1
|
Vladimirov VI, Shchannikova MP, Baldin AV, Kazakov AS, Shevelyova MP, Nazipova AA, Baksheeva VE, Nemashkalova EL, Frolova AS, Tikhomirova NK, Philippov PP, Zamyatnin AA, Permyakov SE, Zinchenko DV, Zernii EY. Redox Regulation of Signaling Complex between Caveolin-1 and Neuronal Calcium Sensor Recoverin. Biomolecules 2022; 12:1698. [PMID: 36421712 PMCID: PMC9687869 DOI: 10.3390/biom12111698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 09/29/2023] Open
Abstract
Caveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process. Biochemical and biophysical in vitro experiments revealed a two-fold decreased affinity of recoverin to caveolin-1 mutant Y14E mimicking its oxidative stress-induced phosphorylation of the scaffold protein. At the same time, wild-type caveolin-1 demonstrated a 5-10-fold increased affinity to disulfide dimer of recoverin (dRec) or its thiol oxidation mimicking the C39D mutant. The formation of dRec in vitro was not affected by caveolin-1 but was significantly potentiated by zinc, the well-known mediator of redox homeostasis. In the MDCK cell model, oxidative stress indeed triggered Y14 phosphorylation of caveolin-1 and disulfide dimerization of recoverin. Notably, oxidative conditions promoted the accumulation of phosphorylated caveolin-1 in the plasma membrane and the recruitment of recoverin to the same sites. Co-localization of these proteins was preserved upon depletion of intracellular calcium, i.e., under conditions reducing membrane affinity of recoverin but favoring its interaction with caveolin-1. Taken together, these data suggest redox regulation of the signaling complex between recoverin and caveolin-1. During oxidative stress, the high-affinity interaction of thiol-oxidized recoverin with caveolin-1/DRMs may disturb the light-induced translocation of the former within photoreceptors and affect rhodopsin desensitization.
Collapse
Affiliation(s)
- Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Margarita P. Shchannikova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Viktoriia E. Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Natalia K. Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Pavel P. Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey A. Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Dmitry V. Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Evgeni Yu. Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
2
|
Homocysteine-Thiolactone Modulates Gating of Mitochondrial Voltage-Dependent Anion Channel (VDAC) and Protects It from Induced Oxidative Stress. J Membr Biol 2022; 255:79-97. [PMID: 35103807 DOI: 10.1007/s00232-022-00215-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
The gating of the Voltage-Dependent Anion Channel (VDAC) is linked to oxidative stress through increased generation of mitochondrial ROS with increasing mitochondrial membrane potential (ΔΨm). It has been already reported that H2O2 increases the single-channel conductance of VDAC on a bilayer lipid membrane. On the other hand, homocysteine (Hcy) has been reported to induce mitochondria-mediated cell death. It is argued that the thiol-form of homocysteine, HTL could be the plausible molecule responsible for the alteration in the function of proteins, such as VDAC. It is hypothesized that HTL interacts with VDAC that causes functional abnormalities. An investigation was undertaken to study the interaction of HTL with VDAC under H2O2 induced oxidative stress through biophysical and electrophysiological methods. Fluorescence spectroscopic studies indicate that HTL interacts with VDAC, but under induced oxidative stress the effect is prevented partially. Similarly, bilayer electrophysiology studies suggest that HTL shows a reduction in VDAC single-channel conductance, but the effects are partially prevented under an oxidative environment. Gly172 and His181 are predicted through bioinformatics tools to be the most plausible binding residues of HTL in Rat VDAC. The binding of HTL and H2O2 with VDAC appears to be cooperative as per our analysis of experimental data in the light of the Hill-Langmuir equation. The binding energies are estimated to be - 4.7 kcal mol-1 and - 2.8 kcal mol-1, respectively. The present in vitro studies suggest that when mitochondrial VDAC is under oxidative stress, the effects of amino acid metabolites like HTL are suppressed.
Collapse
|
3
|
El Mouhab EH, Rebai O, Zekri S, Charfi L, Boukhchina S, Amri M. Morus alba Leaf Extract Attenuates Glyphosate-Induced Oxidative Stress, Inflammation and Alleviates Liver Injury in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.24.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Bollinger WL, Sial N, Dawson-Scully K. BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurogenet 2018; 32:246-255. [DOI: 10.1080/01677063.2018.1500571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wesley L. Bollinger
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Nadia Sial
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Brain Institute Research Scholars Program, Florida Atlantic University, Boca Raton, FL, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
5
|
Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death. Cell Death Differ 2018; 25:1796-1807. [PMID: 29899383 DOI: 10.1038/s41418-018-0143-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum stress sensor, the unfolded protein response (UPR), regulates intracellular protein homeostasis. While transient activation of the reactive UPR by unfolded protein is protective, prolonged and sustained activation of the reactive UPR triggers CHOP-mediated apoptosis. In the recently characterized, evolutionarily conserved anticipatory UPR, mitogenic hormones and other effectors pre-activate the UPR; how strong and sustained activation of the anticipatory UPR induces cell death was unknown. To characterize this cell death pathway, we used BHPI, a small molecule that activates the anticipatory UPR through estrogen receptor α (ERα) and induces death of ERα+ cancer cells. We show that sustained activation of the anticipatory UPR by BHPI kills cells by inducing depletion of intracellular ATP, resulting in classical necrosis phenotypes, including plasma membrane disruption and leakage of intracellular contents. Unlike reactive UPR activation, BHPI-induced hyperactivation of the anticipatory UPR does not induce apoptosis or sustained autophagy. BHPI does not induce CHOP protein or PARP cleavage, and two pan-caspase inhibitors, or Bcl2 overexpression, have no effect on BHPI-induced cell death. Moreover, BHPI does not increase expression of autophagy markers, or work through recently identified programmed-necrosis pathways, such as necroptosis. Opening of endoplasmic reticulum IP3R calcium channels stimulates cell swelling, cPLA2 activation, and arachidonic acid release. Notably, cPLA2 activation requires ATP depletion. Importantly, blocking rapid cell swelling or production of arachidonic acid does not prevent necrotic cell death. Rapid cell death is upstream of PERK activation and protein synthesis inhibition, and results from strong and sustained activation of early steps in the anticipatory UPR. Supporting a central role for ATP depletion, reversing ATP depletion blocks rapid cell death, and the onset of necrotic cell death is correlated with ATP depletion. Necrotic cell death initiated by strong and sustained activation of the anticipatory UPR is a newly discovered role of the UPR.
Collapse
|
6
|
Rebai O, Belkhir M, Boujelben A, Fattouch S, Amri M. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9605-9613. [PMID: 28247273 DOI: 10.1007/s11356-017-8584-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg-1 b.w.) or MALE (100 μg mL-1 kg-1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H2O2 levels, maintain iron and Ca2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.
Collapse
Affiliation(s)
- Olfa Rebai
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia.
| | - Manel Belkhir
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia
| | - Adnen Boujelben
- Laboratory LIP-MB, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Sami Fattouch
- Laboratory LIP-MB, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Mohamed Amri
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
7
|
Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB. TRPM2 Promotes Neurotoxin MPP +/MPTP-Induced Cell Death. Mol Neurobiol 2016; 55:409-420. [PMID: 27957685 DOI: 10.1007/s12035-016-0338-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
In neurons, Ca2+ is essential for a variety of physiological processes that regulate gene transcription to neuronal growth and their survival. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ions (MPP+) are potent neurotoxins that selectively destroys the dopaminergic (DA) neurons and mimics Parkinson's disease (PD) like symptoms, but the mechanism as how MPP+/MPTP effects DA neuron survival is not well-understood. In the present study, we found that MPP+ treatment increased the level of reactive oxygen species (ROS) that activates and upregulates the expression and function of melastatin-like transient receptor potential (TRPM) subfamily member, melastatin-like transient receptor potential channel 2 (TRPM2). Correspondingly, TRPM2 expression was also increased in substantia nigra of MPTP-induced PD mouse model and PD patients. ROS-mediated activation of TRPM2 resulted in an increased intracellular Ca2+, which in turn promoted cell death in SH-SY5Y cells. Intracellular Ca2+ overload caused by MPP+-induced ROS also affected calpain activity, followed by increased caspase 3 activities and activation of downstream apoptotic pathway. On the other hand, quenching of H2O2 by antioxidants, resveratrol (RSV), or N-acetylcysteine (NAC) effectively blocked TRPM2-mediated Ca2+ influx, decreased intracellular Ca2+ overload, and increased cell survival. Importantly, pharmacological inhibition of TRPM2 or knockdown of TRPM2 using siRNA, but not control siRNA, showed an increased protection by preventing MPP+-induced Ca2+ increase and inhibited apoptosis. Taken together, we show here a novel role for TRPM2 expression and function in MPP+-induced dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Pramod Sukumaran
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Senthil Selvaraj
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Nicholas I Cilz
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Anne Schaar
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Saobo Lei
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Brij B Singh
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA.
| |
Collapse
|
8
|
Tangmansakulchai K, Abubakar Z, Kitiyanant N, Suwanjang W, Leepiyasakulchai C, Govitrapong P, Chetsawang B. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 2016; 30:151-61. [DOI: 10.1016/j.mito.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
9
|
Paredes F, Parra V, Torrealba N, Navarro-Marquez M, Gatica D, Bravo-Sagua R, Troncoso R, Pennanen C, Quiroga C, Chiong M, Caesar C, Taylor WR, Molgó J, San Martin A, Jaimovich E, Lavandero S. HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radic Biol Med 2016; 90:206-18. [PMID: 26616647 PMCID: PMC4710961 DOI: 10.1016/j.freeradbiomed.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/27/2022]
Abstract
Homocysteine-inducible, endoplasmic reticulum (ER) stress-inducible, ubiquitin-like domain member 1 (HERPUD1), an ER resident protein, is upregulated in response to ER stress and Ca(2+) homeostasis deregulation. HERPUD1 exerts cytoprotective effects in various models, but its role during oxidative insult remains unknown. The aim of this study was to investigate whether HERPUD1 contributes to cytoprotection in response to redox stress and participates in mediating stress-dependent signaling pathways. Our data showed that HERPUD1 protein levels increased in HeLa cells treated for 30 min with H2O2 or angiotensin II and in aortic tissue isolated from mice treated with angiotensin II for 3 weeks. Cell death was higher in HERPUD1 knockdown (sh-HERPUD1) HeLa cells treated with H2O2 in comparison with control (sh-Luc) HeLa cells. This effect was abolished by the intracellular Ca(2+) chelating agent BAPTA-AM or the inositol 1,4,5-trisphosphate receptor (ITPR) antagonist xestospongin B, suggesting that the response to H2O2 was dependent on intracellular Ca(2+) stores and the ITPR. Ca(2+) kinetics showed that sh-HERPUD1 HeLa cells exhibited greater and more sustained cytosolic and mitochondrial Ca(2+) increases than sh-Luc HeLa cells. This higher sensitivity of sh-HERPUD1 HeLa cells to H2O2 was prevented with the mitochondrial permeability transition pore inhibitor cyclosporine A. We concluded that the HERPUD1-mediated cytoprotective effect against oxidative stress depends on the ITPR and Ca(2+) transfer from the ER to mitochondria.
Collapse
Affiliation(s)
- Felipe Paredes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Natalia Torrealba
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Damian Gatica
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Clara Quiroga
- ACCDiS, Cardiovascular Diseases Division, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Christa Caesar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - W Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA; Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordi Molgó
- Institut des Neurosciences Paris-Saclay, UMR 9197, 91190 Gif sur Yvette, France
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Leal LA, da Cunha WF, Roncaratti LF, Silva GME, Gargano R. H 2O 2–Ng dynamics predictions using an accurate potential energy surface. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1078507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Lan X, Wen H, Saleem MA, Mikulak J, Malhotra A, Skorecki K, Singhal PC. Vascular smooth muscle cells contribute to APOL1-induced podocyte injury in HIV milieu. Exp Mol Pathol 2015; 98:491-501. [PMID: 25796344 DOI: 10.1016/j.yexmp.2015.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Clinical reports have demonstrated that higher rates of non-diabetic glomerulosclerosis in African Americans can be attributed to two coding sequence variants (G1 and G2) in the APOL1 gene; however, the underlying mechanism is still unknown. Kidney biopsy data suggest enhanced expression of APOL1/APOL1 variants (Vs) in smooth muscle cells (SMCs) of renal vasculature. Since APOL1 is a secretory protein of relatively low molecular weight (41kDa), SMCs may be a contributory endocrine/paracrine source of APOL1 wild type (WT)/APOL1Vs in the glomerular capillary perfusate percolating podocytes. In the present study, we tested the hypothesis that an HIV milieu stimulated secretion of APOL1 and its risk variants by arterial SMCs contributes to podocyte injury. Human umbilical artery smooth muscle cells (HSMCs)-treated with conditioned media (CM) of HIV-infected peripheral mononuclear cells (PBMC/HIV-CM), CM of HIV-infected U939 cells, or recombinant IFN-γ displayed enhanced expression of APOL1. Podocytes co-cultured in trans-wells with HSMCs-over expressing APOL1WT showed induction of injury; however, podocytes co-cultured with HSMC-over expressing either APOL1G1 or APOL1G2 showed several folds greater injury when compared to HSMC-over expressing APOL1WT. Conditioned media collected from HSMC-over-expressing APOL1G1/APOL1G2 (HSMC/APOL1G1-CM or HSMC/APOL1G2-CM) also displayed higher percentages of injured podocytes in the form of swollen cells, leaky lysosomes, loss of viability, and enhanced sensitivity to adverse host factors when compared to HSMC/APOL1WT-CM. Notably, HSMC/APOL1WT-CM promoted podocyte injury only at a significantly higher concentrations compared to HSMC/APOL1G1/G2-CM. We conclude that HSMCs could serve as an endocrine/paracrine source of APOL1Vs, which mediate accelerated podocyte injury in HIV milieu.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Department of Medicine, Hofstra North Shore LIJ Medical School, NY, USA
| | - Hongxiu Wen
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Department of Medicine, Hofstra North Shore LIJ Medical School, NY, USA
| | - Moin A Saleem
- Renal Academic Unit, Department of Pediatrics, University of Bristol, Bristol, UK
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Department of Medicine, Hofstra North Shore LIJ Medical School, NY, USA
| | - Karl Skorecki
- Nephrology and Molecular Medicine, Technion Institute of Technology, Rambam Medical Center, Haifa, Israel
| | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Department of Medicine, Hofstra North Shore LIJ Medical School, NY, USA.
| |
Collapse
|
12
|
Lan X, Jhaveri A, Cheng K, Wen H, Saleem MA, Mathieson PW, Mikulak J, Aviram S, Malhotra A, Skorecki K, Singhal PC. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am J Physiol Renal Physiol 2014; 307:F326-36. [PMID: 24899058 DOI: 10.1152/ajprenal.00647.2013] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Development of higher rates of nondiabetic glomerulosclerosis (GS) in African Americans has been attributed to two coding sequence variants (G1 and G2) in the APOL1 gene. To date, the cellular function and the role of APOL1 variants (Vs) in GS are still unknown. In this study, we examined the effects of overexpressing wild-type (G0) and kidney disease risk variants (G1 and G2) of APOL1 in human podocytes using a lentivirus expression system. Interestingly, G0 inflicted podocyte injury only at a higher concentration; however, G1 and G2 promoted moderate podocyte injury at lower and higher concentrations. APOL1Vs expressing podocytes displayed diffuse distribution of both Lucifer yellow dye and cathepsin L as manifestations of enhanced lysosomal membrane permeability (LMP). Chloroquine attenuated the APOL1Vs-induced increase in podocyte injury, consistent with targeting lysosomes. The chloride channel blocker DIDS prevented APOL1Vs- induced injury, indicating a role for chloride influx in osmotic swelling of lysosomes. Direct exposure of noninfected podocytes with conditioned media from G1- and G2-expressing podocytes also induced injury, suggesting a contributory role of the secreted component of G1 and G2 as well. Adverse host factors (AHFs) such as hydrogen peroxide, hypoxia, TNF-α, and puromycin aminonucleoside augmented APOL1- and APOL1Vs-induced podocyte injury, while the effect of human immunodeficiency virus (HIV) on podocyte injury was overwhelming under conditions of APOLVs expression. We conclude that G0 and G1 and G2 APOL1 variants have the potential to induce podocyte injury in a manner which is further augmented by AHFs, with HIV infection being especially prominent.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York
| | - Aakash Jhaveri
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York
| | - Kang Cheng
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York
| | - Hongxiu Wen
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, Bristol, United Kingdom
| | | | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; and
| | - Sharon Aviram
- Nephrology and Molecular Medicine, Technion Institute of Technology and Rambam Medical Center, Haifa, Israel
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York
| | - Karl Skorecki
- Nephrology and Molecular Medicine, Technion Institute of Technology and Rambam Medical Center, Haifa, Israel
| | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra-North Shore Long Island Jewish School of Medicine School, Hempstead, New York;
| |
Collapse
|
13
|
Francis RJ, Kotecha S, Hallett MB. Ca2+ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol 2012; 93:95-100. [PMID: 23089743 DOI: 10.1189/jlb.0412212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Physiologically, apoptotic neutrophils are ingested before they undergo necrosis. However, failure of ingestion will lead to necrosis of neutrophils and the unregulated release of neutrophil-derived pathogenic molecules, such as protease and hydrolases. Understanding the mechanism of postapoptotic necrosis is thus clearly important. Here, we monitored the apoptotic-to-necrotic transition in individual-aged human neutrophils in vitro by imaging fluorescent probes for externalized PS, cytosolic Ca(2+), and membrane integrity. This showed that prenecrotic-aged neutrophils with externalized PS had a significantly elevated cytosolic-free Ca(2+) level. A further unregulated Ca(2+) influx into PS-externalized neutrophils always preceded the necrotic transition. Ca(2+) elevation was not simply a consequence of aging, as PS externalization was not uniform in similarly aged neutrophil populations. PS-externalized neutrophils could be induced to undergo necrosis experimentally by simply elevating cytosolic Ca(2+) further with ionomycin. This effect was observed only in neutrophils that had externalized PS, and was independent of the time after their isolation from blood (i.e., in vitro age). As pharmacological inhibition of calpain-1 inhibition significantly reduced this CAIN, it was concluded that the apoptotic-to-necrotic transition was a consequence of uncontrolled calpain activation that resulted from Ca(2+) overload in PS-externalized neutrophils.
Collapse
Affiliation(s)
- R J Francis
- Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | | |
Collapse
|
14
|
Hamlaoui-Gasmi S, Mokni M, Limam N, N’guessan P, Carrier A, Limam F, Amri M, Aouani E, Marzouki L. Grape seed and skin extract mitigates garlic-induced oxidative stress in rat liver. Can J Physiol Pharmacol 2012; 90:547-56. [DOI: 10.1139/y2012-025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Garlic is a commonly used spice in folk medicine that can exert adverse health effects when given at a high dose. Grape seed and skin extract (GSSE) exhibits a variety of beneficial effects even at a high dose. In the present study we evaluated the toxicity of high-dose garlic treatment on liver and the protective effect of GSSE. Rats were intraperitoneally administered either with garlic extract (5 g·(kg body weight)–1) or GSSE (500 mg·(kg body weight)–1) or a combination of garlic and GSSE at the same doses daily for 1 month. Plasma and hepatic levels of cholesterol, triacylglycerol, and transaminases and liver antioxidant status were evaluated. Data showed that a high garlic dose induced liver toxicity and a pro-oxidative status characterized by increased malondialdehyde and decreased antioxidant enzyme activities as catalase, peroxidase, and superoxide dismutase. Garlic increased intracellular H2O2but decreased free iron and Ca2+. GSSE alone or in co-treatment with garlic had the reverse effect and counteracted almost all garlic-induced deleterious impacts to near control levels. In conclusion, a high garlic dose induced a pro-oxidative state characterized by the Fenton reaction between H2O2and free iron, inducing Ca2+depletion, while GSSE exerted antioxidant properties and Ca2+repletion.
Collapse
Affiliation(s)
- Sonia Hamlaoui-Gasmi
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Meherzia Mokni
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Nadia Limam
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Prudence N’guessan
- INSERM, U624 « Stress cellulaire », Case 915 Parc Scientifique de Luminy, 13288 Marseille CEDEX 9, France
| | - Alice Carrier
- INSERM, U624 « Stress cellulaire », Case 915 Parc Scientifique de Luminy, 13288 Marseille CEDEX 9, France
| | - Ferid Limam
- Laboratoire des substances bioactives, Centre de biotechnologie, Technopole Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Mohamed Amri
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Ezzedine Aouani
- Laboratoire des substances bioactives, Centre de biotechnologie, Technopole Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Lamjed Marzouki
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| |
Collapse
|
15
|
Sotelo-Hitschfeld T, Fernández-Moncada I, Barros LF. Acute feedback control of astrocytic glycolysis by lactate. Glia 2012; 60:674-80. [PMID: 22290492 DOI: 10.1002/glia.22304] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Neuronal activity is accompanied by a rapid increase in interstitial lactate, which is hypothesized to serve as a fuel for neurons and a signal for local vasodilation. Using FRET microscopy, we report here that the rate of glycolysis in cultured mice astrocytes can be acutely modulated by physiological changes in extracellular lactate. Glycolytic inhibition by lactate was not accompanied by detectable variations in intracellular pH or intracellular ATP and was not dependent of mitochondrial function. Pyruvate was also inhibitory, suggesting that the effect of lactate is not mediated by the NADH/NAD(+) ratio. We propose that lactate serves as a fast negative feedback signal limiting its own production by astrocytes and therefore the amplitude of the lactate surge. The inhibition of glucose usage by lactate was much stronger in resting astrocytes than in K(+)-stimulated astrocytes, which suggests that lactate may also help diverting glucose from resting to active zones.
Collapse
Affiliation(s)
- T Sotelo-Hitschfeld
- Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile
| | | | | |
Collapse
|
16
|
Abstract
Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K(+) can stimulate glycolysis by >300% within seconds. The K(+) response was blocked by ouabain, but intracellular engagement of the Na(+)/K(+) ATPase pump with Na(+) was ineffective, suggesting that the canonical feedback regulatory pathway involving the Na(+) pump and ATP depletion is only permissive and that a second mechanism is involved. Because of their predominant K(+) permeability and high expression of the electrogenic Na(+)/HCO(3)(-) cotransporter NBCe1, astrocytes respond to a rise in extracellular K(+) with plasma membrane depolarization and intracellular alkalinization. In the present article, we show that a fast glycolytic response can be elicited independently of K(+) by plasma membrane depolarization or by intracellular alkalinization. The glycolytic response to K(+) was absent in astrocytes from NBCe1 null mice (Slc4a4) and was blocked by functional or pharmacological inhibition of the NBCe1. Hippocampal neurons acquired K(+)-sensitive glycolysis upon heterologous NBCe1 expression. The phenomenon could also be reconstituted in HEK293 cells by coexpression of the NBCe1 and a constitutively open K(+) channel. We conclude that the NBCe1 is a key element in a feedforward mechanism linking excitatory synaptic transmission to fast modulation of glycolysis in astrocytes.
Collapse
|
17
|
Porras OH, Stutzin A. Glutamate-induced metabolic changes influence the cytoplasmic redox state of hippocampal neurons. Biochem Biophys Res Commun 2011; 411:82-7. [DOI: 10.1016/j.bbrc.2011.06.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 10/18/2022]
|
18
|
Li W, Shi YH, Yang RL, Cui J, Xiao Y, Le GW. Reactive oxygen species serve as signals mediating glucose-stimulated somatostatin secretion from cultured rat gastric primary D-cells. Free Radic Res 2010; 44:614-23. [PMID: 20370561 DOI: 10.3109/10715761003713549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatostatin plays an important role in glucose homeostasis. It is normally secreted in response to glucose and ATP generation is believed to be the key transduction signal of glucose-stimulated somatostatin secretion (GSSS). However, in the present study, in cultured rat gastric primary D-cells, GSSS was accompanied by increases in cellular reactive oxygen species (ROS). GSSS is dependent on the cellular ROS and independently of the ATP production linked to glucose metabolism. The antioxidant, alpha-lipoic acid or catalase inhibitor, 3-aminotriazole can influence the intracellular calcium concentration and abolish or further elevate GSSS. It is suggested that ROS production may serve as a signal modulating the necessary Ca(2+) recruitment for GSSS. Since somatostatin is thought to exert broad regulatory functions on gastrointestinal physiology and nutrient intake, the interaction with ROS may lead to potential targets for mediating nutrition and energy homeostasis.
Collapse
Affiliation(s)
- Wu Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Dejeans N, Tajeddine N, Beck R, Verrax J, Taper H, Gailly P, Calderon PB. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochem Pharmacol 2009; 79:1221-30. [PMID: 20006589 DOI: 10.1016/j.bcp.2009.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 02/01/2023]
Abstract
Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells.
Collapse
Affiliation(s)
- Nicolas Dejeans
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, PMNT Unit, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Role of intracellular calcium and S-glutathionylation in cell death induced by a mixture of isothiazolinones in HL60 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:572-83. [PMID: 19118583 DOI: 10.1016/j.bbamcr.2008.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 12/17/2022]
Abstract
Previously we reported that brief exposure of HL60 cells to a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) and 2-methyl-4-isothiazolin-3-one (MI) shifts the cells into a state of oxidative stress that induces apoptosis and necrosis. In this study, flow cytometric analysis showed that CMI/MI induces early perturbation of calcium homeostasis, increasing cytosolic and mitochondrial calcium and depleting the intracellular endoplasmic reticulum (ER) stores. The calcium chelator BAPTA-AM reduced necrosis and secondary necrosis, the loss of DeltaPsim and S-glutathionylation induced by necrotic doses of CMI/MI, but did not protect against CMI/MI-induced apoptosis, mitochondrial calcium uptake and mitochondrial hyperpolarization. This indicates that increased cytoplasmic calcium does not have a causal role in the induction of apoptosis, while cross-talk between the ER and mitochondria could be responsible for the induction of apoptosis. GSH-OEt pretreatment, which enhances cellular GSH content, reduced S-glutathionylation and cytosolic and mitochondrial calcium levels, thus protecting against both apoptosis and necrosis shifting to apoptosis. Therefore, the degree of GSH depletion, paralleled by the levels of protein S-glutathionylation, may have a causal role in increasing calcium levels. The mitochondrial calcium increase could be responsible for apoptosis, while necrosis is associated with cytoplasmic calcium overload. These findings suggest that S-glutathionylation of specific proteins acts as a molecular linker between calcium and redox signalling.
Collapse
|
21
|
Xiao X, Liu J, Hu J, Zhu X, Yang H, Wang C, Zhang Y. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur J Pharmacol 2008; 591:21-7. [PMID: 18602385 DOI: 10.1016/j.ejphar.2008.06.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/22/2008] [Accepted: 06/02/2008] [Indexed: 02/07/2023]
Abstract
Calcium and lipid peroxidation play important roles in oxidative stress-induced cellular injury and apoptosis, which ultimately cause cell death. In this study we examined whether protopine had a neuroprotection against H(2)O(2)-induced injury in PC12 cells. Pretreatment of PC12 cells with protopine improved the cell viability, enhanced activities of superoxide dismutase, glutathione peroxidase and catalase, and decreased malondialdehyde level in the H(2)O(2) injured cells. Protopine also reversed the increased intracellular Ca(2+) concentration and the reduced mitochondrial membrane potential caused by H(2)O(2) in the cells. Furthermore, protopine was able to inhibit caspase-3 expression and cell apoptosis induced by H(2)O(2). In summary, this study demonstrates that protopine is able to relieve H(2)O(2)-induced oxidative stress and apoptosis in PC12 cells, at least in part, by Ca(2+) antagonism and antioxidant mechanisms.
Collapse
Affiliation(s)
- Xianghua Xiao
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13:463-82. [PMID: 18322800 PMCID: PMC7102248 DOI: 10.1007/s10495-008-0187-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 01/11/2023]
Abstract
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.
Collapse
|
23
|
Maffei ME, Mithöfer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Starvaggi Cucuzza L, Novero M, Volpe V, Quadro S, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. PLANT PHYSIOLOGY 2006; 140:1022-35. [PMID: 16443697 PMCID: PMC1400574 DOI: 10.1104/pp.105.071993] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 05/06/2023]
Abstract
In response to herbivore (Spodoptera littoralis) attack, lima bean (Phaseolus lunatus) leaves produced hydrogen peroxide (H(2)O(2)) in concentrations that were higher when compared to mechanically damaged (MD) leaves. Cellular and subcellular localization analyses revealed that H(2)O(2) was mainly localized in MD and herbivore-wounded (HW) zones and spread throughout the veins and tissues. Preferentially, H(2)O(2) was found in cell walls of spongy and mesophyll cells facing intercellular spaces, even though confocal laser scanning microscopy analyses also revealed the presence of H(2)O(2) in mitochondria/peroxisomes. Increased gene and enzyme activations of superoxide dismutase after HW were in agreement with confocal laser scanning microscopy data. After MD, additional application of H(2)O(2) prompted a transient transmembrane potential (V(m)) depolarization, with a V(m) depolarization rate that was higher when compared to HW leaves. In transgenic soybean (Glycine max) suspension cells expressing the Ca(2+)-sensing aequorin system, increasing amounts of added H(2)O(2) correlated with a higher cytosolic calcium ([Ca(2+)](cyt)) concentration. In MD and HW leaves, H(2)O(2) also triggered the increase of [Ca(2+)](cyt), but MD-elicited [Ca(2+)](cyt) increase was more pronounced when compared to HW leaves after addition of exogenous H(2)O(2). The results clearly indicate that V(m) depolarization caused by HW makes the membrane potential more positive and reduces the ability of lima bean leaves to react to signaling molecules.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Plant Biology and Centre of Excellence CEBIOVEM, University of Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Castro J, Ruminot I, Porras OH, Flores CM, Hermosilla T, Verdugo E, Venegas F, Härtel S, Michea L, Barros LF. ATP steal between cation pumps: a mechanism linking Na+ influx to the onset of necrotic Ca2+ overload. Cell Death Differ 2006; 13:1675-85. [PMID: 16410794 DOI: 10.1038/sj.cdd.4401852] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We set out to identify molecular mechanisms underlying the onset of necrotic Ca(2+) overload, triggered in two epithelial cell lines by oxidative stress or metabolic depletion. As reported earlier, the overload was inhibited by extracellular Ca(2+) chelation and the cation channel blocker gadolinium. However, the surface permeability to Ca(2+) was reduced by 60%, thus discarding a role for Ca(2+) channel/carrier activation. Instead, we registered a collapse of the plasma membrane Ca(2+) ATPase (PMCA). Remarkably, inhibition of the Na(+)/K(+) ATPase rescued the PMCA and reverted the Ca(2+) rise. Thermodynamic considerations suggest that the Ca(2+) overload develops when the Na(+)/K(+) ATPase, by virtue of the Na(+) overload, clamps the ATP phosphorylation potential below the minimum required by the PMCA. In addition to providing the mechanism for the onset of Ca(2+) overload, the crosstalk between cation pumps offers a novel explanation for the role of Na(+) in cell death.
Collapse
Affiliation(s)
- J Castro
- Centro de Estudios Científicos CECS, Casilla 1469, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chiang JJH, Truong K. Using Co-Cultures Expressing Fluorescence Resonance Energy Transfer Based Protein Biosensors to Simultaneously Image Caspase-3 and Ca2+ Signaling. Biotechnol Lett 2005; 27:1219-27. [PMID: 16158267 DOI: 10.1007/s10529-005-0021-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/08/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence resonance energy transfer (FRET)-based protein biosensors allow the spatial and temporal imaging of signaling events in living cells. However, the simultaneous correlation of multiple events of a signaling pathway is hindered by the spectral cross-talk between fluorescent proteins. Here, we show, for signaling pathways that progress synchronously, multiple events can be correlated by using co-cultures expressing different FRET-based protein biosensors. As a demonstration, we investigated the simultaneous caspase-3 and Ca2+ signaling events involved in cell death of COS-7 cells induced by 10 mM H2O2. Interestingly, this H2O2 stimulus induced synchronous caspase-3 activation and Ca2+ signaling. In parallel to caspase-3 activation, cytosolic Ca2+ concentration, [Ca2+]c, gradually rises to its peak and then slowly drops. As cell shrinkage and rounding ensues, [Ca2+]c again gradually rises to its peak and then reaches a plateau. These observations reveal the relative timing and location of these signaling events in cell death induced by this stimulus of H2O2. Finally, our approach offers an exciting opportunity for spatial and temporal imaging of multiple events in a signaling pathway in living cells.
Collapse
Affiliation(s)
- Jason Jui-Hsuan Chiang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, M5S 3G9, Ontario, Toronto, Canada
| | | |
Collapse
|