1
|
Xiong Y, Yi C, Zheng H, Ni Y, Xue Y, Li K. Protein palmitoylation is involved in regulating mouse sperm motility via the signals of calcium, protein tyrosine phosphorylation and reactive oxygen species. Biol Res 2025; 58:3. [PMID: 39810241 PMCID: PMC11734517 DOI: 10.1186/s40659-024-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear. This study aimed to elucidate the mechanism by which protein palmitoylation governs sperm motility. METHODS Protein palmitoylation in situ in mouse sperm was observed using innovative click chemistry. Sperm motility and motion parameters were evaluated using a computer-assisted sperm analyzer (CASA) after treatment with 2-bromopalmitic acid (2BP), a specific inhibitor of protein palmitoylation. Protein palmitoylation levels were confirmed by the acyl-biotin exchange (ABE) method. The interplay between protein palmitoylation, protein tyrosine phosphorylation, and intracellular calcium was investigated using Western blotting, ABE method, and fluorescent probes. The regulation of reactive oxygen species was also examined using fluorescent probes. RESULTS Localized patterns and dynamics of protein palmitoylation in distinct sperm regions were revealed, including the midpiece, post-acrosomal region, acrosome, and head. Alterations in protein palmitoylation in sperm were observed under in vitro physiological conditions. Treatment with 2BP significantly affected sperm motility and motion parameters. The study revealed interactions between protein palmitoylation, including heat shock protein 90, and protein kinase A/protein kinase C-associated protein tyrosine phosphorylation and intracellular calcium. Additionally, protein palmitoylation was found to be involved in reactive oxygen species regulation. CONCLUSIONS Protein palmitoylation regulates sperm motility through calcium signaling, protein tyrosine phosphorylation, and reactive oxygen species. This study revealed the characteristics of protein palmitoylation in sperm and its role in regulating sperm motility, thereby providing novel insights into the causes of asthenozoospermia associated with sperm motility in humans.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenchen Yi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haixia Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yamei Xue
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Escarcega RD, M J VK, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Blasco Conesa MP, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. Neurobiol Dis 2025; 204:106747. [PMID: 39617329 DOI: 10.1016/j.nbd.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vijay Kumar M J
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vasilia E Kyriakopoulos
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Escarcega RD, Vijay Kumar MJ, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Conesa MPB, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623108. [PMID: 39605322 PMCID: PMC11601308 DOI: 10.1101/2024.11.11.623108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - M. J. Vijay Kumar
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | | | - Guadalupe J. Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M. Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P. Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W. Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H. Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M. Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S. Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
4
|
González-Fernández MJ, Fabrikov D, Ramos-Bueno RP, Guil-Guerrero JL, Ortea I. SWATH Differential Abundance Proteomics and Cellular Assays Show In Vitro Anticancer Activity of Arachidonic Acid- and Docosahexaenoic Acid-Based Monoacylglycerols in HT-29 Colorectal Cancer Cells. Nutrients 2019; 11:E2984. [PMID: 31817645 PMCID: PMC6950369 DOI: 10.3390/nu11122984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and mortal types of cancer. There is increasing evidence that some polyunsaturated fatty acids (PUFAs) exercise specific inhibitory actions on cancer cells through different mechanisms, as a previous study on CRC cells demonstrated for two very long-chain PUFA. These were docosahexaenoic acid (DHA, 22:6n3) and arachidonic acid (ARA, 20:4n6) in the free fatty acid (FFA) form. In this work, similar design and technology have been used to investigate the actions of both DHA and ARA as monoacylglycerol (MAG) molecules, and results have been compared with those obtained using the corresponding FFA. Cell assays revealed that ARA- and DHA-MAG exercised dose- and time-dependent antiproliferative actions, with DHA-MAG acting on cancer cells more efficiently than ARA-MAG. Sequential window acquisition of all theoretical mass spectra (SWATH) - mass spectrometry massive quantitative proteomics, validated by parallel reaction monitoring and followed by pathway analysis, revealed that DHA-MAG had a massive effect in the proteasome complex, while the ARA-MAG main effect was related to DNA replication. Prostaglandin synthesis also resulted as inhibited by DHA-MAG. Results clearly demonstrated the ability of both ARA- and DHA-MAG to induce cell death in colon cancer cells, which suggests a direct relationship between chemical structure and antitumoral actions.
Collapse
Affiliation(s)
- María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Dmitri Fabrikov
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Rebeca P. Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Ignacio Ortea
- Proteomics Unit, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
5
|
Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: Anti-inflammatory and anti-proliferative effects. Eur J Pharmacol 2016; 792:70-77. [PMID: 27818127 DOI: 10.1016/j.ejphar.2016.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
Newly-synthesized, eicosapentaenoic acid monoacylglyceride (MAG-EPA), docosahexaenoic acid monoacylglyceride (MAG-DHA) and docosapentaenoic acid monoacylglyceride (MAG-DPA) have been demonstrated to display beneficial effects in several disorders including chronic airway inflammatory diseases, pulmonary hypertension, rheumatoid arthritis, and lung and colorectal adenocarcinoma. Recent evidence reveals that omega-3 polyunsaturated fatty acid (n-3 PUFA) precursors provide a window to explore the pathobiology of inflammatory disease as well as structural templates for the design of novel pro-resolving precursors that are well absorbed by the gastrointestinal (GI) tract and metabolized into bioactive metabolites. These metabolites are found in blood circulation and tissues thereby mediating numerous immuno-modulatory effects through the activation of specific receptors. Bioactive metabolites regulate cell membrane functions, lipid signaling and gene expressions encoding for enzymes responsible for lipid storage and fatty acid metabolism. This review highlights recent experimental findings regarding n-3 PUFA monoacylglyceride research, as well as the pharmacological and medicinal relevance of these stereospecific derivatives in the resolution of chronic inflammatory diseases.
Collapse
|
6
|
Morin C, Blier PU, Fortin S. MAG-EPA reduces severity of DSS-induced colitis in rats. Am J Physiol Gastrointest Liver Physiol 2016; 310:G808-21. [PMID: 27012773 DOI: 10.1152/ajpgi.00136.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, Ste-Luce, Quebec, Canada; Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Samuel Fortin
- SCF Pharma, Ste-Luce, Quebec, Canada; Department of Biology, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
7
|
Morin C, Blier PU, Fortin S. Eicosapentaenoic acid and docosapentaenoic acid monoglycerides are more potent than docosahexaenoic acid monoglyceride to resolve inflammation in a rheumatoid arthritis model. Arthritis Res Ther 2015; 17:142. [PMID: 26022389 PMCID: PMC4624173 DOI: 10.1186/s13075-015-0653-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines and eicosanoids involved in RA pathogenesis. The aim of this study was to determine the therapeutic potential of ω3 monoglyceride (MAG-ω3) compounds in an in vivo rat model of RA induced by Complete Freund's Adjuvant (CFA). METHOD CFA rats were untreated or treated per os with three specific compounds, namely, MAG-docosahexaenoic acid (MAG-DHA), MAG-eicosapentaenoic acid (MAG-EPA) and MAG-docosapentaenoic acid (MAG-DPA). Morphological and histological analyses, as well as pro-inflammatory marker levels were determined following MAG-ω3 treatments. RESULTS Morphological and histological analyses revealed that MAG-EPA and MAG-DPA exhibited strong activity in reducing the progression and severity of arthritic disease in CFA rats. Following MAG-EPA and MAG-DPA treatments, plasma levels of the pro-inflammatory cytokines; interleukin 17A (IL-17A), IL-1β, IL-6 and tumor necrosis factor α (TNFα) were markedly lower when compared to CFA-untreated rats. Results also revealed a decreased activation of p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappa B (NFκB) pathways correlated with a reduced expression of TNFα, cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2) and MMP-9 in paw homogenates derived from MAG-EPA and MAG-DPA-treated rats. Of interest, the combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in CFA rats. CONCLUSION Altogether, the present data suggest that MAG-EPA, without vitamin E, represents a new potential therapeutic strategy for resolving inflammation in arthritis.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC, G0K 1P0, Canada. .,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada.
| | - Samuel Fortin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC, G0K 1P0, Canada. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada.
| |
Collapse
|
8
|
Stamatov SD, Stawinski J. Regioselective and stereospecific acylation across oxirane- and silyloxy systems as a novel strategy to the synthesis of enantiomerically pure mono-, di- and triglycerides. Org Biomol Chem 2007; 5:3787-800. [DOI: 10.1039/b713246h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Stamatov SD, Stawinski J. Stereospecific and regioselective opening of an oxirane system. A new efficient entry to 1- or 3-monoacyl- and 1- or 3-monoalkyl-sn-glycerols. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.01.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Philippoussis F, Arguin C, Mateo V, Steff AM, Hugo P. Monoglycerides induce apoptosis in human leukemic cells while sparing normal peripheral blood mononuclear cells. Blood 2003; 101:292-4. [PMID: 12393726 DOI: 10.1182/blood-2002-03-0894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major drawback of the current antineoplastic treatments is their lack of specificity toward cancer cells, because they are most often cytotoxic to normal cells, thus creating related side effects. Hence, the identification of new apoptosis-inducing agents, specifically targeting malignant cells while sparing their normal counterparts, is of crucial interest. We show here that monoglycerides, a family of lipids consisting of a single fatty acid attached to a glycerol backbone, induce cell death in several human leukemic cell lines. Importantly, treatment of primary leukemic cells, obtained from B-cell chronic lymphocytic leukemia patients, resulted in rapid apoptosis. In striking contrast, resting or activated human peripheral blood mononuclear cells from healthy individuals were resistant to the same treatment. Therefore, these compounds could represent potential antileukemic drugs or could allow for the design of novel therapeutic agents applied to leukemia.
Collapse
|
11
|
Philippoussis F, Arguin C, Fortin M, Steff AM, Hugo P. Cellular specificity related to monoglyceride-induced cell death. Immunol Lett 2002; 83:221-30. [PMID: 12095713 DOI: 10.1016/s0165-2478(02)00117-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have recently observed that monoglycerides (MGs), a family of lipids consisting of a single fatty acid moiety attached to a glycerol backbone, induce rapid dose-dependent apoptosis in murine thymocytes. In this work, we evaluated the sensitivity of various normal and malignant immune and non-immune cells to MGs. We demonstrate that the propensity to MG-induced death displayed by both T and B lymphocytes is clearly modulated according to their differentiation and activation status. For instance, the earliest T and B cell precursors are refractory to MG-mediated cell death. In the T-cell lineage, immature thymocytes are the most susceptible to MG treatment, while B cells from peripheral lymphoid organs appear more sensitive than B-cell subsets from the bone marrow. On the other hand, both activated T and B cells are more resistant to MG exposure than their non-activated counterparts. In addition, other hematopoietic lineages such as natural killer cells, macrophages, and erythroid cells are quite resistant to MG-induced death. Furthermore, using various immortalized cell lines from different tissues, we found that lymphomas and thymomas are the most sensitive among all lineages tested, while epithelial cells and fibroblasts are unaffected by MG treatment. Finally, MG-induced death was shown to be independent of Fas/Fas ligand (FasL) interactions. Altogether, our findings indicate that there is a cellular specificity related to MG-mediated cell death biased towards T and B lymphocytes. This suggests that MGs could potentially be used in the treatment of specific lymphoid disorders by bypassing the requirement for the Fas/FasL system.
Collapse
Affiliation(s)
- Fabianne Philippoussis
- PROCREA BioSciences Inc., Division of Research & Development, 6100 Royalmount, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | |
Collapse
|