1007/s00011-009-0058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/14/2009] [Accepted: 05/26/2009] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE AND DESIGN The aim was to investigate the signaling mechanisms and regulation of bradykinin (BK)-induced inflammation in rat knee joint. MATERIALS AND METHODS Knee joints of anesthetized rats were perfused with BK (0.1-1.0 microM), and synovial plasma extravasation (PE) was evaluated by spectrophotometrical measurement of Evans Blue leakage. To examine the signaling pathway, B1 antagonist [des-Arg10]-HOE140 (0.1-1.0 microM) and B2 antagonist HOE140 (0.05-1.0 microM), calcitonin gene-related peptide (CGRP) antagonist CGRP8-37 (0.5-1.0 microM), prostaglandin E2 antagonist AH-6809 (0.1-1.0 microM), and histamine H1 antagonist mepyramine (0.1-1.0 microM) were used. Nociceptin (0.0001-1.0 microM) and antagonist J-113397 were tested for modulation of BK-induced PE. The analyses were compared side-by-side with 5-hydroxytryptamine-induced PE. RESULTS BK perfusion dose-dependently induced PE, which was blocked by HOE140, CGRP8-37, AH-6809, and mepyramine. It was also inhibited by nociceptin, which could be reversed by antagonist J-113397. In contrast, 5-hydroxytryptamine-induced PE was biphasically regulated by nociceptin and was not antagonized by CGRP8-37. CONCLUSIONS BK-induced PE is mediated by B2 receptors and may involve CGRP, prostaglandin, and histamine pathways. BK-induced PE is inhibited by nociceptin through the activation of ORL1 receptors. There are differences between BK- and 5-hydroxytryptamine-induced inflammation in signaling and modulation.
Collapse
Affiliation(s)
- Kumi Moriyama
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 94143, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
King EM, Holden NS, Gong W, Rider CF, Newton R. Inhibition of NF-kappaB-dependent transcription by MKP-1: transcriptional repression by glucocorticoids occurring via p38 MAPK. J Biol Chem 2009; 284:26803-26815. [PMID: 19648110 PMCID: PMC2785369 DOI: 10.1074/jbc.m109.028381] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/15/2009] [Indexed: 02/05/2023] Open
Abstract
Acting via the glucocorticoid receptor (GR), glucocorticoids exert potent anti-inflammatory effects partly by repressing inflammatory gene transcription occurring via factors such as NF-kappaB. In the present study, the synthetic glucocorticoid, dexamethasone, induces expression of MKP-1 (mitogen-activated protein kinase (MAPK) phosphatase-1) in human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells. This correlates with reduced TNFalpha-stimulated p38 MAPK phosphorylation. Since NF-kappaB-dependent transcription and IL-8 protein, mRNA, and unspliced RNA (a surrogate of transcription rate) are sensitive to p38 MAPK inhibitors (SB203580 and SB239063), we explored the role of MKP-1 in repression of these outputs. Repression of TNFalpha-induced p38 MAPK phosphorylation, NF-kappaB-dependent transcription, and IL-8 expression by dexamethasone are sensitive to transcriptional or translational inhibitors. This indicates a role for de novo gene synthesis. Adenoviral expression of MKP-1 profoundly reduces p38 MAPK phosphorylation and IL-8 expression. Similarly, NF-kappaB-dependent transcription is significantly reduced to levels consistent with maximal p38 MAPK inhibition. Thus, MKP-1 attenuates TNFalpha-dependent activation of p38 MAPK, induction of IL-8 expression, and NF-kappaB-dependent transcription. Small interfering RNA knockdown of dexamethasone-induced MKP-1 expression partially reverses the repression of TNFalpha-activated p38 MAPK, demonstrating that MKP-1 participates in the dexamethasone-dependent repression of this pathway. In the presence of MKK6 (MAPK kinase 6), a p38 MAPK activator, dexamethasone dramatically represses TNFalpha-induced NF-kappaB-dependent transcription, and this is significantly reversed by MKP-1-targeting small interfering RNA. This reveals an important and novel role for transcriptional activation (transactivation) of MKP-1 in the repression of NF-kappaB-dependent transcription by glucocorticoids. We conclude that GR transactivation is essential to the anti-inflammatory properties of GR ligands.
Collapse
Affiliation(s)
- Elizabeth M. King
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Neil S. Holden
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wei Gong
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher F. Rider
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Robert Newton
- From the Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
25
|
Bachert C. A review of the efficacy of desloratadine, fexofenadine, and levocetirizine in the treatment of nasal congestion in patients with allergic rhinitis. Clin Ther 2009; 31:921-44. [PMID: 19539095 DOI: 10.1016/j.clinthera.2009.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND Nasal congestion is the most troublesome symptom of allergic rhinitis (AR). First-generation and older second-generation antihistamines, while effective against nasal itching, sneezing, and rhinorrhea, have limited efficacy in relieving nasal congestion. OBJECTIVE This review included nasal challenge studies and clinical trials that reported the effects on nasal congestion of the newer second-generation antihistamines desloratadine, fexofenadine, and levocetirizine. METHODS MEDLINE and EMBASE were searched for nasal challenge studies and clinical trials published in English between January 1, 1991, and January 31, 2009, using the following terms, alone or in combination: antihistamines, second-generation antihistamines, allergic rhinitis, intermittent allergic rhinitis, perennial allergic rhinitis, persistent allergic rhinitis, seasonal allergic rhinitis, nasal challenge, nasal blockage, and nasal congestion. Studies that were not active or placebo controlled, that did not evaluate change in nasal congestion scores, or that focused on treatments other than desloratadine, fexofenadine, and levocetirizine for nasal congestion associated with AR were excluded. RESULTS Twenty-six clinical trials met the criteria for inclusion in the review. In 11 placebo-controlled trials that included objective assessment of nasal congestion, desloratadine, fexofenadine, and levocetirizine were associated with reductions in the severity of nasal congestion through maintenance of nasal airflow. The mean AUC for nasal airflow over 6 hours was significantly greater with desloratadine compared with placebo in 3 studies (P < 0.05); placebo-controlled trials of fexofenadine and levocetirizine had similar results. In 25 placebo- and active-controlled trials that reported subject-rated symptom scores, the 3 newer antihistamines were efficacious in the treatment of nasal congestion associated with AR. In 10 trials that reported objective and/or subjective measures, desloratadine was associated with significant improvements in nasal congestion compared with placebo (P < or = 0.05), beginning as early as the first 2 hours after allergen challenge. Fexofenadine was associated with significantly lower nasal congestion scores compared with placebo in 4 studies (P <- 0.05); nasal congestion scores were significantly reduced with levocetirizine in 3 placebo-controlled trials (P < or = 0.005). CONCLUSIONS In the studies reviewed, desloratadine, fexofenadine, and levocetirizine were effective in relieving the nasal congestion associated with AR compared with placebo. This effect began as early as day 2 and was consistent and progressive throughout treatment. Desloratadine, fexofenadine, and levocetirizine are appropriate options for the treatment of nasal congestion in patients with AR.
Collapse
Affiliation(s)
- Claus Bachert
- Department of Otorhinolaryngology, University Hospital Ghent, Ghent, Belgium.
| |
Collapse
|
26
|
Perkins G, Viel L, Wagner B, Hoffman A, Erb H, Ainsworth D. Histamine bronchoprovocation does not affect bronchoalveolar lavage fluid cytology, gene expression and protein concentrations of IL-4, IL-8 and IFN-γ. Vet Immunol Immunopathol 2008; 126:230-5. [DOI: 10.1016/j.vetimm.2008.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
|
27
|
Holden NS, Squires PE, Kaur M, Bland R, Jones CE, Newton R. Phorbol ester-stimulated NF-kappaB-dependent transcription: roles for isoforms of novel protein kinase C. Cell Signal 2008; 20:1338-48. [PMID: 18436431 DOI: 10.1016/j.cellsig.2008.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Since protein kinase C (PKC) isoforms are variously implicated in the activation of NF-kappaB, we have investigated the role of PKC in the activation of NF-kappaB-dependent transcription by the diacyl glycerol (DAG) mimetic, phorbol 12-myristate 13-acetate (PMA), and by tumour necrosis factor (TNF) alpha in pulmonary A549 cells. The PKC selective inhibitors, Ro31-8220, Gö6976, GF109203X and Gö6983, revealed no effect on TNFalpha-induced NF-kappaB DNA binding and a similar lack of effect on serine 32/36 phosphorylated IkappaBalpha and the loss of total IkappaBalpha indicates that activation of the core IKK-IkappaBalpha-NF-kappaB cascade by TNFalpha does not involve PKC. In contrast, differential sensitivity of an NF-kappaB-dependent reporter to Ro31-8220, Gö6976, GF109203X and Gö6983 (EC(50)s 0.46 microM, 0.34 microM, >10 microM and >10 microM respectively) suggests a role for protein kinase D in transcriptional activation by TNFalpha. Compared with TNFalpha, PMA weakly induces NF-kappaB DNA binding and this effect was not associated with serine 32/36 phosphorylation of IkappaBalpha. However, PMA-stimulated NF-kappaB DNA binding was inhibited by Ro31-8220 (10 microM), GF109203X (10 microM) and Gö6983 (10 microM), but not by Gö6976 (10 microM), suggesting a role for novel PKC isoforms. Furthermore, a lack of positive effect of calcium mobilising agents on both NF-kappaB DNA binding and on transcriptional activation argues against major roles for classical PKCs. This, combined with the ability of both GF109203X and Gö6983 to prevent enhancement of TNFalpha-induced NF-kappaB-dependent transcription by PMA, further indicates a role for novel PKCs in NF-kappaB transactivation. Finally, siRNA-mediated knockdown of PKCdelta and epsilon expression did not affect TNFalpha-induced NF-kappaB-dependent transcription. However, knockdown of PKCdelta expression significantly inhibited PMA-stimulated luciferase activity, whereas knockdown of PKCepsilon was without effect. Furthermore, combined knockdown of PKCdelta and epsilon revealed an increased inhibitory effect on PMA-stimulated NF-kappaB-dependent transcription suggesting that PMA-induced NF-kappaB-dependent transcription is driven by novel PKC isoforms, particularly PKCdelta and epsilon.
Collapse
Affiliation(s)
- Neil S Holden
- Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|