1
|
Flowers S, Kothari R, Torres Cleuren YN, Alcorn MR, Ewe CK, Alok G, Fiallo SL, Joshi PM, Rothman JH. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 2023; 12:e79725. [PMID: 37782016 PMCID: PMC10545429 DOI: 10.7554/elife.79725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). 'Purifying selection' mechanisms operate to remove such dysfunctional mtDNAs. We found that activators of programmed cell death (PCD), including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1-kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-dependent accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and the aging program are required for germline mtDNA quality control and its intergenerational transmission.
Collapse
Affiliation(s)
- Sagen Flowers
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Rushali Kothari
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yamila N Torres Cleuren
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
- Computational Biology Unit, Institute for Informatics, University of BergenBergenNorway
| | - Melissa R Alcorn
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Samantha L Fiallo
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
2
|
Quercetin and Its Mixture Increase the Stress Resistance of Caenorhabditis elegans to UV-B. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051572. [PMID: 32121354 PMCID: PMC7084924 DOI: 10.3390/ijerph17051572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022]
Abstract
Ultraviolet B (UV-B, 280–320 nm) radiation causes complex molecular reactions in cells, including DNA damage, oxidative stress, and apoptosis. This study designed a mixture consisting of quercetin, luteolin and lycopene and used Caenorhabditis elegans as a model to study the resistance of these natural chemicals to UV-B. Specifically, we have confirmed that quercetin and its mixture can increase the resistance of Caenorhabditis elegans to UV-B through lifespan test, reactive oxygen species level assay, germ cell apoptosis test, embryonic lethal test and RT-qPCR experiments. The results show that quercetin and its mixture prolonged the lifespan of UV-B-irradiated Caenorhabditis elegans and reduced abnormal levels of reactive oxygen species, embryo death, and apoptosis induced by UV-B. The protective effect of quercetin and its mixture may be attributed to its down-regulation of HUS-1, CEP-1, EGL-1 and CED-13. Therefore, the results of this research could help the development of UV-B radiation protection agents.
Collapse
|
3
|
King SD, Gray CF, Song L, Nechushtai R, Gumienny TL, Mittler R, Padilla PA. The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans. Cell Death Differ 2018; 26:162-178. [PMID: 29666474 PMCID: PMC6294797 DOI: 10.1038/s41418-018-0108-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron-sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The C. elegans genome contains three previously uncharacterized cisd genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the cisd genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.
Collapse
Affiliation(s)
- Skylar D King
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Chipo F Gray
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Luhua Song
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Rachel Nechushtai
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Tina L Gumienny
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Ron Mittler
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Pamela A Padilla
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
4
|
Banjara S, Mao J, Ryan TM, Caria S, Kvansakul M. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim. J Biol Chem 2018; 293:5464-5477. [PMID: 29483196 DOI: 10.1074/jbc.ra117.000591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor. However, the molecular and structural basis of GIV66-mediated apoptosis inhibition is currently not understood. To gain insight into GIV66's mechanism of action, we systematically evaluated its ability to bind peptides spanning the BH3 domain of pro-apoptotic Bcl-2 family members. Our results revealed that GIV66 harbors an unusually high level of specificity for pro-apoptotic Bcl-2 and displays affinity only for Bcl-2-like 11 (Bcl2L11 or Bim). Using crystal structures of both apo-GIV66 and GIV66 bound to the BH3 domain from Bim, we unexpectedly found that GIV66 forms dimers via an interface that results in occluded access to the canonical Bcl-2 ligand-binding groove, which breaks apart upon Bim binding. This observation suggests that GIV66 dimerization may affect GIV66's ability to bind host pro-death Bcl-2 proteins and enables highly targeted virus-directed suppression of host apoptosis signaling. Our findings provide a mechanistic understanding for the potent anti-apoptotic activity of GIV66 by identifying it as the first single-specificity, pro-survival Bcl-2 protein and identifying a pivotal role of Bim in GIV-mediated inhibition of apoptosis.
Collapse
Affiliation(s)
- Suresh Banjara
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Jiahao Mao
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Timothy M Ryan
- SAXS/WAXS, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| |
Collapse
|
5
|
Bentham A, Burdett H, Anderson PA, Williams SJ, Kobe B. Animal NLRs provide structural insights into plant NLR function. ANNALS OF BOTANY 2017; 119:827-702. [PMID: 27562749 PMCID: PMC5378188 DOI: 10.1093/aob/mcw171] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/26/2016] [Accepted: 06/07/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The plant immune system employs intracellular NLRs (nucleotide binding [NB], leucine-rich repeat [LRR]/nucleotide-binding oligomerization domain [NOD]-like receptors) to detect effector proteins secreted into the plant cell by potential pathogens. Activated plant NLRs trigger a range of immune responses, collectively known as the hypersensitive response (HR), which culminates in death of the infected cell. Plant NLRs show structural and functional resemblance to animal NLRs involved in inflammatory and innate immune responses. Therefore, knowledge of the activation and regulation of animal NLRs can help us understand the mechanism of action of plant NLRs, and vice versa. SCOPE This review provides an overview of the innate immune pathways in plants and animals, focusing on the available structural and biochemical information available for both plant and animal NLRs. We highlight the gap in knowledge between the animal and plant systems, in particular the lack of structural information for plant NLRs, with crystal structures only available for the N-terminal domains of plant NLRs and an integrated decoy domain, in contrast to the more complete structures available for animal NLRs. We assess the similarities and differences between plant and animal NLRs, and use the structural information on the animal NLR pair NAIP/NLRC4 to derive a plausible model for plant NLR activation. CONCLUSIONS Signalling by cooperative assembly formation (SCAF) appears to operate in most innate immunity pathways, including plant and animal NLRs. Our proposed model of plant NLR activation includes three key steps: (1) initially, the NLR exists in an inactive auto-inhibited state; (2) a combination of binding by activating elicitor and ATP leads to a structural rearrangement of the NLR; and (3) signalling occurs through cooperative assembly of the resistosome. Further studies, structural and biochemical in particular, will be required to provide additional evidence for the different features of this model and shed light on the many existing variations, e.g. helper NLRs and NLRs containing integrated decoys.
Collapse
Affiliation(s)
- Adam Bentham
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayden Burdett
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Peter A. Anderson
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Simon J. Williams
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
- For correspondence. E-mail
| |
Collapse
|
6
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
7
|
Yee C, Yang W, Hekimi S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 2014; 157:897-909. [PMID: 24813612 DOI: 10.1016/j.cell.2014.02.055] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/14/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022]
Abstract
The increased longevity of the C. elegans electron transport chain mutants isp-1 and nuo-6 is mediated by mitochondrial ROS (mtROS) signaling. Here we show that the mtROS signal is relayed by the conserved, mitochondria-associated, intrinsic apoptosis signaling pathway (CED-9/Bcl2, CED-4/Apaf1, and CED-3/Casp9) triggered by CED-13, an alternative BH3-only protein. Activation of the pathway by an elevation of mtROS does not affect apoptosis but protects from the consequences of mitochondrial dysfunction by triggering a unique pattern of gene expression that modulates stress sensitivity and promotes survival. In vertebrates, mtROS induce apoptosis through the intrinsic pathway to protect from severely damaged cells. Our observations in nematodes demonstrate that sensing of mtROS by the apoptotic pathway can, independently of apoptosis, elicit protective mechanisms that keep the organism alive under stressful conditions. This results in extended longevity when mtROS generation is inappropriately elevated. These findings clarify the relationships between mitochondria, ROS, apoptosis, and aging.
Collapse
Affiliation(s)
- Callista Yee
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Wen Yang
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
8
|
Modi V, Sankararamakrishnan R. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans
: Dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Proteins 2013; 82:1035-47. [DOI: 10.1002/prot.24476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Vivek Modi
- Department of Biological Sciences & Bioengineering; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | | |
Collapse
|
9
|
Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. JOURNAL OF RADIATION RESEARCH 2010; 51:107-121. [PMID: 20208402 DOI: 10.1269/jrr.09100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good "in vivo" model system in the field of radiation biology.
Collapse
|
10
|
Pérez-Payá E, Orzáez M, Mondragón L, Wolan D, Wells JA, Messeguer A, Vicent MJ. Molecules that modulate Apaf-1 activity. Med Res Rev 2010; 31:649-75. [PMID: 20099266 DOI: 10.1002/med.20198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Programmed cell death, apoptosis, is a highly regulated cellular pathway, responsible for the elimination of cells in the organism that are no longer needed or extensively damaged. Defects in the regulation of apoptosis could be at the molecular basis of different diseases, either when it is insufficient or excessive. The formation of the macromolecular complex, apoptosome, is a key event in this pathway, which has also been defined as the intrinsic apoptosis pathway. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated apoptotic protease-activating factor (Apaf-1), dATP, and procaspase-9. Recent studies have produced a wealth of information about the regulation and functions of Apaf-1, but additional studies aimed at elucidating its role as a signaling device at the crosstalk between different signaling pathways are needed to take advantage for the development of modulators of apoptosis pathways and possible therapeutic applications.
Collapse
Affiliation(s)
- Enrique Pérez-Payá
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Avda Autopista del Saler, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Greiss S, Hall J, Ahmed S, Gartner A. C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev 2008; 22:2831-42. [PMID: 18923081 PMCID: PMC2569882 DOI: 10.1101/gad.482608] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/19/2008] [Indexed: 01/07/2023]
Abstract
Caenorhabditis elegans SIR-2.1, a member of the sirtuin family related to Saccharomyces cerevisiae Sir2p, has previously been implicated in aging. The mammalian homolog SIRT1 plays important roles in multiple cellular processes including transcriptional repression and stress response. We show that sir-2.1 is essential for the execution of apoptosis in response to DNA damage, and that sir-2.1 genetically acts in parallel to the worm p53-like gene cep-1. This novel cep-1-independent proapoptotic pathway does not require the daf-16 FOXO transcription factor. Cytological analysis of SIR-2.1 suggests a novel mechanism of apoptosis induction. During apoptosis SIR-2.1 changes its subcellular localization from the nucleus to the cytoplasm and transiently colocalizes with the C. elegans Apaf-1 homolog CED-4 at the nuclear periphery. SIR-2.1 translocation is an early event in germ cell apoptosis and is independent of apoptosis execution and cep-1, raising the possibility that SIR-2.1 translocation is linked to the induction of DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Sebastian Greiss
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Julie Hall
- Department of Genetics, Lineberger Cancer Center, and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Shawn Ahmed
- Department of Genetics, Lineberger Cancer Center, and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
12
|
Deng X, Yin X, Allan R, Lu DD, Maurer CW, Haimovitz-Friedman A, Fuks Z, Shaham S, Kolesnick R. Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 2008; 322:110-5. [PMID: 18832646 PMCID: PMC2585063 DOI: 10.1126/science.1158111] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ceramide engagement in apoptotic pathways has been a topic of controversy. To address this controversy, we tested loss-of-function (lf) mutants of conserved genes of sphingolipid metabolism in Caenorhabditis elegans. Although somatic (developmental) apoptosis was unaffected, ionizing radiation-induced apoptosis of germ cells was obliterated upon inactivation of ceramide synthase and restored upon microinjection of long-chain natural ceramide. Radiation-induced increase in the concentration of ceramide localized to mitochondria and was required for BH3-domain protein EGL-1-mediated displacement of CED-4 (an APAF-1-like protein) from the CED-9 (a Bcl-2 family member)/CED-4 complex, an obligate step in activation of the CED-3 caspase. These studies define CEP-1 (the worm homolog of the tumor suppressor p53)-mediated accumulation of EGL-1 and ceramide synthase-mediated generation of ceramide through parallel pathways that integrate at mitochondrial membranes to regulate stress-induced apoptosis.
Collapse
Affiliation(s)
- Xinzhu Deng
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA
| | - Xianglei Yin
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA
| | - Richard Allan
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA
| | - Diane D. Lu
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA
| | - Carine W. Maurer
- Laboratory of Developmental Genetics, Rockefeller University, New York, NY, 10021, USA
| | | | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, Rockefeller University, New York, NY, 10021, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA
| |
Collapse
|
13
|
Lee EF, Chen L, Yang H, Colman PM, Huang DCS, Fairlie WD. EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency. Cell Death Differ 2008; 15:1609-18. [DOI: 10.1038/cdd.2008.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Abstract
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.
Collapse
Affiliation(s)
- Q Bao
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
16
|
Tzur YB, Margalit A, Melamed-Book N, Gruenbaum Y. Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis. Proc Natl Acad Sci U S A 2006; 103:13397-402. [PMID: 16938876 PMCID: PMC1569175 DOI: 10.1073/pnas.0604224103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans, the antiapoptotic protein CED-9 is localized at the mitochondria, where it binds the proapoptotic protein CED-4. Induction of apoptosis begins when the proapoptotic protein EGL-1 is expressed and binds CED-9. The binding of EGL-1 to CED-9 releases CED-4 from CED-9 and causes the activation of the caspase CED-3. Upon its release from CED-9, CED-4 rapidly translocates to the nuclear envelope (NE) in a CED-3-independent manner. However, the identity of the NE receptor for CED-4 and its possible role in the execution of apoptosis has remained unknown. Here, we show that the inner nuclear membrane SUN-domain protein matefin/SUN-1 is the NE receptor for CED-4. Our data demonstrate that matefin/SUN-1 binds CED-4 and is specifically required for CED-4 translocation and maintenance at the NE. The role of matefin/SUN-1 in the execution of apoptosis is further suggested by the significant reduction in the number of apoptotic cells in the organism after matefin/SUN-1 down-regulation by RNAi. The finding that matefin/SUN-1 is required for the execution of apoptosis adds an important link between cytoplasmic and nuclear apoptotic events.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ayelet Margalit
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Jabbour AM, Puryer MA, Yu JY, Lithgow T, Riffkin CD, Ashley DM, Vaux DL, Ekert PG, Hawkins CJ. Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. J Cell Sci 2006; 119:2572-82. [PMID: 16735440 DOI: 10.1242/jcs.02985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action is still incompletely understood. In the nematode Caenorhabditis elegans, 131 of 1090 somatic cells undergo programmed cell death during development. Transgenic expression of human Bcl-2 reduced cell death during nematode development, and partially complemented mutation of ced-9, indicating that Bcl-2 can functionally interact with the nematode cell death machinery. Identification of the nematode target(s) of Bcl-2 inhibition would help clarify the mechanism by which Bcl-2 suppresses apoptosis in mammalian cells. Exploiting yeast-based systems and biochemical assays, we analysed the ability of Bcl-2 to interact with and regulate the activity of nematode apoptosis proteins. Unlike CED-9, Bcl-2 could not directly associate with the caspase-activating adaptor protein CED-4, nor could it inhibit CED-4-dependent yeast death. By contrast, Bcl-2 could bind the C. elegans pro-apoptotic BH3-only Bcl-2 family member EGL-1. These data prompt us to hypothesise that Bcl-2 might suppress nematode cell death by preventing EGL-1 from antagonising CED-9, rather than by inhibiting CED-4.
Collapse
Affiliation(s)
- Anissa M Jabbour
- Children's Cancer Centre, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Adrain C, Brumatti G, Martin SJ. Apoptosomes: protease activation platforms to die from. Trends Biochem Sci 2006; 31:243-7. [PMID: 16595176 DOI: 10.1016/j.tibs.2006.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 02/14/2006] [Accepted: 03/22/2006] [Indexed: 11/23/2022]
Abstract
Apoptosis is orchestrated by members of the caspase family of cysteine proteases that exist as latent pro-enzymes in healthy cells. Caspase-activating platforms, called apoptosomes, initiate caspase activation in metazoans as diverse as nematodes and mammals. Several recent studies have generated new insights into the composition and assembly mechanisms of worm, fly and human apoptosomes.
Collapse
Affiliation(s)
- Colin Adrain
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
19
|
Lettre G, Hengartner MO. Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 2006; 7:97-108. [PMID: 16493416 DOI: 10.1038/nrm1836] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis, an evolutionarily conserved programme of cellular self-destruction, is essential for the development and survival of most multicellular animals. It is required to ensure functional organ architecture and to maintain tissue homeostasis. During development of the simple nematode Caenorhabditis elegans, apoptosis claims over 10% of the somatic cells that are generated - these cells were healthy but unnecessary. Exciting insights into the regulation and execution of apoptosis in C. elegans have recently been made. These new findings will undoubtedly influence our perception of developmental apoptosis in more complex species, including humans.
Collapse
Affiliation(s)
- Guillaume Lettre
- Division of Genetics, Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|