1
|
Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z. Strobilanthes crispus Juice Concentrations and Anticancer Effects on DNA Damage, Apoptosis and Gene Expression in Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2015; 16:6047-53. [DOI: 10.7314/apjcp.2015.16.14.6047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
2
|
Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A. The centella asiatica juice effects on DNA damage, apoptosis and gene expression in hepatocellular carcinoma (HCC). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:32. [PMID: 24444147 PMCID: PMC3900269 DOI: 10.1186/1472-6882-14-32] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/09/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND This paper is to investigate the effects of Centella asiatica on HepG2 (human hepatocellular liver carcinoma cell line). Centella asiatica is native to the Southeast Asia that is used as a traditional medicine. This study aims to determine the chemopreventive effects of the Centella asiatica juice on human HepG2 cell line. METHODS Different methods including flow cytometry, comet assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to show the effects of juice exposure on the level of DNA damage and the reduction of cancerous cells. MTT assay is a colorimetric method applied to measure the toxic effects of juice on cells. RESULTS The Centella asiatica juice was not toxic to normal cells. It showed cytotoxic effects on tumor cells in a dose dependent manner. Apoptosis in cells was started after being exposed for 72 hr of dose dependent. It was found that the higher percentage of apoptotic cell death and DNA damage was at the concentration above 0.1%. In addition, the juice exposure caused the reduction of c-myc gene expression and the enhancement of c-fos and c-erbB2 gene expressions in tumor cells. CONCLUSIONS It was concluded that the Centella asiatica juice reduced liver tumor cells. Thus, it has the potential to be used as a chemopreventive agent to prevent and treat liver cancer.
Collapse
|
3
|
Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA. Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators. Mol Cell Endocrinol 2012; 351:142-51. [PMID: 22273806 DOI: 10.1016/j.mce.2012.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 11/28/2022]
Abstract
Twenty years ago a proteasome inhibitor was suggested as therapy for glucocorticoid-resistant multiple myeloma, a disease that involves terminally differentiated B cells. Since then, research has proven that it has utility on a number of tumors resistant to chemotherapy. Hematologic malignancy, however, often involves lesser differentiated cells, which have a high potential to modulate their intrinsic machinery and thereby activate alternative rescue pathways. A corresponding multiplicity of therapies is not always practical. One approach to conditions with heterogeneous physiology is to identify key biochemical mediators, thereby reducing the number of treatment targets. Results from several ongoing studies indicate convergence of genomically diverse signal pathways to a limited number of key downstream regulators of apoptosis. Convergence of pathways can be exploited to address the problem of genetic heterogeneity in acute leukemia: this would mean treating multiple molecular aberrations with fewer drugs and enhanced therapeutic benefit.
Collapse
Affiliation(s)
- George I Lambrou
- Horemio Research Institute, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | | | | |
Collapse
|
4
|
Chaves P, Correa-Fiz F, Melgarejo E, Urdiales JL, Medina MA, Sánchez-Jiménez F. Development of an expression macroarray for amine metabolism-related genes. Amino Acids 2007; 33:315-22. [PMID: 17610129 DOI: 10.1007/s00726-007-0528-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/01/2007] [Indexed: 12/18/2022]
Abstract
Cationic amino acids are the precursors of biogenic amines, histamine from histidine, and putrescine, spermidine and spermine from arginine/ornithine (and methionine), as well as nitric oxide. These amines play important biological roles in inter- and intracellular signaling mechanisms related to inflammation, cell proliferation and neurotransmission. Biochemical and epidemiological relationships between arginine-derived products and histamine have been reported to play important roles in physiopathological problems. In this communication, we describe the construction of an expression macroarray containing more than 30 human probes for most of the key proteins involved in biogenic amines metabolisms, as well as other inflammation- and proliferation-related probes. The array has been validated on human mast HMC-1 cells. On this model, we have got further support for an inverse correlation between polyamine and histamine synthesis previously observed on murine basophilic models. These tools should also be helpful to understand the amine roles in many other inflammatory and neoplastic pathologies.
Collapse
Affiliation(s)
- P Chaves
- ProCel Lab, Department of Molecular Biology and Biochemistry, Centre for Biomedical Research on Rare Diseases (CIBERER), Faculty of Sciences, Campus Teatinos, University of Malaga, Malaga, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Toninello A, Pietrangeli P, De Marchi U, Salvi M, Mondovì B. Amine oxidases in apoptosis and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1765:1-13. [PMID: 16225993 DOI: 10.1016/j.bbcan.2005.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 02/02/2023]
Abstract
Amine oxidases, the major enzymes of biogenic amines metabolism, are considered to be biological regulators, especially for cell growth and differentiation. A primary involvement of amine oxidases in cancer growth inhibition and progression, especially by means of aldehydes, H(2)O(2) and other reactive oxygen species, the amine oxidase-mediated products of biogenic amines oxidation, has been demonstrated. Amine oxidases are involved in cancer growth inhibition because of the higher content in tumour cells of biogenic amines in comparison to normal cells. The cytotoxic effect can be explained by a damage to cell membranes and/or nuclei or, indirectly, through modulation of membrane permeability transition and therefore apoptosis. The oxidation products of biogenic amines appears to be also carcinogenic, while acrolein, produced from the oxidation of spermine and spermidine, should be a key compound both carcinogenic and cytotoxic. The cancer inhibition/promotion effect of amine oxidases could be explained by taking into consideration the full pattern of the enzyme content of the cell. The balance of amine oxidases and antioxidant enzymes appear to be a crucial point for cancer inhibition or progression. A long lasting imbalance of these enzymes appears to be carcinogenic, while, for a short time, amine oxidases are cytotoxic for cancer cells.
Collapse
Affiliation(s)
- Antonio Toninello
- Department of Biological Chemistry University of Padua and C.N.R. Institute of Neuroscience, Unit for the Study of Biomembranes, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | |
Collapse
|
6
|
Abstract
The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Cancer Prevention, Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), Strasbourg Cedex, 67091, France.
| | | |
Collapse
|
7
|
Ostrowski J, Wocial T, Skurzak H, Bartnik W. Do altering in ornithine decarboxylase activity and gene expression contribute to antiproliferative properties of COX inhibitors? Br J Cancer 2003; 88:1143-51. [PMID: 12671717 PMCID: PMC2376368 DOI: 10.1038/sj.bjc.6600815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two isoforms of cyclooxygenase (COX) participate in growth control; COX-1 is constitutively expressed in most cells, and COX-2 is an inducible enzyme in response to cellular stimuli. An induction of COX-2 found in neoplastic tissues results in increased cell growth, inhibition of apoptosis, activation of angiogenesis, and decreased immune responsiveness. Although both COX-1 and COX-2 inhibitors are suppressors of cell proliferation and appear to be chemopreventive agents for tumorigenesis, the molecular mechanisms mediating antiproliferative effect of COX inhibitors are still not well defined. This study contrasts and compares the effects of aspirin and celecoxib, inhibitors of COX-1 and COX-2, in rat hepatoma HTC-IR cells. The following were assessed: cell proliferation and apoptosis, ornithine decarboxylase (ODC) activity, and pattern expression of three immediate-early genes, c-myc, Egr-1, and c-fos. We have shown that the treatment of hepatocytes in vitro with the selective COX-2 inhibitor, celecoxib, was associated with induction of apoptosis and complete inhibition of cellular proliferation. Aspirin exhibited a small antiproliferative effect that was not associated with apoptosis. Treatment with celecoxib produced dose- and time-dependent decrease in ODC activity. In addition, at higher drug concentration the decrease in ODC activity was greater in proliferating than in resting cells. Much lesser inhibitory effect on ODC activity was observed in aspirin-treated cells. The two COX inhibitors did not change c-myc expression, significantly decreased the expression of Egr-1, and differentially altered expression of c-fos; aspirin did not change, but celecoxib dramatically decreased the levels of c-fos-mRNA. Our study revealed that celecoxib and aspirin share the ability to inhibit ODC activity and alter the pattern of immediate-early gene expression. It seems that some of the observed effects are likely to be related to COX-independent pathways. The precise mechanisms of action of COX inhibitors should be defined before using these drugs for cancer chemopreventive therapy.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center for Postgraduate Education, Warsaw, Poland.
| | | | | | | |
Collapse
|
8
|
Luciano F, Herrant M, Jacquel A, Ricci JE, Auberger P. The p54 cleaved form of the tyrosine kinase Lyn generated by caspases during BCR-induced cell death in B lymphoma acts as a negative regulator of apoptosis. FASEB J 2003; 17:711-3. [PMID: 12586738 DOI: 10.1096/fj.02-0716fje] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engagement of the B cell receptor antigen (BCR) triggers apoptosis on immature B cell lines. We report here that BCR triggering leads to caspase activation followed by Lyn cleavage and induction of apoptosis. The cleavage process is mitochondrion-dependent and involves caspases 9 and 7. Stable expression of the cleaved form of Lyn (Lyn-Delta-N) in Ramos B cells impairs BCR-mediated apoptosis as judged by loss of Delta(psi)m, caspase activation and PARP cleavage. Activation of the main survival pathways upon BCR-triggering was unaltered in both cell variants. However, the PI3-K inhibitor Ly294002 resensitizes Lyn-Delta-N cells to apoptosis. Selected cDNA expression arrays revealed that anti-IgM modulates the expression of approximately 20 genes in both cell variants. Among them, only c-Myc was found to be differentially regulated, which suggests a role for c-Myc in the B cell apoptotic response. Interestingly, c-Myc expression decreased more rapidly in Lyn-Delta-N compared with Lyn-WT cells during the first hours of anti-IgM stimulation. Nevertheless, rapid down-regulation of c-Myc following BCR engagement seems to correlate with the resistance of B cells to apoptosis. Thus, the soluble form of Lyn generated by caspases following BCR triggering acts as an inhibitor of B lymphocyte death likely through the modulation of c-Myc expression.
Collapse
Affiliation(s)
- Frederic Luciano
- INSERM U526 Activation des Cellules Hematopoietiques, Physiopathologie de la Survie et de la Mort Cellulaires et Infections Virales, Equipe Labellisée Ligue Nationale contre le Cancer, IFR50, Faculté de Médecine, 06107 Nice-Cédex 2, France
| | | | | | | | | |
Collapse
|
9
|
Stefanelli C, Tantini B, Fattori M, Stanic' I, Pignatti C, Clo C, Guarnieri C, Caldarera CM, Mackintosh CA, Pegg AE, Flamigni F. Caspase activation in etoposide-treated fibroblasts is correlated to ERK phosphorylation and both events are blocked by polyamine depletion. FEBS Lett 2002; 527:223-28. [PMID: 12220664 DOI: 10.1016/s0014-5793(02)03242-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Activation of the extracellular signal-regulated kinases (ERKs) 1 and 2 is correlated to cell survival, but in some cases ERKs can act in signal transduction pathways leading to apoptosis. Treatment of mouse fibroblasts with 20 microM etoposide elicited a sustained phosphorylation of ERK 1/2, that increased until 24 h from the treatment in parallel with caspase activity. The inhibitor of ERK activation PD98059 abolished caspase activation, but caspase inhibition did not reduce ERK 1/2 phosphorylation, suggesting that ERK activation is placed upstream of caspases. Both ERK and caspase activation were blocked in cells depleted of polyamines by the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO). In etoposide-treated cells, DFMO also abolished phosphorylation of c-Jun NH(2)-terminal kinases triggered by the drug. Polyamine replenishment with exogenous putrescine restored the ability of the cells to undergo caspase activation and ERK 1/2 phosphorylation in response to etoposide. Ornithine decarboxylase activity decreased after etoposide, indicating that DFMO exerts its effect by depleting cellular polyamines before induction of apoptosis. These results reveal a role for polyamines in the transduction of the death signal triggered by etoposide.
Collapse
Affiliation(s)
- Claudio Stefanelli
- Department of Biochemistry 'G. Moruzzi', University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herrant M, Luciano F, Loubat A, Auberger P. The protective effect of phorbol esters on Fas-mediated apoptosis in T cells. Transcriptional and postranscriptional regulation. Oncogene 2002; 21:4957-68. [PMID: 12118374 DOI: 10.1038/sj.onc.1205689] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 05/13/2002] [Accepted: 05/20/2002] [Indexed: 11/09/2022]
Abstract
Phorbol esters are tumor promoters that bind and activate both conventional and new Protein kinase C (PKC) isoforms. In various circumstances, PKC-dependent signaling pathways can promote cell survival and protect against cell death. This was first analysed in Jurkat T cells where Phorbol Myristate Acetate (PMA) was found to inhibit Fas-mediated apoptosis as judged by DiOC6(3) staining, caspase activation and DNA fragmentation, indicating that PMA exerts its protective effect upstream or at the mitochondrial level in these cells. PMA activated most of the main kinase pathways in T cells such as PKCs, p42/44MAPK, p38MAPK and p90Rsk but not JNK and Akt. A pharmacological approach allowed us to identify that nPKCs are both necessary and likely sufficient to promote T cell survival. Besides this post-transcriptional regulation, nPKCs may also regulate apoptosis at the transcriptional level. cDNA arrays were used to identify a set of genes whose expression was modulated in death versus survival conditions. Following PMA treatment, expression of Mcl-1 and Bcl-x increased while that of c-Myc was significantly reduced. Moreover, survivin expression decreased upon CH11 or PMA treatment. c-Myc, survivin and Bcl-x modulation seems to be regulated at the transcriptional level while decrease in Mcl-1 protein in CH11-treated cells resulted especially from a caspase-dependent proteolysis. Taken together, our data demonstrate that PMA-mediated inhibition of apoptosis is a complex process that is integrated at both the transcriptional and post-transcriptional level and point out to the potential role of Mcl-1, Bcl-x, c-Myc and survivin in this process.
Collapse
Affiliation(s)
- Magali Herrant
- INSERM U 526, Equipe labellisée par la Ligue Nationale contre le Cancer, IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | |
Collapse
|