1
|
Deng Y, Cheng Q, He J. HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun 2023; 680:61-72. [PMID: 37722346 DOI: 10.1016/j.bbrc.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The essential role of epigenetic modification in the pathogenesis of a series of cancers have gradually been recognized. Histone deacetylase (HDACs), as well-known epigenetic modulators, are responsible for DNA repair, cell proliferation, differentiation, apoptosis and angiogenesis. Studies have shown that aberrant expression of HDACs is found in many cancer types. Thus, inhibition of HDACs has provided a promising therapeutic approach alternative for these patients. Since HDAC inhibitor (HDACi) vorinostat was first approved by the Food and Drug Administration (FDA) for treating cutaneous T-cell lymphoma (CTCL) in 2006, the combination of HDAC inhibitors with other molecules such as chemotherapeutic drugs has drawn much attention in current cancer treatment, especially in hematological malignancies therapy. Up to now, there have been more than twenty HDAC inhibitors investigated in clinic trials with five approvals being achieved. Indeed, Histone deacetylase inhibitors promote or enhance several different anticancer mechanisms and therefore are in evidence as potential antileukemia agents. In this review, we will focus on possible mechanisms by how HDAC inhibitors exert therapeutic benefit and their clinical utility in leukemia.
Collapse
Affiliation(s)
- Yun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Holay N, Somma A, Duchow M, Soleimani M, Capasso A, Kottapalli S, Rios J, Giri U, Diamond J, Schreiber A, Piscopio AD, Van Den Berg C, Eckhardt SG, Triplett TA. Elucidating the direct effects of the novel HDAC inhibitor bocodepsin (OKI-179) on T cells to rationally design regimens for combining with immunotherapy. Front Immunol 2023; 14:1260545. [PMID: 37744352 PMCID: PMC10513502 DOI: 10.3389/fimmu.2023.1260545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy. In this study, we evaluated T cell responses to a novel class-selective HDACi (OKI-179, bocodepsin) by assessing histone acetylation levels, which revealed rapid responsiveness accompanied by an increase in CD4 and CD8 T cell frequencies in the blood. However, these rapid responses were transient, as histone acetylation and frequencies waned within 24 hours. This contrasts with in vitro models where high acetylation was sustained and continuous exposure to HDACi suppressed cytokine production. In vivo comparisons demonstrated that stopping OKI-179 treatment during PD-1 blockade was superior to continuous treatment. These findings provide novel insight into the direct effects of HDAC inhibitors on T cells and that treatment schedules that take into account acute T cell effects should be considered when combined with immunotherapies in order to fully harness the tumor-specific T cell responses in patients.
Collapse
Affiliation(s)
- Nisha Holay
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Alexander Somma
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Mark Duchow
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Milad Soleimani
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Anna Capasso
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Srividya Kottapalli
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Joshua Rios
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Uma Giri
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer Diamond
- OnKure Therapeutics, Boulder, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Anna Schreiber
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | | | - Carla Van Den Berg
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - S. Gail Eckhardt
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Immunotherapeutics & Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
3
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
4
|
Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 2021; 226:113825. [PMID: 34562854 DOI: 10.1016/j.ejmech.2021.113825] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Meng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chenyi Lei
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| |
Collapse
|
5
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
6
|
Surapally S, Jayaprakasam M, Verma RS. Curcumin augments therapeutic efficacy of TRAIL-based immunotoxins in leukemia. Pharmacol Rep 2020; 72:1032-1046. [PMID: 32141025 DOI: 10.1007/s43440-020-00073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been perceived as a promising anti-cancer agent because of its unique ability to kill cancer cells while sparing normal cells. However, translation of TRAIL to clinical studies was less successful as a large number of cancer cells acquire resistance to TRAIL-based monotherapies. An ideal strategy to overcome TRAIL resistance is to combine it with potential sensitizing agents. OBJECTIVE To investigate the TRAIL-sensitizing effect of curcumin in leukemia. METHODS The mechanism underlying TRAIL sensitization by curcumin was studied by flow cytometric analysis of TRAIL receptors in leukemic cell lines and patient samples, and immunoblot detection of TRAIL-apoptosis signaling proteins. RESULTS Curcumin augments TRAIL-apoptotic signaling in leukemic cells by upregulating the expression of DR4 and DR5 along with suppression of cFLIP and anti-apoptotic proteins Mcl-1, Bcl-xl, and XIAP. Curcumin pre-treatment significantly (p < 0.01) enhanced the sensitivity of leukemic cell lines to TRAIL recombinant proteins. IL2-TRAIL peptide in the presence of curcumin induced potent apoptosis (p < 0.001) as compared to TRAIL and IL2-TRAIL protein in leukemic cell lines with IC50 < 0.1 μΜ. Additionally, the combination of IL2-TRAIL peptide and curcumin showed significant cytotoxicity in patient peripheral blood mononuclear cells (PBMCs) with an efficacy of 90% in acute myeloid leukemia (AML), but 100% in acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelomonocytic leukemia (CMML). CONCLUSION Overall, our results suggest that curcumin potentiates TRAIL-induced apoptosis through modulation of death receptors and anti-apoptotic proteins which significantly enhances the therapeutic efficacy.
Collapse
Affiliation(s)
- Sridevi Surapally
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Madhumathi Jayaprakasam
- Division of Epidemiology and Communicable Diseases, Indian Council for Medical Research (ICMR), New Delhi, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
7
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
8
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
9
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
10
|
McCaw TR, Randall TD, Forero A, Buchsbaum DJ. Modulation of antitumor immunity with histone deacetylase inhibitors. Immunotherapy 2017; 9:1359-1372. [PMID: 29185390 PMCID: PMC6077764 DOI: 10.2217/imt-2017-0134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylase inhibitors possess a broad array of antitumor activities; however, their net impact on the evolving antitumor immune response is highly dependent on the inhibitors used and the histone deacetylases they target. Herein, we sequentially focus on each stage of the antitumor immune response - from dendritic cell activation and migration, antigen uptake and presentation, T-cell activation and differentiation and the enactment of antitumor effector functions within the tumor microenvironment. In particular, we will discuss how various inhibitors have different effects depending on cellular activation, experimental design and specific histone deacetylases being targeted - and how these changes impact the outcome of an antitumor immune response. At last, we consider the impact these inhibitors may have on T-cell exhaustion and implications for combination with other immunomodulating therapies.
Collapse
Affiliation(s)
- Tyler R McCaw
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Andres Forero
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| |
Collapse
|
11
|
Novel histone deacetylase inhibitors derived from Magnolia officinalis significantly enhance TRAIL-induced apoptosis in non-small cell lung cancer. Pharmacol Res 2016; 111:113-125. [DOI: 10.1016/j.phrs.2016.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022]
|
12
|
Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis 2016; 7:e2071. [PMID: 26821067 PMCID: PMC4816192 DOI: 10.1038/cddis.2015.419] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.
Collapse
Affiliation(s)
- A Bresin
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - L D'Abundo
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - M G Narducci
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - M T Fiorenza
- Dipartimento di Psicologia, Sezione di Neuroscienze, Università La Sapienza di Roma, Rome, Italy
| | - C M Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - M Negrini
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - G Russo
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
13
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
14
|
Trivedi R, Mishra DP. Trailing TRAIL Resistance: Novel Targets for TRAIL Sensitization in Cancer Cells. Front Oncol 2015; 5:69. [PMID: 25883904 PMCID: PMC4382980 DOI: 10.3389/fonc.2015.00069] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to chemotherapeutic drugs is the major hindrance in the successful cancer therapy. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) family of ligands, which initiates apoptosis in cancer cells through interaction with the death receptors DR4 and DR5. TRAIL is perceived as an attractive chemotherapeutic agent as it specifically targets cancer cells while sparing the normal cells. However, TRAIL therapy has a major limitation as a large number of the cancer develop resistance toward TRAIL and escape from the destruction by the immune system. Therefore, elucidation of the molecular targets and signaling pathways responsible for TRAIL resistance is imperative for devising effective therapeutic strategies for TRAIL resistant cancers. Although, various molecular targets leading to TRAIL resistance are well-studied, recent studies have implicated that the contribution of some key cellular processes toward TRAIL resistance need to be fully elucidated. These processes primarily include aberrant protein synthesis, protein misfolding, ubiquitin regulated death receptor expression, metabolic pathways, epigenetic deregulation, and metastasis. Novel synthetic/natural compounds that could inhibit these defective cellular processes may restore the TRAIL sensitivity and combination therapies with such compounds may resensitize TRAIL resistant cancer cells toward TRAIL-induced apoptosis. In this review, we have summarized the key cellular processes associated with TRAIL resistance and their status as therapeutic targets for novel TRAIL-sensitizing agents.
Collapse
Affiliation(s)
- Rachana Trivedi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
15
|
Jayasooriya RGPT, Choi YH, Hyun JW, Kim GY. Camptothecin sensitizes human hepatoma Hep3B cells to TRAIL-mediated apoptosis via ROS-dependent death receptor 5 upregulation with the involvement of MAPKs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:959-67. [PMID: 25461556 DOI: 10.1016/j.etap.2014.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 05/26/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of malignant cancer cells, but several cancers have acquired potent resistance to TRAIL-induced cell death by unknown mechanisms. Camptothecin (CPT) is a quinolone alkaloid that induces cytotoxicity in a variety of cancer cell lines. However, it is not known whether CPT triggers TRAIL-induced cell death. In this study, we found that combined treatment with subtoxic doses of CPT and TRAIL (CPT-TRAIL) potentially enhanced apoptosis in a caspase-dependent manner. CPT-TRAIL effectively induced the expression of death receptor (DR) 5, which is a specific receptor of TRAIL, and treatment with a chimeric blocking antibody for DR5 reduced CPT-TRAIL-induced cell death, indicating that CPT functionally triggers DR5-mediated cell death in response to TRAIL. CPT-induced generation of reactive oxygen species (ROS) also preceded the upregulation of DR5 in response to TRAIL. The involvement of ROS in DR5 upregulation confirmed that pretreatment with antioxidants, including N-acetyl-L-cysteine and glutathione, significantly inhibits CPT-TRAIL-induced cell death by suppressing DR5 expression. The specific inhibitors of ERK and p38 also decreased CPT-TRAIL-induced cell death by blocking DR5 expression. In conclusion, our results suggest that CPT sensitizes cancer cells to TRAIL-mediated apoptosis via ROS and ERK/p38-dependent DR5 upregulation.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
16
|
Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci 2014; 71:3885-901. [PMID: 24898083 PMCID: PMC4414051 DOI: 10.1007/s00018-014-1656-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
17
|
Yoon JY, Ishdorj G, Graham BA, Johnston JB, Gibson SB. Valproic acid enhances fludarabine-induced apoptosis mediated by ROS and involving decreased AKT and ATM activation in B-cell-lymphoid neoplastic cells. Apoptosis 2014; 19:191-200. [PMID: 24057147 DOI: 10.1007/s10495-013-0906-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been shown synergize with a number of cytotoxic drugs in leukemic cells. In chronic lymphocytic leukemia (CLL), the first line therapy is based on the combination of fludarabine, a nucleoside analogue, and rituximab, an anti-CD20 monoclonal antibody, and there are presently no HDAC inhibitors are used to manage CLL. In the present study, we found that the addition of valproic acid (VPA), a HDAC inhibitor, increases cell death in B-cell-neoplasm-derived cell lines, BJAB, NALM-6 and I-83. This increased apoptosis caused release of mitochondrial cytochrome c, activation of caspases, and increased reactive oxygen species (ROS). The addition of a ROS scavenger inhibited cell death induced by the VPA-fludarabine combination. In contrast, blocking the death receptor pathway failed to inhibit VPA increased fludarabine induced apoptosis. Combination of VPA and fludarabine treatment decreased both total and phosphorylated levels of AKT, an important anti-apoptotic protein, and ATM, a pivotal protein in DNA damage response. Chemical inhibition of AKT or ATM was sufficient to enhance fludarabine-induced apoptosis. We next examined patient samples from a local clinical trial where relapsed CLL patients were treated with VPA and examined the effects of VPA on AKT and ATM in vivo. After 30 days, there was a reduction in ATM levels in three out of the four patients treated, while AKT phosphorylation was reduced only in one patient. Taken together, VPA reduces ATM levels, thereby increasing ROS-dependent cell death via the mitochondrial apoptotic pathway when combined with fludarabine.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
18
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-336. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Aher JS, Khan S, Jain S, Tikoo K, Jena G. Valproate ameliorates thioacetamide-induced fibrosis by hepatic stellate cell inactivation. Hum Exp Toxicol 2014; 34:44-55. [PMID: 24812151 DOI: 10.1177/0960327114531992] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Valproic acid (VPA) has been reported as inhibitor of histone deacetylases (HDACs). Several reports indicated that HDACs play a crucial role in the pathogenesis of fibrosis and hepatic stellate cell (HSC) activation. The present study was aimed to evaluate the anti-fibrotic effect of VPA against thioacetamide (TAA)-induced hepatic fibrosis and activation of the HSC in rat. VPA and TAA were administrated intraperitoneally at the dose of 400 and 200 mg/kg each at 2 days interval, respectively for a period of 6 weeks. Administration of TAA significantly increased the absolute and relative liver weight, aspartate aminotransferase and alanine aminotransferase levels, which were significantly decreased by VPA treatment as compared to TAA control. VPA treatment prevents the TAA-induced activation of HSC and decreases collagen deposition and infiltration of inflammatory cells as revealed by Sirius red and H&E staining. Interestingly, VPA co-treatment led to significantly increase the DNA damage and apoptosis in the activated HSC as compared to TAA control. Further, TAA decreased the expression of matrix metalloproteinase-2 (MMP-2), while VPA co-treatment significantly increased the expression of MMP-2 as compared to respective control. The present study clearly demonstrated that VPA treatment significantly alleviates TAA-induced activation of HSC and subsequent hepatic fibrosis.
Collapse
Affiliation(s)
- J S Aher
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India These two authors contributed equally
| | - S Khan
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India These two authors contributed equally
| | - S Jain
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - K Tikoo
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - G Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
20
|
The histone deacetylase inhibitor, LBH589, promotes the systemic cytokine and effector responses of adoptively transferred CD8+ T cells. J Immunother Cancer 2014; 2:8. [PMID: 25054063 PMCID: PMC4105687 DOI: 10.1186/2051-1426-2-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/19/2014] [Indexed: 01/22/2023] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are a class of agents that have potent antitumor activity with a reported ability to upregulate MHC and costimulatory molecule expression. We hypothesized that epigenetic pharmacological immunomodulation could sensitize tumors to immune mediated cell death with an adoptive T cell therapy. Methods The pan-HDAC inhibitor, LBH589, was combined with gp100 specific T cell immunotherapy in an in vivo B16 melanoma model and in an in vivo non-tumor bearing model. Tumor regression, tumor specific T cell function and phenotype, and serum cytokine levels were evaluated. Results Addition of LBH589 to an adoptive cell transfer therapy significantly decreased tumor burden while sustaining systemic pro-inflammatory levels. Furthermore, LBH589 was able to enhance gp100 specific T cell survival and significantly decrease T regulatory cell populations systemically and intratumorally. Even in the absence of tumor, LBH589 was able to enhance the proliferation, retention, and polyfunctional status of tumor specific T cells, suggesting its effects were T cell specific. In addition, LBH589 induced significantly higher levels of the IL-2 receptor (CD25) and the co-stimulatory molecule OX-40 in T cells. Conclusion These results demonstrate that immunomodulation of adoptively transferred T cells by LBH589 provides a novel mechanism to increase in vivo antitumor efficacy of effector CD8 T cells.
Collapse
|
21
|
Zheng Y, Zhang M, Zhao Y, Chen J, Li B, Cai W. JNK inhibitor SP600125 protects against lipopolysaccharide-induced acute lung injury via upregulation of claudin-4. Exp Ther Med 2014; 8:153-158. [PMID: 24944614 PMCID: PMC4061205 DOI: 10.3892/etm.2014.1684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/18/2014] [Indexed: 11/05/2022] Open
Abstract
Although in vitro studies have previously demonstrated that mitogen-activated protein kinases are important for the activation of transcription factors and the regulation of proinflammatory mediators, the function of c-Jun NH2-terminal kinase (JNK) in acute lung injury (ALI) remains to be fully elucidated. The present study aimed to investigate the effect of the JNK selective inhibitor SP600125 on lipopolysaccharide (LPS)-induced ALI. Pulmonary edema, the expression of inflammatory cytokines and pathological alterations were found to be significantly attenuated in LPS-induced ALI following treatment with SP600125 in vivo. In vitro, it was demonstrated that SP600125 administration significantly improved A549 cell viability in a dose-dependent manner using the Cell Counting kit-8 and the 5-ethynyl-2'-deoxyuridine incorporation assay. Furthermore, flow cytometric analysis demonstrated that the apoptotic rate was significantly reduced in a concentration-dependent manner following SP600125 injection. At the molecular level, SP600125 treatment dose-dependently inhibited JNK activation and upregulated claudin-4 expression in vivo and in vitro. In combination, the results from the present study indicated that the JNK inhibitor SP600125 protected against LPS-induced ALI in vivo and in vitro, possibly by upregulating the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Meiqi Zhang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yiming Zhao
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Chen
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Bing Li
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenwei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
22
|
Bishton M, Kenealy M, Johnstone R, Rasheed W, Prince HM. Epigenetic targets in hematological malignancies: combination therapies with HDACis and demethylating agents. Expert Rev Anticancer Ther 2014; 7:1439-49. [DOI: 10.1586/14737140.7.10.1439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Rasheed W, Bishton M, Johnstone RW, Prince HM. Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther 2014; 8:413-32. [DOI: 10.1586/14737140.8.3.413] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B. Blood Cancer J 2013; 3:e153. [PMID: 24141622 PMCID: PMC3816211 DOI: 10.1038/bcj.2013.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins.
Collapse
|
25
|
Flusberg DA, Sorger PK. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging. Phys Biol 2013; 10:035002. [PMID: 23735516 DOI: 10.1088/1478-3975/10/3/035002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 2013; 116:165-97. [PMID: 23088871 DOI: 10.1016/b978-0-12-394387-3.00005-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that impede the growth and/or survival of tumor cells. Depending on the physiological context, HDACi can induce apoptosis via two well-defined apoptotic pathways; the intrinsic/mitochondrial pathway and the death receptor (DR)/extrinsic pathway. A number of groups have demonstrated that overexpression of prosurvival Bcl-2 family members significantly reduces HDACi-mediated tumor cell death and therapeutic efficacy in preclinical models. In many cases, HDACi activate the intrinsic pathway via upregulation of a number of proapoptotic BH3-only Bcl-2 family genes including Bim, Bid, and Bmf. Additionally, HDACi can engage the extrinsic pathway through upregulation of DR expression, reductions in c-FLIP, and upregulation of ligands such as TRAIL. Overall, it appears that activation of the intrinsic apoptotic pathway is the predominant mechanism of HDACi-induced tumor cell death; however, the DR pathway may also be engaged, either to amplify the apoptotic signal through the intrinsic pathway or to directly induce cell death.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Cancer Therapeutics Program, Gene Regulation Laboratory, The Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | | | | |
Collapse
|
27
|
Amin S, Walsh M, Wilson C, Parker AE, Oscier D, Willmore E, Mann D, Mann J. Cross-talk between DNA methylation and active histone modifications regulates aberrant expression of ZAP70 in CLL. J Cell Mol Med 2013; 16:2074-84. [PMID: 22151263 PMCID: PMC3822977 DOI: 10.1111/j.1582-4934.2011.01503.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Zeta-associated protein of 70 kD (ZAP70) is a recognized adverse prognostic marker in chronic lymphocytic leukaemia (CLL) associated with enhanced B-cell receptor signalling, significantly more aggressive disease course and poor overall survival. Zeta-associated protein of 70 kD is ordinarily expressed in T cells where it has a crucial role in T-cell receptor signalling, whereas its aberrant expression in CLL leads to enhanced B-cell receptor signalling and significantly more aggressive disease course. Although much is known about the activation of ZAP70 following engagement of T-cell receptor, there are little data on the regulation of ZAP70 gene expression in normal T cells or CLL. To understand the molecular events underpinning epigenetic regulation of ZAP70 gene in CLL, we have defined ZAP70 promoter region and outlined the regions crucial in regulating the gene activity. Following a direct comparison of ZAP70+ and ZAP70- primary CLLs, we show ZAP70 promoter in expressing CLLs to be associated with a spectrum of active histone modifications, some of which are tightly linked to aberrant DNA methylation in CLL. Cross-talk between histone modifications and reduced DNA methylation culminates in transcriptional de-repression of ZAP70. Moreover, treatment with histone deacetylase (HDAC) and DNA methylation inhibitors results in recovery of ZAP70 expression, which provides a possible explanation for the failure of HDAC inhibitors in CLL treatment and might serve as a cautionary warning for their future use in treatment of this leukaemia.
Collapse
Affiliation(s)
- Shilu Amin
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Harrison SJ, Bishton M, Bates SE, Grant S, Piekarz RL, Johnstone RW, Dai Y, Lee B, Araujo ME, Prince HM. A focus on the preclinical development and clinical status of the histone deacetylase inhibitor, romidepsin (depsipeptide, Istodax(®)). Epigenomics 2012; 4:571-589. [PMID: 23130838 PMCID: PMC7457146 DOI: 10.2217/epi.12.52] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Romidepsin (Istodax(®), depsipeptide, FR901228, FK228, NSC 630176) is a cyclic peptide, broad-spectrum, potent histone deacetylase inhibitor, with activity mainly against class I histone deacetylase enzymes. In this article, we give an overview of the putative modes of action, such as effects on gene expression, cell cycle regulation, apoptosis induction, DNA repair, protein acetylation and induction of autophagy. Romidepsin has mainly been developed as a therapy for hematologic malignancies and is approved by the US FDA for the treatment of cutaneous T-cell lymphomas. This report outlines the laboratory and clinical development of the compound as a single agent that has more recently been evaluated in combination with other anticancer therapeutics, such as proteasome inhibitors.
Collapse
Affiliation(s)
- Simon J Harrison
- Haematology Service, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Cancer Immunology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Mark Bishton
- Haematology Service, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Cancer Immunology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Susan E Bates
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard L Piekarz
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ricky W Johnstone
- Cancer Immunology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Becki Lee
- Haematology Service, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Maria E Araujo
- Haematology Service, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - H Miles Prince
- Haematology Service, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Cancer Immunology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Fulda S. Histone deacetylase (HDAC) inhibitors and regulation of TRAIL-induced apoptosis. Exp Cell Res 2012; 318:1208-12. [DOI: 10.1016/j.yexcr.2012.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|
30
|
Abstract
Our aim was to analyze the impact of the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on bladder cancer cell growth in vitro. RT-4, TCCSUP, UMUC-3, and RT-112 bladder cancer cells were treated with VPA (0.125-1 mmol/l) without and with preincubation periods of 3 and 5 days. Controls remained untreated. Tumor cell growth, cell cycle progression, and cell cycle-regulating proteins were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and western blotting, respectively. Effects of VPA on histone H3 and H4 acetylation and HDAC3 and HDAC4 were also determined. Without preincubation, no tumor cell growth reduction was observed with 0.125 and 0.25 mmol/l VPA in TCCSUP, UMUC-3, and RT-112 cells, whereas 0.5 and 1 mmol/l VPA diminished the cell number significantly. VPA (0.25 mmol/l) did exert tumor growth-blocking effects after a 3-day preincubation. To achieve antitumor effects with VPA (0.125 mmol/l), a 5-day preincubation was necessary. A 3-day or 5-day preincubation was also necessary to distinctly delay cell cycle progression, with maximum effects at VPA (1 mmol/l). After the 5-day preincubation, the cell cycle-regulating proteins cdk1, cdk2, cdk4, and cyclins B, D1, and E were reduced, whereas p27 was enhanced. Diminished HDAC3 and 4 expression induced by VPA was accompanied by elevated acetylation of H3 and H4. VPA exerted growth-blocking properties on a panel of bladder cancer cell lines, commensurate with dose and exposure time. Long-term application induced much stronger effects than did shorter application and should be considered when designing therapeutic strategies for treating bladder carcinoma.
Collapse
|
31
|
Sonnemann J, Trommer N, Becker S, Wittig S, Grauel D, Palani CD, Beck JF. Histone deacetylase inhibitor-mediated sensitization to TRAIL-induced apoptosis in childhood malignancies is not associated with upregulation of TRAIL receptor expression, but with potentiated caspase-8 activation. Cancer Biol Ther 2012; 13:417-24. [PMID: 22313685 DOI: 10.4161/cbt.19293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has great potential for the treatment of cancer because it targets tumor cells while sparing normal cells. Several cancers, however, fail to respond to TRAIL's antineoplastic effects. These resistant tumors require cotreatment with sensitizing agents in order for TRAIL to exert anticancer activity. Histone deacetylase inhibitors (HDACi) have been recognized as potent TRAIL sensitizers. In searching for the determinants of TRAIL responsiveness, HDACi-mediated TRAIL sensitization has been predominantly attributed to TRAIL receptor upregulation. This explanation, however, has been challenged by a few studies. The aim of the present study was to explore the relevance of TRAIL receptor expression for HDACi-mediated TRAIL sensitization in childhood tumors, i.e., in medulloblastoma, Ewing's sarcoma and osteosarcoma. In previous studies, we had shown that TRAIL and HDACi were synergistic in inducing apoptosis in medulloblastoma and Ewing's sarcoma. In the present study, we demonstrate that HDACi cooperated with TRAIL in eliciting cell death in osteosarcoma. However, HDACi treatment did not alter or even reduced cell surface expression of TRAIL receptors in the three childhood tumors. In gaining insight into the apoptotic pathway involved in TRAIL sensitization, HDACi were found to potentiate TRAIL-induced caspase-8 activation. Taken together, our findings suggest that HDACi-mediated TRAIL sensitization is not the result of TRAIL receptor upregulation, but the result of a receptor-proximal event in childhood tumor cells.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
IFN-γ combined with targeting of XIAP leads to increased apoptosis-sensitisation of TRAIL resistant pancreatic carcinoma cells. Cancer Lett 2012; 316:168-77. [DOI: 10.1016/j.canlet.2011.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022]
|
33
|
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res 2012; 318:1229-44. [PMID: 22336671 DOI: 10.1016/j.yexcr.2012.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
34
|
Histone deacetylase inhibitors are unable to synergize with ABT-737 in killing primary chronic lymphocytic leukaemia cells in vitro. Leukemia 2012; 26:1433-5. [DOI: 10.1038/leu.2011.370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
Histone deacetylase inhibitors (HDACIs) are epigenetically acting agents that modify chromatin structure and by extension, gene expression. However, they may influence the behavior and survival of transformed cells by diverse mechanisms, including promoting expression of death- or differentiation-inducing genes while downregulating the expression of prosurvival genes; acting directly to increase oxidative injury and DNA damage; acetylating and disrupting the function of multiple proteins, including DNA repair and chaperone proteins; and interfering with the function of corepressor complexes. Notably, HDACIs have been shown in preclinical studies to target transformed cells selectively, and these agents have been approved in the treatment of certain hematologic malignancies, for example, cutaneous T-cell lymphoma and peripheral T-cell lymphoma. However, attempts to extend the spectrum of HDACI activity to other malignancies, for example, solid tumors, have been challenging. This has led to the perception that HDACIs may have limited activity as single agents. Because of the pleiotropic actions of HDACIs, combinations with other antineoplastic drugs, particularly other targeted agents, represent a particularly promising avenue of investigation. It is likely that emerging insights into mechanism(s) of HDACI activity will allow optimization of this approach, and hopefully, will expand HDACI approvals to additional malignancies in the future.
Collapse
Affiliation(s)
- Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond, Virginia, USA.
| | | |
Collapse
|
36
|
Inoue H, Waiwut P, Saiki I, Shimada Y, Sakurai H. Gomisin N enhances TRAIL-induced apoptosis via reactive oxygen species-mediated up-regulation of death receptors 4 and 5. Int J Oncol 2011; 40:1058-65. [PMID: 22179661 PMCID: PMC3584564 DOI: 10.3892/ijo.2011.1299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/04/2011] [Indexed: 12/27/2022] Open
Abstract
Pharmacological studies have revealed that lignans isolated from Schisandra chinensis, including gomisin N, show anticancer, anti-hepatotoxic, anti-oxidative and anti-inflammatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor superfamily with great potential in cancer therapy. The present study investigated whether pretreatment with gomisin N significantly enhanced TRAIL-induced cleavage of caspase-3, caspase-8 and PARP-1, which are key markers of apoptosis. Pretreatment with z-VAD-FMK, a pan-caspase inhibitor, was able to inhibit apoptosis enhanced by the combination of gomisin N and TRAIL. These results suggested that gomisin N could promote TRAIL-induced apoptosis through the caspase cascade. In search of the molecular mechanisms, we elucidated that such enhancement was achieved through transcriptional up-regulation of TRAIL receptors, death receptor 4 (DR4) and DR5. Neutralization of DR4 and DR5 could significantly reduce apoptosis induced by gomisin N and TRAIL. We also revealed that gomisin N increased the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), an antioxidant, could inhibit ROS production and up-regulation of DR4 and DR5. Overall, our results indicated that gomisin N was able to potentiate TRAIL-induced apoptosis through ROS-mediated up-regulation of DR4 and DR5.
Collapse
Affiliation(s)
- Hiroki Inoue
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
37
|
Masood A, Sher T, Paulus A, Miller KC, Chitta KS, Chanan-Khan A. Targeted treatment for chronic lymphocytic leukemia. Onco Targets Ther 2011; 4:169-83. [PMID: 22162923 PMCID: PMC3233276 DOI: 10.2147/ott.s7173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has evolved over the last few decades. Recognition has increased of several key components of CLL biology currently manipulated for therapeutics. A milestone in the treatment of CLL was reached with the incorporation of immunotherapy with conventional chemotherapy. The fludarabine/cyclophosphamide/rituximab combination has demonstrated survival advantage for the first time in the treatment of CLL. Several other biological compounds are being explored with the hope of improving responses, impacting survival, and ultimately curing CLL. Important agents being tested are targeted on CLL surface molecules and their ligands, signal transduction protein and oncogenes. This review provides a brief summary of the recent advances made in preclinical and clinical investigation of selected promising therapeutic agents, which lead the target-directed therapeutic approach.
Collapse
Affiliation(s)
- Aisha Masood
- The Tisch Cancer Institute, Bone Marrow Transplant Unit, Mount Sinai School of Medicine, New York, NY
| | | | | | | | | | | |
Collapse
|
38
|
Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL. Breast Cancer Res 2011; 13:R88. [PMID: 21914219 PMCID: PMC3262200 DOI: 10.1186/bcr2945] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 09/14/2011] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION It is postulated that breast cancer stem cells (bCSCs) mediate disease recurrence and drive formation of distant metastases - the principal cause of mortality in breast cancer patients. Therapeutic targeting of bCSCs, however, is hampered by their heterogeneity and resistance to existing therapeutics. In order to identify strategies to selectively remove bCSCs from breast cancers, irrespective of their clinical subtype, we sought an apoptosis mechanism that would target bCSCs yet would not kill normal cells. Suppression of the apoptosis inhibitor cellular FLICE-Like Inhibitory Protein (c-FLIP) partially sensitizes breast cancer cells to the anti-cancer agent Tumour Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL). Here we demonstrate in breast cancer cell lines that bCSCs are exquisitely sensitive to the de-repression of this pro-apoptotic pathway, resulting in a dramatic reduction in experimental metastases and the loss of bCSC self-renewal. METHODS Suppression c-FLIP was performed by siRNA (FLIPi) in four breast cancer cell lines and by conditional gene-knockout in murine mammary glands. Sensitivity of these cells to TRAIL was determined by complementary cell apoptosis assays, including a novel heterotypic cell assay, while tumour-initiating potential of cancer stem cell subpopulations was determined by mammosphere cultures, aldefluor assay and in vivo transplantation. RESULTS Genetic suppression of c-FLIP resulted in the partial sensitization of TRAIL-resistant cancer lines to the pro-apoptotic effects of TRAIL, irrespective of their cellular phenotype, yet normal mammary epithelial cells remained refractory to killing. While 10% to 30% of the cancer cell populations remained viable after TRAIL/FLIPi treatment, subsequent mammosphere and aldefluor assays demonstrated that this pro-apoptotic stimulus selectively targeted the functional bCSC pool, eliminating stem cell renewal. This culminated in an 80% reduction in primary tumours and a 98% reduction in metastases following transplantation. The recurrence of residual tumour initiating capacity was consistent with the observation that post-treated adherent cultures re-acquired bCSC-like properties in vitro. Importantly however this recurrent bCSC activity was attenuated following repeated TRAIL/FLIPi treatment. CONCLUSIONS We describe an apoptotic mechanism that selectively and repeatedly removes bCSC activity from breast cancer cell lines and suggest that a combined TRAIL/FLIPi therapy could prevent metastatic disease progression in a broad range of breast cancer subtypes.
Collapse
|
39
|
Andritsos LA, Grever MR. Salvage therapy for relapsed chronic lymphocytic leukemia. Expert Rev Hematol 2011; 4:199-212. [PMID: 21495929 DOI: 10.1586/ehm.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic lymphocytic leukemia is a common hematologic malignancy with a highly variable clinical course. While the median age at diagnosis is 72 years of age and fewer than 10% of patients are diagnosed before the age of 60 years, the majority of patients who require therapy will ultimately relapse. Advances in upfront therapy and supportive care have dramatically improved initial responses compared with traditional akylator-based chemotherapy. However, comparable results are not generally observed in the salvage setting. Careful planning that takes into account the duration of the initial response, patient age and/or comorbidities, and cytogenetic and molecular profiles are critical for the successful management of patients with relapsed chronic lymphocytic leukemia.
Collapse
|
40
|
Xiao W, Ishdorj G, Sun J, Johnston JB, Gibson SB. Death receptor 4 is preferentially recruited to lipid rafts in chronic lymphocytic leukemia cells contributing to tumor necrosis related apoptosis inducing ligand-induced synergistic apoptotic responses. Leuk Lymphoma 2011; 52:1290-301. [DOI: 10.3109/10428194.2011.567317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ. Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther 2011; 11:431-49. [PMID: 21263219 PMCID: PMC3087899 DOI: 10.4161/cbt.11.5.14671] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 12/20/2022] Open
Abstract
Molecularly targeted therapies, such as antibodies and small molecule inhibitors have emerged as an important breakthrough in the treatment of many human cancers. One targeted therapy under development is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to its ability to induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in most normal cells. TRAIL and apoptosis-inducing agonistic antibodies to the TRAIL death receptors have been the subject of many preclinical and clinical studies in the past decade. However, the sensitivity of individual cancer cell lines of a particular tumor type to these agents varies from highly sensitive to resistant. Various chemotherapy agents have been shown to enhance the apoptosis-inducing capacity of TRAIL receptor-targeted therapies and induce sensitization of TRAIL-resistant cells. This review provides an overview of the mechanisms associated with chemotherapy enhancement of TRAIL receptor-targeted therapies including modulation of the apoptotic (death receptor expression, FLIP, and Bcl-2 or inhibitors of apoptosis (IAP) families) as well as cell signaling (NFκB, Akt, p53) pathways. These mechanisms will be important in establishing effective combinations to pursue clinically and in determining relevant targets for future cancer therapies.
Collapse
Affiliation(s)
- Hope M Amm
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
42
|
Sung ES, Kim A, Park JS, Chung J, Kwon MH, Kim YS. Histone deacetylase inhibitors synergistically potentiate death receptor 4-mediated apoptotic cell death of human T-cell acute lymphoblastic leukemia cells. Apoptosis 2010; 15:1256-69. [PMID: 20582477 DOI: 10.1007/s10495-010-0521-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell-death signaling through the pro-apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptors, death receptor 4 (DR4) and DR5, has shown tumor-selective apoptotic activity. Here, we examine susceptibility of various leukemia cell lines (HL-60, U937, K562, CCRF-CEM, CEM-CM3, and THP-1) to an anti-DR4 agonistic monoclonal antibody (mAb), AY4, in comparison with TRAIL. While most of the leukemia cell lines were intrinsically resistant to AY4 or TRAIL alone, the two T-cell acute lymphoblastic leukemia (T-ALL) lines, CEM-CM3 and CCRF-CEM cells, underwent synergistic caspase-dependent apoptotic cell death by combination of AY4 or TRAIL with a histone deacetylase inhibitor (HDACI), either suberoylanilide hydroxamic acid (SAHA) or valproic acid (VPA). All of the combined treatments synergistically downregulated several anti-apoptotic proteins (c-FLIP, Bcl-2, Bcl-X(L), XIAP, and survivin) without significant changing the expression levels of pro-apoptotic proteins (Bax and Bak) or the receptors (DR4 and DR5). Downregulation of c-FLIP to activate caspase-8 was a critical step for the synergistic apoptosis through both extrinsic and intrinsic apoptotic pathways. Our results demonstrate that the HDACIs have synergistic effects on DR4-specific mAb AY4-mediated cell death in the T-ALL cells with comparable competence to those exerted by TRAIL, providing a new strategy for the targeted treatment of human T-ALL cells.
Collapse
Affiliation(s)
- Eun-Sil Sung
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Yeongtong-gu, Suwon, 443-749, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Dickinson M, Johnstone RW, Prince HM. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28 Suppl 1:S3-20. [PMID: 21161327 PMCID: PMC3003794 DOI: 10.1007/s10637-010-9596-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
The histone deacetylase inhibitors (HDACi) have demonstrated anticancer efficacy across a range of malignancies, most impressively in the hematological cancers. It is uncertain whether this clinical efficacy is attributable predominantly to their ability to induce apoptosis and differentiation in the cancer cell, or to their ability to prime the cell to other pro-death stimuli such as those from the immune system. HDACi-induced apoptosis occurs through altered expression of genes encoding proteins in both intrinsic and extrinsic apoptotic pathways; through effects on the proteasome/aggresome systems; through the production of reactive oxygen species, possibly by directly inducing DNA damage; and through alterations in the tumor microenvironment. In addition HDACi increase the immunogenicity of tumor cells and modulate cytokine signaling and potentially T-cell polarization in ways that may contribute the anti-cancer effect in vivo. Here, we provide an overview of current thinking on the mechanisms of HDACi activity, with attention given to the hematological malignancies as well as scientific observations arising from the clinical trials. We also focus on the immune effects of these agents.
Collapse
Affiliation(s)
- Michael Dickinson
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| | - Ricky W. Johnstone
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| | - H. Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
HDAC inhibitors with different gene regulation activities depend on the mitochondrial pathway for the sensitization of leukemic T cells to TRAIL-induced apoptosis. Cancer Lett 2010; 297:91-100. [DOI: 10.1016/j.canlet.2010.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/31/2010] [Accepted: 04/30/2010] [Indexed: 11/13/2022]
|
45
|
Martin BP, Frew AJ, Bots M, Fox S, Long F, Takeda K, Yagita H, Atadja P, Smyth MJ, Johnstone RW. Antitumor activities and on-target toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat. Int J Cancer 2010; 128:2735-47. [PMID: 20715169 DOI: 10.1002/ijc.25594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/08/2010] [Indexed: 12/29/2022]
Abstract
The recent development of novel targeted anticancer therapeutics such as histone deacetylase inhibitors (HDACi) and activators of the TRAIL pathway provide opportunities for the introduction of new treatment regimens in oncology. HDACi and recombinant TRAIL or agonistic anti-TRAIL receptor antibodies have been shown to induce synergistic tumor cell apoptosis and some therapeutic activity in vivo. Herein, we have used syngeneic preclinical models of human solid cancers to demonstrate that the HDACi panobinostat can sensitize tumor cells to apoptosis mediated by the anti-mouse TRAIL receptor antibody MD5-1. We demonstrate that the combination of panobinostat and MD5-1 can eradicate tumors grown subcutaneously and orthotopically in immunocompetent mice, while single agent treatment has minimal effect. However, escalation of the dose of panobinostat to enhance antitumor activity resulted in on-target MD5-1-mediated gastrointestinal toxicities that were fatal to the treated mice. Studies performed in mice with knockout of the TRAIL receptor showed that these mice could tolerate doses of the panobinostat/MD5-1 combination that were lethal in wild type mice resulting in superior tumor clearance. Given that clinical studies using HDACi and activators of the TRAIL pathway have been initiated, our preclinical data highlight the potential toxicities that could limit the use of such a treatment regimen. Our studies also demonstrate the power of using syngeneic in vivo tumor models as physiologically relevant preclinical systems to test the antitumor effects and identify potential side effects of novel anticancer regimens.
Collapse
Affiliation(s)
- Ben P Martin
- Cancer Therapeutics Program, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jang JY, Jeon YK, Choi Y, Kim CW. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression. Mol Cancer 2010; 9:262. [PMID: 20875141 PMCID: PMC2955620 DOI: 10.1186/1476-4598-9-262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/28/2010] [Indexed: 12/29/2022] Open
Abstract
Background Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL; apo2 ligand) induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2) by short-hairpin RNA (shRNA) induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5) and down-regulating the TRAIL decoy receptor 2 (DcR2). In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK), subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1). ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5, and down-regulated DcR2. Co-treatment with ANT2 shRNA and TRAIL efficiently suppressed tumor growth in these mice. Conclusions ANT2 suppression by shRNA might be exploited to overcome TRAIL-resistance in cancer.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, South Korea
| | | | | | | |
Collapse
|
47
|
Stagni V, Mingardi M, Santini S, Giaccari D, Barilà D. ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. Carcinogenesis 2010; 31:1956-63. [DOI: 10.1093/carcin/bgq193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Sung B, Ravindran J, Prasad S, Pandey MK, Aggarwal BB. Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem 2010; 285:35418-27. [PMID: 20837473 DOI: 10.1074/jbc.m110.172767] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G(1) cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-x(L), Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Boyd RS, Dyer MJ, Cain K. Proteomic analysis of B-cell malignancies. J Proteomics 2010; 73:1804-22. [DOI: 10.1016/j.jprot.2010.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
|
50
|
TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:195-206. [PMID: 19760076 DOI: 10.1007/978-0-387-89520-8_14] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo2L, is a member of the TNF superfamily (TNFSF) of cytokines. TRAIL gained much attention during the past decade due to the demonstration of its therapeutic potential as a tumor-specific apoptosis inducer. TRAIL was identified as a protein with high homology to other members of the TNF cytokine family, especially to the ligand of Fas/Apo-1 (CD95), CD95L (FasL/APO-1L). TRAIL has been shown to induce apoptosis selectively in many tumor cell lines without affecting normal cells and tissues, making TRAIL itself as well as agonists of the two human receptors of TRAIL which can submit an apoptotic signal, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), promising novel biotherapeutics for cancer therapy. An increasing number of publications now shows that TRAIL resistance in primary human tumor cells will have to be overcome and that sensitization to TRAIL-induced apoptosis will be required in many cases. Therefore, it will also be instrumental to develop suitable diagnostic tests to identify patients who will benefit from TRAIL-based novel anticancer therapeutics and those who will not. Interestingly, the first clinical results even in monotherapy with TRAIL as well as various agonistic TRAIL receptor-specific antibodies have shown encouraging results. This chapter provides a compact overview on the biochemistry of the TRAIL/TRAIL-R system, the physiological role of TRAIL and its receptors and the results of clinical trials with TRAIL and various TRAIL-R agonistic antibodies.
Collapse
|