1
|
Ro J, Kim J, Park J, Choi Y, Cho Y. ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid-Endothelial Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410659. [PMID: 39805002 PMCID: PMC11967799 DOI: 10.1002/advs.202410659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis. As proof of concept, the crosstalk between breast cancer spheroids and vasculature is monitored, validating the roles of endothelial cells in acquired tamoxifen resistance. Cancer spheroids exhibited reduced sensitivity to tamoxifen in the presence of vasculature. Further analysis through single-cell RNA sequencing of extracted spheroids and protein arrays elucidated gene expression profiles and cytokines associated with acquired tamoxifen resistance, particularly involving the TNF-α pathway via NF-κB and mTOR signaling. By targeting the highly expressed cytokines (IL-8, TIMP1) identified, tamoxifen resistance in cancer spheroid can be effectively reversed. In summary, the ODSEI chip allows to study spheroid and endothelial interaction in various contexts, leading to improved insights into tumor biology and therapeutic strategies.
Collapse
Affiliation(s)
- Jooyoung Ro
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Junyoung Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Juhee Park
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yongjun Choi
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yoon‐Kyoung Cho
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| |
Collapse
|
2
|
High Glucose Exacerbates TNF- α-Induced Proliferative Inhibition in Human Periodontal Ligament Stem Cells through Upregulation and Activation of TNF Receptor 1. Stem Cells Int 2020; 2020:4910767. [PMID: 32089705 PMCID: PMC7025077 DOI: 10.1155/2020/4910767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Objective This research is aimed at investigating how high glucose affects the proliferation and apoptosis in periodontal ligament stem cells (PDLSCs) in the presence of TNF-α. Methods PDLSCs obtained from periodontal healthy permanent teeth were treated under either high-glucose condition (30 mmol/L, G30 group) or normal glucose condition (5.6 mmol/L, G5.6 group) in the presence or absence of TNF-α (10 ng/ml) for 2 to 6 days. Cell proliferation and cell cycle were evaluated by CCK-8, EdU incorporation assay, and flow cytometry. Cell apoptosis was assessed by annexin V/PI staining. Protein expression was detected by western blotting. Cellular ROS expression was evaluated by CellROX labeling and flow cytometry. Specific antibodies targeting TNFR1 and TNFR2 were used to block TNF-α signaling. Vitamin C was also used to verify if the blockage of ROS can rescue PDLSCs in the presence of high glucose and TNF-α. Results CCK-8 assay showed that high glucose exacerbated TNF-α-induced cell viability inhibition (57.0%, 85.2%, and 100% for the G30+TNF-α group, G5.6+TNF-α group, and control group, respectively) on day 6. High glucose increased protein expression of TNFR1 compared with the control group on day 2 (1.24-fold) and day 6 (1.26-fold). Blocking TNFR1 totally reversed the proliferative inhibition in G30+TNF-α group. The addition of vitamin C or TNFR1 antibody totally reversed the elevation of intracellular ROS expression caused by high glucose and TNF-α. Vitamin C partially restored cell proliferation in the presence of high glucose and TNF-α. Conclusion High glucose exacerbates TNF-α-induced proliferative inhibition in human periodontal ligament stem cells through the upregulation and activation of TNF receptor 1. Inhibition of intracellular ROS expression by vitamin C partially rescues PDLSCs in terms of cell proliferation.
Collapse
|
3
|
Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget 2018; 7:61860-61873. [PMID: 27556362 PMCID: PMC5308696 DOI: 10.18632/oncotarget.11452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
Ependymomas in children can arise throughout all compartments of the central nervous system (CNS). Highly malignant paediatric ependymoma subtypes are Group A tumours of the posterior fossa (PF-EPN-A) and RELA-fusion positive (ST-EPN-RELA) tumours in the supratentorial compartment. It was repeatedly reported in smaller series that accumulation of p53 is frequently observed in ependymomas and that immunohistochemical staining correlates with poor clinical outcome, while TP53 mutations are rare. Our TP53 mutation analysis of 130 primary ependymomas identified a mutation rate of only 3%. Immunohistochemical analysis of 398 ependymomas confirmed previous results correlating the accumulation of p53 with inferior outcome. Among the p53-positive ependymomas, the vast majority exhibited a RELA fusion leading to the hypothesis that p53 inactivation might be linked to RELA positivity. In order to assess the potential of p53 reactivation through MDM2 inhibition in ependymoma, we evaluated the effects of Actinomycin-D and Nutlin-3 treatment in two preclinical ependymoma models representing the high-risk subtypes PF-EPN-A and ST-EPN-RELA. The IC-50 of the agent as determined by metabolic activity assays was in the lower nano-molar range (0.2–0.7 nM). Transcriptome analyses of high-dose (100 nM), low-dose (5 nM) and non-treated cells revealed re-expression of p53 dependent genes including p53 upregulated modulator of apoptosis (PUMA) after low-dose treatment. At the protein level, we validated the Actinomycin-D induced upregulation of PUMA, and of p53 interaction partners MDM2 and p21. Proapoptotic effects of low-dose application of the agent were confirmed by flow cytometry. Thus, Actinomycin-D could constitute a promising therapeutic option for ST-EPN-RELA ependymoma patients, whose tumours frequently exhibit p53 inactivation.
Collapse
|
4
|
Attenuation of soft-tissue sarcomas resistance to the cytotoxic action of TNF-α by restoring p53 function. PLoS One 2012; 7:e38808. [PMID: 22719951 PMCID: PMC3377724 DOI: 10.1371/journal.pone.0038808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/14/2012] [Indexed: 11/25/2022] Open
Abstract
Background Isolated limb perfusion with TNF-α and melphalan is used with remarkable efficiency to treat unresectable limb sarcomas. Here we tested the ability of TNF-α to directly induce apoptosis of sarcoma cells. In addition, we investigated the impact of p53 in the regulation of such effect. Methodology/Principal Findings We first analysed the ability of TNF-α to induce apoptosis in freshly isolated tumour cells. For this purpose, sarcoma tumours (n = 8) treated ex vivo with TNF-α were processed for TUNEL staining. It revealed substantial endothelial cell apoptosis and levels of tumour cell apoptosis that varied from low to high. In order to investigate the role of p53 in TNF-α-induced cell death, human sarcoma cell lines (n = 9) with different TP53 and MDM2 status were studied for their sensitivity to TNF-α. TP53Wt cell lines were sensitive to TNF-α unless MDM2 was over-expressed. However, TP53Mut and TP53Null cell lines were resistant. TP53 suppression in TP53Wt cell lines abrogated TNF-α sensitivity and TP53 overexpression in TP53Null cell lines restored it. The use of small molecules that restore p53 activity, such as CP-31398 or Nutlin-3a, in association with TNF-α, potentiated the cell death of respectively TP53Mut and TP53Wt/MDM2Ampl. In particular, CP-31398 was able to induce p53 as well as some of its apoptotic target genes in TP53Mut cells. In TP53Wt/MDM2Ampl cells, Nutlin-3a effects were associated with a decrease of TNF-α-induced NF-κB-DNA binding and correlated with a differential regulation of pro- and anti-apoptotic genes such as TP53BP2, GADD45, TGF-β1 and FAIM. Conclusion/Significance More effective therapeutic approaches are critically needed for the treatment of unresectable limb sarcomas. Our results show that restoring p53 activity in sarcoma cells correlated with increased sensitivity to TNF-α, suggesting that this strategy may be an important determinant of TNF-α-based sarcomas treatment.
Collapse
|
5
|
Sasai K, Sukezane T, Yanagita E, Nakagawa H, Hotta A, Itoh T, Akagi T. Oncogene-mediated human lung epithelial cell transformation produces adenocarcinoma phenotypes in vivo. Cancer Res 2011; 71:2541-9. [PMID: 21447735 DOI: 10.1158/0008-5472.can-10-2221] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been challenging to engineer lung adenocarcinoma models via oncogene-mediated transformation of primary cultured normal human cells. Although viral oncoprotein-mediated malignant transformation has been reported, xenografts derived from such transformed cells generally represent poorly differentiated cancers. Here, we demonstrate that the combined expression of multiple cellular factors induces malignant transformation in normal human lung epithelial cells. Although a combination of four genetic alterations, including hTERT overexpression, inactivation of the pRB and p53 pathways, and KRAS activation, is insufficient for normal human small airway epithelial cells to be fully transformed, expression of one additional oncogene induces malignant transformation. Notably, we have succeeded in reproducing human lung adenocarcinoma phenotypes in the flanks of nude mice by introducing an active form of PIK3CA, CYCLIN-D1, or a dominant-negative form of LKB1 in combination with the four genetic alterations above. Besides differentiated lung cancer, poorly differentiated cancer models can also be engineered by employing c-MYC as one of the genetic elements, indicating that histologic features and degree of differentiation of xenografts are controllable to some extent by changing the combination of genetic elements introduced. This is the first study reporting malignant transformation of normal lung epithelial cells in the absence of viral oncoproteins. We propose that our model system would be useful to identify the minimal and most crucial set of changes required for lung tumorigenesis, and that it would provide a broadly applicable approach for discovering attractive therapeutic targets.
Collapse
Affiliation(s)
- Ken Sasai
- KAN Research Institute, Inc., Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice. Mol Cell Biochem 2009; 337:119-31. [PMID: 19859789 DOI: 10.1007/s11010-009-0291-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Tumour Necrosis Factor (TNF) plays a major role in exacerbating necrosis of dystrophic muscle; however, the precise molecular mechanism underlying this effect of TNF is unknown. This study investigates the role that p53 plays in TNF-mediated necrosis of dystrophic myofibres by inhibiting p53 using pifithrin-alpha and three pifithrin-beta analogues. Tissue culture studies using C2C12 myoblasts established that pifithrin-alpha was toxic to differentiating myoblasts at concentrations greater than 10 muM. While non-toxic concentrations of pifithrin-alpha did not prevent the TNF-mediated inhibition of myoblast differentiation, Western blots indicated that nuclear levels of p53 were higher in TNF-treated myoblasts indicating that TNF does elevate p53. In contrast, in vivo studies in adult mdx mice showed that pifithrin-alpha significantly reduced myofibre necrosis that resulted from voluntary wheel running over 48 h. These results support the hypothesis that p53 plays some role in TNF-mediated necrosis of dystrophic muscle and present a potential new target for therapeutic interventions.
Collapse
|
7
|
Pincheira R, Castro AF, Ozes ON, Idumalla PS, Donner DB. Type 1 TNF Receptor Forms a Complex with and Uses Jak2 and c-Src to Selectively Engage Signaling Pathways That Regulate Transcription Factor Activity. THE JOURNAL OF IMMUNOLOGY 2008; 181:1288-98. [DOI: 10.4049/jimmunol.181.2.1288] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Youlyouz-Marfak I, Gachard N, Le Clorennec C, Najjar I, Baran-Marszak F, Reminieras L, May E, Bornkamm GW, Fagard R, Feuillard J. Identification of a novel p53-dependent activation pathway of STAT1 by antitumour genotoxic agents. Cell Death Differ 2007; 15:376-85. [DOI: 10.1038/sj.cdd.4402270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Kumar PS, Shiras A, Das G, Jagtap JC, Prasad V, Shastry P. Differential expression and role of p21cip/waf1 and p27kip1 in TNF-alpha-induced inhibition of proliferation in human glioma cells. Mol Cancer 2007; 6:42. [PMID: 17565690 PMCID: PMC1904457 DOI: 10.1186/1476-4598-6-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 06/12/2007] [Indexed: 12/14/2022] Open
Abstract
Background The role of TNF-α in affecting the fate of tumors is controversial, while some studies have reported apoptotic or necrotic effects of TNF-α, others provide evidence that endogenous TNF-α promotes growth and development of tumors. Understanding the mechanism(s) of TNF-α mediated growth arrest will be important in unraveling the contribution of tissue associated macrophages in tumor resistance. The aim of this study was to investigate the role of Cyclin Dependent Kinase Inhibitors (CDKI) – p21cip/waf1 and p27kip1 in TNF-α mediated responses in context with p53 and activation of NF-κB and Akt pathways. The study was done with human glioma cell lines -LN-18 and LN-229 cells, using monolayer cultures and Multicellular Spheroids (MCS) as in vitro models. Results TNF-α induced inhibition of proliferation and enhanced the expression of p21cip/waf1 and p27kip1 in LN-18 cells. p21 was induced on exposure to TNF-α, localized exclusively in the nucleus and functioned as an inhibitor of cell cycle but not as an antiapoptotic protein. In contrast, p27 was constitutively expressed, localized predominantly in the cytoplasm and was not involved in arrest of proliferation. Our data using IκBα mutant LN-18 cells and PI3K/Akt inhibitor-LY294002 revealed that the expression of p21 is regulated by NF-κB. Loss of IκBα function in LN-229 cells (p53 positive) did not influence TNF-α induced accumulation of pp53 (Ser-20 p53) suggesting that p53 was not down stream of NF-κB. Spheroidogenesis enhanced p27 expression and p21 induced by TNF-α was significantly increased in the MCS compared to monolayers. Conclusion This study demarcates the functional roles for CDKIs-p21cip/waf1 and p27kip1 during TNF-α stimulated responses in LN-18 glioma cells. Our findings provide evidence that TNF-α-induced p21 might be regulated by NF-κB or p53 independently. p21 functions as an inhibitor of cell proliferation and does not have a direct role in rendering the cells resistant to TNF-α mediated cytotoxicity.
Collapse
Affiliation(s)
| | - Anjali Shiras
- National Centre for Cell Science, NCCS, Ganeshkhind, Pune 411 007, India
| | - Gowry Das
- National Centre for Cell Science, NCCS, Ganeshkhind, Pune 411 007, India
| | - Jayashree C Jagtap
- National Centre for Cell Science, NCCS, Ganeshkhind, Pune 411 007, India
| | - Vandna Prasad
- National Centre for Cell Science, NCCS, Ganeshkhind, Pune 411 007, India
| | - Padma Shastry
- National Centre for Cell Science, NCCS, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
10
|
Goldschneider D, Horvilleur E, Plassa LF, Guillaud-Bataille M, Million K, Wittmer-Dupret E, Danglot G, de Thé H, Bénard J, May E, Douc-Rasy S. Expression of C-terminal deleted p53 isoforms in neuroblastoma. Nucleic Acids Res 2006; 34:5603-12. [PMID: 17028100 PMCID: PMC1636465 DOI: 10.1093/nar/gkl619] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hughes de Thé
- Laboratoire de Biochimie, Hôpital Saint-Louis75010 Paris, France
| | - Jean Bénard
- Centre National de Recherche Scientifique UMR 8126
- Département de Biologie et Pathologie Médicales, Institut Gustave Roussy94805 Villejuif, France
| | - Evelyne May
- Centre National de Recherche Scientifique UPR 9045, Institut André Lwoff94801 Villejuif, France
| | - Sétha Douc-Rasy
- Centre National de Recherche Scientifique UMR 8126
- To whom correspondence should be addressed. Tel: +33 1 42 11 48 53; Fax: +33 1 42 11 54 94;
| |
Collapse
|
11
|
Gilbert KM, Boger SR, Price P, Fifer EK. T cell tolerance induced by histone deacetylase inhibitor is mediated by P21cip1. Immunopharmacol Immunotoxicol 2006; 27:545-64. [PMID: 16435576 DOI: 10.1080/08923970500416749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MEB [n-butyrate 2-(4-morpholinyl) ethyl butyrate hydrochloride], a histone deacetylase inhibitor and G1 blocker, has been shown to induce unresponsiveness in antigen-activated Th1 cells. MEB was tested for here for its ability to inactivate naive alloantigen-specific T cells from DBA/2 and C57BL/10 mice. Since T cells from these two strains of mice have been shown to differ in their cell cycle regulation, it we hoped that this comparison would provide information concerning the role of cycle regulatory proteins in mediating MEB-induced T cell unresponsiveness. MEB inhibited proliferation in a one-way mixed lymphocyte reaction (MLR) in which spleen cells from DBA/2 mice (H-2d) or C57BL/10 mice (H-2b) were stimulated with spleen cells from C57BL/10 or DBA/2 mice, respectively. C57BL/10 responder T cells isolated from the MEB-treated primary MLR remained unresponsive to alloantigen following restimulation in a secondary MLR that did not contain MEB. T cells from DBA/2 mice were less sensitive to MEB-induced unresponsiveness and required a longer exposure or pretreatment with IL-2 to become tolerant. In all cases responsiveness to MEB-induced tolerance in the alloantigen-stimulated T cells corresponded with the levels of the cyclin-dependent kinase inhibitor p21cip1. Additional experiments showed that T cells from p21cip1-deficient mice, unlike T cells from p21cip1 wild-type littermates, were resistant to MEB-induced tolerance. These results underscore the role of p21cip1 in mediating T cell tolerance induced by the histone deacetylase inhibitor MEB.
Collapse
Affiliation(s)
- Kathleen M Gilbert
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences/Arkansas Children's Hospital Research Institute, Little Rock 72205, USA.
| | | | | | | |
Collapse
|
12
|
Komarova EA, Krivokrysenko V, Wang K, Neznanov N, Chernov MV, Komarov PG, Brennan ML, Golovkina TV, Rokhlin OW, Kuprash DV, Nedospasov SA, Hazen SL, Feinstein E, Gudkov AV. p53 is a suppressor of inflammatory response in mice. FASEB J 2005; 19:1030-2. [PMID: 15811878 DOI: 10.1096/fj.04-3213fje] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic inflammation is known to promote cancer, suggesting that negative regulation of inflammation is likely to be tumor suppressive. We found that p53 is a general inhibitor of inflammation that acts as an antagonist of nuclear factor kappaB (NFkappaB). We first observed striking similarities in global gene expression profiles in human prostate cancer cells LNCaP transduced with p53 inhibitory genetic element or treated with TNF, suggesting that p53 inhibits transcription of TNF-inducible genes that are largely regulated by NFkappaB. Consistently, ectopically expressed p53 acts as an inhibitor of transcription of NFkappaB-dependent promoters. Furthermore, suppression of inflammatory response by p53 was observed in vivo in mice by comparing wild-type and p53 null animals at molecular (inhibition of transcription of genes encoding cytokines and chemokines, reducing accumulation of reactive oxygen species and protein oxidation products), cellular (activation of macrophages and neutrophil clearance) and organismal (high levels of metabolic markers of inflammation in tissues of p53-deficient mice and their hypersensitivity to LPS) levels. These observations indicate that p53, acting through suppression of NFkappaB, plays the role of a general "buffer" of innate immune response in vivo that is well consistent with its tumor suppressor function and frequent constitutive activation of NFkappaB in tumors.
Collapse
Affiliation(s)
- Elena A Komarova
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Goldschneider D, Million K, Meiller A, Haddada H, Puisieux A, Bénard J, May E, Douc-Rasy S. The neurogene BTG2TIS21/PC3 is transactivated by DeltaNp73alpha via p53 specifically in neuroblastoma cells. J Cell Sci 2005; 118:1245-53. [PMID: 15741235 DOI: 10.1242/jcs.01704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The p53 gene and its homologue p73 are rarely mutated in neuroblastoma. In recent studies, we showed that overexpression of DeltaNp73alpha, an isoform lacking the N-terminal transactivation (TA) domain, surprisingly induces p53 protein accumulation in the wild-type (wt) p53 human neuroblastoma line SH-SY5Y. As can be expected owing to its dominant-negative effect, DeltaNp73alpha inhibits Waf1/p21 gene expression, but equally importantly, it upregulates BTG2TIS21/PC3, another p53 target gene. This effect is not observed in neuroblastoma cells that express a mutated p53. To better understand the DeltaNp73-mediated transactivation of the BTG2TIS21/PC3 gene we performed luciferase assays with two reporter plasmids harboring long and short BTG2 promoter sequences in three human neuroblastoma cell lines and one breast cancer cell line. Our results demonstrate that BTG2TIS21/PC3 transactivation by DeltaNp73alpha depends on both p53 status (as it is not observed in a p53-/- neuroblastoma cell line) and cellular context (as it occurs in a p53+/+ neuroblastoma cell line but not in a p53+/+ breast tumor cell line). The fact that DeltaNp73alpha may either inhibit or stimulate wt-p53 transcriptional activity, depending on both the p53 target gene and the cellular context, was confirmed by real-time quantitative PCR. Moreover, transactivation of the BTG2TIS21/PC3 promoter requires a complete DeltaNp73alpha C-terminus sequence as it is not observed with DeltaNp73beta, which lacks most of the C-terminal domain. We have previously shown that DeltaNp73alpha is the only p73 isoform expressed in undifferentiated neuroblastoma tumors. In light of all these findings, we propose that DeltaNp73alpha not only acts as an inhibitor of p53/TAp73 functions in neuroblastoma tumors, but also cooperates with wt-p53 in playing a physiological role through the activation of BTG2TIS21/PC3 gene expression.
Collapse
Affiliation(s)
- David Goldschneider
- CNRS UMR 8126, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA. HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. Blood 2004; 104:1490-7. [PMID: 15155458 DOI: 10.1182/blood-2003-12-4174] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nuclear factor kappaB (NF-kappaB) activation plays a critical role in oncogenesis by human T-cell lymphotrophic virus type I (HTLV-I), the etiologic agent of adult T-cell leukemia (ATL), and is indispensable for maintenance of the malignant phenotype. In T lymphocytes, Tax-mediated p53 inhibition is dependent on Tax activation of the NF-kappaB pathway and is linked to p53 phosphorylation. We now report that blocking NF-kappaB transcriptional activation in HTLV-I-transformed cells restores p53 activity. Further, using mouse embryo fibroblast (MEF) null cells and antisense oligonucleotides to inhibit expression of NF-kappaB family members, we demonstrate that the p65 subunit of NF-kappaB is uniquely involved in p53 inhibition. Coimmunoprecipitation assays demonstrate an interaction between p65 and p53 in HTLV-I-transformed cells. In transient transfection assays, we demonstrate that Tax induces the p53-p65 interaction. Phosphorylation of p53 at serines 15 and 392 is critical for complex formation. Importantly, Tax-mediated p53 inhibition correlates with p65 and p53 interaction. By using chromatin immunoprecipitation (ChIP) assays, we find that in HTLV-I-transformed cells p53 and p65 form a complex on the inactive, p53-responsive murine double minute 2 (MDM2) promoter. Consistent with reduced transcriptional activity, transcription factor IID (TFIID) binding is not observed. These studies identify a unique mechanism for p53 regulation by the p65/RelA subunit of NF-kappaB.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Virus Tumor Biology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute/NIH, Bldg 41/B303, 41 Library Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
15
|
Goldschneider D, Blanc E, Raguénez G, Barrois M, Legrand A, Le Roux G, Haddada H, Bénard J, Douc-Rasy S. Differential response of p53 target genes to p73 overexpression in SH-SY5Y neuroblastoma cell line. J Cell Sci 2004; 117:293-301. [PMID: 14676279 DOI: 10.1242/jcs.00834] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p73, the first p53 gene homologue, encodes an array of p73 proteins including p73 alpha full-length (TAp73 alpha) and amino-truncated isoforms (Delta Np73 alpha), two proteins with opposite biological functions. TAp73 alpha can induce tumor suppressive properties, while Delta Np73 alpha antagonizes p53 as well as TAp73 in a dominant-negative manner. In human malignant neuroblasts, p53 protein is wild-type but known to be excluded from the nucleus, therefore disabling its function as a tumor suppressor. The present study investigates whether there is a functional link between p73 isoforms and p53 in neuroblastoma. Experiments were performed on two neuroblastoma cell lines differing in their p53 status, e.g. wild-type p53 SH-5Y5Y cells and mutated p53 IGR-N-91 cells. Data indicate that (i) both TA- and Delta N-p73 alpha enhance p53 protein level in SH-SY5Y cells, whereas level remains unchanged in IGR-N-91 cells; (ii) only in SH-SY5Y cells does forced TAp73 alpha overexpression markedly induce nuclear accumulation of p53 protein; (iii) p21 protein expression is increased in both cell lines infected with TAp73, suggesting that, in IGR-N-91 cells, p21 is induced by p73 through a p53-independent pathway; (iv) in the SHSY5Y cell line, Btg2 expression is strongly enhanced in cells overexpressing TA, and to a lesser extent in cells overexpressing Delta N. Taken together our results suggest that TAp73 may restore p53 function in NB with wild-type nonfunctional p53, but not in NB with mutated p53.
Collapse
Affiliation(s)
- David Goldschneider
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8126, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miro-Mur F, Meiller A, Haddada H, May E. p73alpha expression induces both accumulation and activation of wt-p53 independent of the p73alpha transcriptional activity. Oncogene 2003; 22:5451-6. [PMID: 12934105 DOI: 10.1038/sj.onc.1206538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p53 tumor suppressor gene belongs to a multigene family that includes two paralogues, p63 and p73. p73alpha has common activities with p53, such as DNA binding and transactivation, and can thus activate the transcription of p53-responsive genes. Using the adenoviral system, we report that an overexpression of either wt-p73alpha or one of the two transcriptional inactive mutants, deltaNp73alpha or p73alphaR292H, induces an accumulation of the endogenous wt-p53 expressed in the three transformed cell lines, SK-N-SH, MCF-7 and U-2OS, without stimulating the p53 gene transcription. p73-mediated accumulation of p53 protein coincides with an increase of p53-target gene expression in cells expressing either wt-p73alpha or the transcriptional inactive mutant p73alphaR292H, but not deltaNp73alpha that encodes a dominant-negative mutant of both p73 and p53. The fact that an ectopic expression of p73alphaR292H leads to both accumulation of p53 and stimulation of p53 target gene expression strongly suggests that p73alpha is able to induce activation of p53. This was confirmed by showing that p73alphaR292H no longer stimulated Waf1/p21 expression in MCF7/R-A1 cells that expressed a transcriptional inactive mutant of p53. We thus conclude that p73alpha protein was able to both stabilize and activate wt-p53 protein, independent of the p73alpha transcriptional activity.
Collapse
Affiliation(s)
- Francesc Miro-Mur
- Commissariat à l'énergie atomique (CEA), CNRS, Laboratoire de Cancérogenèse Moléculaire, UMR217, DRR, DSV, route du Panorama, 92265 Fontenay-aux-Roses, France
| | | | | | | |
Collapse
|