1
|
Lengyel M, Ma Y, Gelashvili Z, Peng S, Quraishi M, Niethammer P. The G-protein coupled receptor OXER1 is a tissue redox sensor essential for intestinal epithelial barrier integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636712. [PMID: 39974905 PMCID: PMC11839128 DOI: 10.1101/2025.02.05.636712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Generation of reactive oxygen species is an important part of the innate immune response. Generating microbicidal levels of reactive oxygen species (ROS) requires adaptation of mucosal barriers. High tolerance of ROS provides improved innate immune defenses against pathogens, whereas low tolerance renders host cells prone to chronic toxicity and mutagenesis, which can promote inflammation (e.g., in asthma and Crohn's disease) and cancerogenesis. The mechanisms that sense and mediate host tolerance to ROS are little understood. In this study, we discover an unexpected role for the redox-sensitive, chemokine-like lipid 5-oxo-eicosatetraenoic acid (5-KETE) in redox adaptation. 5-KETE is known to attract leukocytes to damaged/infected mucosal barriers by signaling through its receptor, OXER1. Suggestive of a distinct non-immune function, we here report that the loss of the OXER1 ortholog Hcar1-4 causes barrier defects and baseline inflammation in the intestine of live zebrafish larvae. In zebrafish and cultured human cells, OXER1 signaling protects against oxidative nucleotide lesions by inducing DNA-protective Nudix hydrolases. Our data reveal the oxoeicosanoid pathway as a conserved ROS resilience mechanism that fortifies pathogen-exposed mucosal linings against increased oxidative stress in vivo.
Collapse
Affiliation(s)
- Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Siyang Peng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021,USA
| | - Meysoon Quraishi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Zhang A, Guo X, Bao K, Wu D, Liu H, Gao Z, Wang H. Molecular Characterization and Expression Changes of the bcl2l13 Gene in Response to Hypoxia in Megalobrama amblycephala. Curr Issues Mol Biol 2024; 46:1136-1149. [PMID: 38392190 PMCID: PMC10887287 DOI: 10.3390/cimb46020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Hypoxia is a unique environmental stress, which not only reflects the insufficient oxygen supply of cells and tissues, but also occurs in various physiological and pathological environments. Mitophagy as a selective autophagy can recover and utilize damaged organelles and misfolded proteins to ensure normal cell functions and promote cell survival. Bcl2l13 (B-cell lymphoma-2 like 13) is reported to induce mitophagy as a functional mammalian homolog of Atg32. However, the function of the bcl2l13 gene is still unclear in fish. Here the sequence and structure of the bcl2l13 gene in Megalobrama amblycephala were identified and showed that bcl2l13 contained an open reading frame (ORF) of 1458 bp for encoding 485 aa. Amino acid sequence analysis indicated that Bcl2l13, as a typical anti-apoptotic protein of the Bcl2 family, contained four BH domains, one BHNo domain, and one TM domain. Further study showed that Bcl2l13 was mainly located in the mitochondria, while its localization was changed within the whole cell after the TM domain was deleted. Real-time PCR analysis revealed that bcl2l13 showed higher expression levels in early embryos. After hypoxia treatment, the mRNA levels of the bcl2l13 and autophagy-related genes were significantly up-regulated in most detected tissues, and the bcl2l13 transcription was regulated by Hif-1α mediated pathway. Additionally, the transcription activity of the bcl2l13 promoter was further analyzed using luciferase reporter assays and showed the highest activity in the promoter region from -475 to +111. These results indicated that bcl2l13 may play important roles in embryogenesis and hypoxia mediated autophagy in fish.
Collapse
Affiliation(s)
- Axin Zhang
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
| | - Xuefei Guo
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
| | - Kaikai Bao
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
| | - Danyang Wu
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
| | - Hong Liu
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zexia Gao
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Laboratory of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China; (A.Z.); (X.G.); (K.B.); (D.W.); (H.L.); (Z.G.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
3
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
4
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
5
|
Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. SCIENCE ADVANCES 2020; 6:6/40/eabc4149. [PMID: 32998881 PMCID: PMC7527217 DOI: 10.1126/sciadv.abc4149] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 06/10/2023]
Abstract
In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Jaison D Sa
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lea Jabbour
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Suresh Banjara
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Trang Thi Minh Nguyen
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Aida Akhavan-E-Sabet
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rudy Gadet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Nikola Ralchev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3050, Australia
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Patrick O Humbert
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ruth Rimokh
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
6
|
Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition. J Virol 2020; 94:JVI.02049-19. [PMID: 32161176 PMCID: PMC7199394 DOI: 10.1128/jvi.02049-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-ΔvNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-ΔvNr-13 showed similar growth kinetics; however, at early time points, HVT-ΔvNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-ΔvNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek's disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.
Collapse
|
7
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
8
|
Mendieta-Serrano MA, Mendez-Cruz FJ, Antúnez-Mojica M, Schnabel D, Alvarez L, Cárdenas L, Lomelí H, Ruiz-Santiesteban JA, Salas-Vidal E. NADPH-Oxidase-derived reactive oxygen species are required for cytoskeletal organization, proper localization of E-cadherin and cell motility during zebrafish epiboly. Free Radic Biol Med 2019; 130:82-98. [PMID: 30342187 DOI: 10.1016/j.freeradbiomed.2018.10.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Cell movements are essential for morphogenesis during animal development. Epiboly is the first morphogenetic process in zebrafish in which cells move en masse to thin and spread the deep and enveloping cell layers of the blastoderm over the yolk cell. While epiboly has been shown to be controlled by complex molecular networks, the contribution of reactive oxygen species (ROS) to this process has not previously been studied. Here, we show that ROS are required for epiboly in zebrafish. Visualization of ROS in whole embryos revealed dynamic patterns during epiboly progression. Significantly, inhibition of NADPH oxidase activity leads to a decrease in ROS formation, delays epiboly, alters E-cadherin and cytoskeleton patterns and, by 24 h post-fertilization, decreases embryo survival, effects that are rescued by hydrogen peroxide treatment. Our findings suggest that a delicate ROS balance is required during early development and that disruption of that balance interferes with cell adhesion, leading to defective cell motility and epiboly progression.
Collapse
Affiliation(s)
| | | | - Mayra Antúnez-Mojica
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Denhi Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | | | | |
Collapse
|
9
|
Suraweera CD, Caria S, Järvå M, Hinds MG, Kvansakul M. A structural investigation of NRZ mediated apoptosis regulation in zebrafish. Cell Death Dis 2018; 9:967. [PMID: 30237469 PMCID: PMC6148235 DOI: 10.1038/s41419-018-0992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Abstract
Bcl-2 family proteins play a crucial role in regulating apoptosis, a process critical for development, eliminating damaged or infected cells, host-pathogen interactions and in disease. Dysregulation of Bcl-2 proteins elicits an expansive cell survival mechanism promoting cell migration, invasion and metastasis. Through a network of intra-family protein-protein interactions Bcl-2 family members regulate the release of cell death factors from mitochondria. NRZ is a novel zebrafish pro-survival Bcl-2 orthologue resident on mitochondria and the endoplasmic reticulum (ER). However, the mechanism of NRZ apoptosis inhibition has not yet been clarified. Here we examined the interactions of NRZ with pro-apoptotic members of the Bcl-2 family using a combination of isothermal calorimetry and mutational analysis of NRZ. We show that NRZ binds almost all zebrafish pro-apoptotic proteins and displays a broad range of affinities. Furthermore, we define the structural basis for apoptosis inhibition of NRZ by solving the crystal structure of both apo-NRZ and a holo form bound to a peptide spanning the binding motif of the pro-apoptotic zBad, a BH3-only protein orthologous to mammalian Bad. The crystal structure of NRZ revealed that it adopts the conserved Bcl-2 like fold observed for other cellular pro-survival Bcl-2 proteins and employs the canonical ligand binding groove to bind Bad BH3 peptide. NRZ engagement of Bad BH3 involves the canonical ionic interaction between NRZ R86 and Bad D104 and an additional ionic interaction between NRZ D79 and Bad R100, and substitution of either NRZ R86 or D79 to Ala reduces the binding to Bad BH3 tenfold or more. Our findings provide a detailed mechanistic understanding for NRZ mediated anti-apoptotic activity in zebrafish by revealing binding to both Bad and Noxa, suggesting that NRZ is likely to occupy a unique mechanistic role in zebrafish apoptosis regulation by acting as a highly promiscuous pro-apoptotic Bcl-2 binder.
Collapse
Affiliation(s)
- Chathura D Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sofia Caria
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Michael Järvå
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia.
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
10
|
Huang YL, Wang HJ, Chen FM, Zhao XL, Fu Q, Zhang PF, Pu LP, Huang FL, Lu YQ, Zhang M. Role of BCL2L10 in regulating buffalo (Bubalus bubalis) oocyte maturation. Theriogenology 2018; 110:1-7. [PMID: 29331495 DOI: 10.1016/j.theriogenology.2017.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/16/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
Abstract
It has been reported that BCL2L10 is abundantly and specifically expressed in adult human and mouse oocytes and played a very important role in oocytes maturation and early embryonic development. This study is to investigate the expression pattern of BCL2L10 in buffalo ovaries and its effect on the in vitro maturation of buffalo oocytes, so as to dissect mechanism of oocytes maturation and provide theoretical guidance for improvement of the in vitro maturation of buffalo oocytes. The results showed that BCL2L10 gene was enriched in ovary and the expression of BCL2L10 was oocyte specific and up-regulated during oocyte maturation. BCL2L10 protein and mRNA were detectable in buffalo early embryos, upregulated at 2-cell to 8-cell stages and down-regulated in the later stages. Knockdown of BCL2L10 by RNA interference resulted in a significant decrease in the maturation rate (33.5%) and cleavage rate (37.52%) of buffalo oocytes coupled with up-regulation of apoptosis-related gene Caspase-9. We concluded that BCL2L10 is a candidate associated with buffalo oocyte maturation.
Collapse
Affiliation(s)
- Yu-Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Huan-Jing Wang
- Reproductive Center, General Hospital of People's Liberation Army Air Force, Beijing 100142, PR China
| | - Fu-Mei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Xiu-Ling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Peng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Li-Ping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Feng-Ling Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, PR China.
| |
Collapse
|
11
|
Popgeorgiev N, Jabbour L, Gillet G. Subcellular Localization and Dynamics of the Bcl-2 Family of Proteins. Front Cell Dev Biol 2018; 6:13. [PMID: 29497611 PMCID: PMC5819560 DOI: 10.3389/fcell.2018.00013] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are recognized as major regulators of the mitochondrial pathway of apoptosis. They control the mitochondrial outer membrane permeabilization (MOMP) by directly localizing to this organelle. Further investigations demonstrated that Bcl-2 related proteins are also found in other intracellular compartments such as the endoplasmic reticulum, the Golgi apparatus, the nucleus and the peroxisomes. At the level of these organelles, Bcl-2 family proteins not only regulate MOMP in a remote fashion but also participate in major cellular processes including calcium homeostasis, cell cycle control and cell migration. With the advances of live cell imaging techniques and the generation of fluorescent recombinant proteins, it became clear that the distribution of Bcl-2 proteins inside the cell is a dynamic process which is profoundly affected by changes in the cellular microenvironment. Here, we describe the current knowledge related to the subcellular distribution of the Bcl-2 family of proteins and further emphasize on the emerging concept that this highly dynamic process is critical for cell fate determination.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Lea Jabbour
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| |
Collapse
|
12
|
Nougarede A, Popgeorgiev N, Kassem L, Omarjee S, Borel S, Mikaelian I, Lopez J, Gadet R, Marcillat O, Treilleux I, Villoutreix BO, Rimokh R, Gillet G. Breast Cancer Targeting through Inhibition of the Endoplasmic Reticulum-Based Apoptosis Regulator Nrh/BCL2L10. Cancer Res 2018; 78:1404-1417. [PMID: 29330143 DOI: 10.1158/0008-5472.can-17-0846] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.
Collapse
Affiliation(s)
- Adrien Nougarede
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Nikolay Popgeorgiev
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Loay Kassem
- Department of Clinical Oncology, Cairo University Hospitals, Al-Saray Street, Al-Maniel, Cairo, Egypt
| | - Soleilmane Omarjee
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Stephane Borel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Ivan Mikaelian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jonathan Lopez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.,Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| | - Rudy Gadet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olivier Marcillat
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | | | - Ruth Rimokh
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.
| | - Germain Gillet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France. .,Hospices civils de Lyon, Laboratoire d'anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| |
Collapse
|
13
|
Bruce AE. Zebrafish epiboly: Spreading thin over the yolk. Dev Dyn 2015; 245:244-58. [DOI: 10.1002/dvdy.24353] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley E.E. Bruce
- Department of Cell and Systems Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
14
|
Abstract
Zebrafish (Danio rerio) have been extensively used to study apoptotic cell death during normal development and under a wide range of experimental manipulations. A number of features make zebrafish a particularly powerful model organism: (1) embryos are small in size, develop rapidly outside the mother, and are optically transparent; (2) tools are readily available for rapid knockdown and overexpression of genes; and (3) embryos can be arrayed into multiwell plates and are permeable to a wide range of drugs and small molecules. The molecular machinery underlying the intrinsic and extrinsic apoptosis pathways appears to be highly conserved between zebrafish and mammals. In this chapter, techniques are described for detecting apoptotic cells in situ in both fixed and live zebrafish embryos. Methods for inducing and inhibiting apoptosis and for functionally manipulating genes involved in apoptotic signaling are also discussed.
Collapse
|
15
|
Popgeorgiev N, Prudent J, Bonneau B, Gillet G. The yolk cell of the zebrafish blastula harbors functional apoptosis machinery. Commun Integr Biol 2014. [DOI: 10.4161/cib.16697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun 2014; 452:1-7. [PMID: 25117442 DOI: 10.1016/j.bbrc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.
Collapse
Affiliation(s)
- Shyh-Jye Lee
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for System Biology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
17
|
Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A, Gillet G. Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat Commun 2014; 4:2330. [PMID: 23942336 DOI: 10.1038/ncomms3330] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca(2+) trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.
Collapse
Affiliation(s)
- Julien Prudent
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMS 3453 CNRS, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bonneau B, Nougarède A, Prudent J, Popgeorgiev N, Peyriéras N, Rimokh R, Gillet G. The Bcl-2 homolog Nrz inhibits binding of IP3 to its receptor to control calcium signaling during zebrafish epiboly. Sci Signal 2014; 7:ra14. [PMID: 24518293 DOI: 10.1126/scisignal.2004480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the Bcl-2 protein family regulate mitochondrial membrane permeability and also localize to the endoplasmic reticulum where they control Ca(2+) homeostasis by interacting with inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs). In zebrafish, Bcl-2-like 10 (Nrz) is required for Ca(2+) signaling during epiboly and gastrulation. We characterized the mechanism by which Nrz controls IP3-mediated Ca(2+) release during this process. We showed that Nrz was phosphorylated during early epiboly, and that in embryos in which Nrz was knocked down, reconstitution with Nrz bearing mutations designed to prevent its phosphorylation disrupted cyclic Ca(2+) transients and the assembly of the actin-myosin ring and led to epiboly arrest. In cultured cells, wild-type Nrz, but not Nrz with phosphomimetic mutations, interacted with the IP3 binding domain of IP3R1, inhibited binding of IP3 to IP3R1, and prevented histamine-induced increases in cytosolic Ca(2+). Collectively, these data suggest that Nrz phosphorylation is necessary for the generation of IP3-mediated Ca(2+) transients and the formation of circumferential actin-myosin cables required for epiboly. Thus, in addition to their role in apoptosis, by tightly regulating Ca(2+) signaling, Bcl-2 family members participate in the cellular events associated with early vertebrate development, including cytoskeletal dynamics and cell movement.
Collapse
Affiliation(s)
- Benjamin Bonneau
- 1Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Fontenille L, Rouquier S, Lutfalla G, Giorgi D. Microtubule-associated protein 9 (Map9/Asap) is required for the early steps of zebrafish development. Cell Cycle 2014; 13:1101-14. [PMID: 24553125 PMCID: PMC4013161 DOI: 10.4161/cc.27944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microtubules are structural components of the cell cytoskeleton and key factors for mitosis and ciliogenesis in eukaryotes. The regulation of MT dynamics requires non-motor MAPs. We previously showed that, in human cells in culture, MAP9 (also named ASAP) is involved in MT dynamics and is essential for mitotic spindle formation and mitosis progression. Indeed, misexpression of MAP9 leads to severe mitotic defects and cell death. Here, we investigated the in vivo role of map9 during zebrafish development. Map9 is expressed mainly as a maternal gene. Within cells, Map9 is associated with the MT network of the mitotic spindle and with centrosomes. Morpholino-mediated depletion of map9 leads to early development arrest before completion of epiboly. Map9 localizes to the MT array of the YSL. This MT network is destroyed in Map9-depleted embryos, and injection of anti-map9 morpholinos directly in the nascent YSL leads to arrest of epiboly/gastrulation. Finally, map9 knockdown deregulates the expression of genes involved in endodermal differentiation, dorso-ventral and left-right patterning, and other MT-based functions. At low morpholino doses, the surviving embryos show dramatic developmental defects, spindle and mitotic defects, and increased apoptosis. Our findings suggest that map9 is a crucial factor in early zebrafish development by regulating different MT-based processes.
Collapse
Affiliation(s)
- Laura Fontenille
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France; Université de Montpellier 1; Montpellier, France
| | - Sylvie Rouquier
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France
| | - Georges Lutfalla
- Dynamique des Interactions Membranaires Normales et Pathologiques; UMR 5235; CNRS; Universités de Montpellier 1&2; Montpellier, France
| | - Dominique Giorgi
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France
| |
Collapse
|
20
|
Monaco G, Vervliet T, Akl H, Bultynck G. The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell Mol Life Sci 2013; 70:1171-83. [PMID: 22955373 PMCID: PMC11113329 DOI: 10.1007/s00018-012-1118-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic Bcl-2-family members not only neutralize pro-apoptotic proteins but also directly regulate intracellular Ca(2+) signaling from the endoplasmic reticulum (ER), critically controlling cellular health, survival, and death initiation. Furthermore, distinct Bcl-2-family members may selectively regulate inositol 1,4,5-trisphosphate receptor (IP3R): Bcl-2 likely acts as an endogenous inhibitor of the IP3R, preventing pro-apoptotic Ca(2+) transients, while Bcl-XL likely acts as an endogenous IP3R-sensitizing protein promoting pro-survival Ca(2+) oscillations. Furthermore, distinct functional domains in Bcl-2 and Bcl-XL may underlie the divergence in IP3R regulation. The Bcl-2 homology (BH) 4 domain, which targets the central modulatory domain of the IP3R, is likely to be Bcl-2's determining factor. In contrast, the hydrophobic cleft targets the C-terminal Ca(2+)-channel tail and might be more crucial for Bcl-XL's function. Furthermore, one amino acid critically different in the sequence of Bcl-2's and Bcl-XL's BH4 domains underpins their selective effect on Ca(2+) signaling and distinct biological properties of Bcl-2 versus Bcl-XL. This difference is evolutionary conserved across five classes of vertebrates and may represent a fundamental divergence in their biological function. Moreover, these insights open novel avenues to selectively suppress malignant Bcl-2 function in cancer cells by targeting its BH4 domain, while maintaining essential Bcl-XL functions in normal cells. Thus, IP3R-derived molecules that mimic the BH4 domain's binding site on the IP3R may function synergistically with BH3-mimetic molecules selectivity suppressing Bcl-2's proto-oncogenic activity. Finally, a more general role for the BH4 domain on IP3Rs, rather than solely anti-apoptotic, may not be excluded as part of a complex network of molecular interactions.
Collapse
MESH Headings
- Animals
- Calcium Signaling/genetics
- Calcium Signaling/physiology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Models, Biological
- Multigene Family/genetics
- Multigene Family/physiology
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/physiology
- Substrate Specificity
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Haidar Akl
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Bonneau B, Prudent J, Popgeorgiev N, Gillet G. Non-apoptotic roles of Bcl-2 family: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1755-65. [PMID: 23360981 DOI: 10.1016/j.bbamcr.2013.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/06/2023]
Abstract
The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
22
|
Guérin JF, Cornut-Thibaut A, Giscard-Destaing S, Pouvreau S, Guillemin Y, Aouacheria A. Subcellular dynamics of the maternal cell death regulator BCL2L10 in human preimplantation embryos. Hum Reprod 2013; 28:729-39. [DOI: 10.1093/humrep/des443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Lim JQR, Lu J, He BP. Diva/BclB regulates differentiation by inhibiting NDPKB/Nm23H2-mediated neuronal differentiation in PC-12 cells. BMC Neurosci 2012; 13:123. [PMID: 23057762 PMCID: PMC3564942 DOI: 10.1186/1471-2202-13-123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/28/2012] [Indexed: 01/31/2023] Open
Abstract
Background Diva (death inducer binding to vBcl-2 and Apaf-1)/BclB is a Bcl-2 family member, which is known for its function in apoptosis. Diva/BclB has been shown to interact with NDPKB/Nm23H2, which is involved in cellular differentiation. Thus far, there has been no direct evidence of Diva/BclB having a role in differentiation. In the present study, we investigated the expression of Diva/BclB and NDPKB/Nm23H2 during differentiation in PC-12 cell line. Results Our results show that after differentiation, Diva/BclB expression was decreased and reciprocally, NDPKB/Nm23H2 expression was increased and it translocated into the nucleus. Overexpression of NDPKB/Nm23H2 promoted PC-12 neuronal differentiation by increasing neurite outgrowth and arresting cell cycle progression. There was a concurrent downregulation of Diva/Boo when NDPKB/Nm23H2 was overexpressed, which mirrors the effect of NGF on PC-12 cell differentiation. Overexpression of Diva/BclB did not change the expression level of NDPKB/Nm23H2, but inhibited its nuclear localization. Cells that overexpressed Diva/BclB presented a decreased percentage of differentiated cells and average neurite length was shortened. This was due to an increase in the formation of Diva/BclB and NDPKB/Nm23H2 complexes as well as Diva/BclB and β-tubulin complexes. Concomitantly, there was a decrease in formation of NDPKB/Nm23H2 and β-tubulin complexes. Overexpression of Diva/BclB also resulted in a higher percentage of S-phase cells. Conclusion Our results showed a novel role for Diva/BclB in neuronal differentiation. Its downregulation during neuronal differentiation may be necessary to allow NDPKB/Nm23H2 and β-tubulin interaction that promotes NDPKB/Nm23H2 mediated differentiation.
Collapse
Affiliation(s)
- Jasmin Qian Ru Lim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | | | | |
Collapse
|
24
|
Huang HY, Liu JT, Yan HY, Tsai HJ. Arl6ip1 Plays a Role in Proliferation during Zebrafish Retinogenesis. Cells Tissues Organs 2012; 196:161-74. [DOI: 10.1159/000331589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 11/19/2022] Open
|
25
|
Popgeorgiev N, Prudent J, Bonneau B, Gillet G. The yolk cell of the zebrafish blastula harbors functional apoptosis machinery. Commun Integr Biol 2011; 4:549-551. [PMID: 22046458 DOI: 10.4161/cib.4.5.16697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
We recently described the implication of the Bcl-2 related antiapoptotic Nrz protein during early zebrafish development. Nrz knock-down induces calcium-dependent cytoskeleton remodeling leading to margin constriction and premature embryo lethality. In the YSL, nrz knock-down embryos exhibit some typical features of apoptosis such as mitochondrial transmembrane potential loss and cytochrome c release. However, downstream caspase-3 activation has not been detected so far. Here, we report that the YSL contains fully functional apoptotic machinery that can activate caspase-3 following zBax ectopic expression. Furthermore, we present evidence that caspase-3 activation is actually detectable in nrz knock-down embryos when premature margin constriction is prevented.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- CRCL U1052 INSERM; UMS 3453 CNRS-Université Lyon 1; Centre Léon Bérard; Lyon, France
| | - Julien Prudent
- CRCL U1052 INSERM; UMS 3453 CNRS-Université Lyon 1; Centre Léon Bérard; Lyon, France
| | - Benjamin Bonneau
- CRCL U1052 INSERM; UMS 3453 CNRS-Université Lyon 1; Centre Léon Bérard; Lyon, France
| | - Germain Gillet
- CRCL U1052 INSERM; UMS 3453 CNRS-Université Lyon 1; Centre Léon Bérard; Lyon, France
| |
Collapse
|
26
|
Abstract
Members of the Bcl-2 family proteins are best known for their roles in apoptosis regulation. In this issue of Developmental Cell, Popgeorgiev et al. (2011) have uncovered a new, nonapoptotic role for a Bcl-2 homolog during early embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Liat Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
27
|
Popgeorgiev N, Bonneau B, Ferri KF, Prudent J, Thibaut J, Gillet G. The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell 2011; 20:663-76. [PMID: 21571223 DOI: 10.1016/j.devcel.2011.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Bcl-2 family members are key regulators of apoptosis. Their involvement in other cellular processes has been so far overlooked. We have studied the role of the Bcl-2 homolog Nrz in the developing zebrafish. Nrz was found to be localized to the yolk syncytial layer, a region containing numerous mitochondria and ER membranes. Nrz knockdown resulted in developmental arrest before gastrulation, due to free Ca(2+) increase in the yolk cell, activating myosin light chain kinase, which led to premature contraction of actin-myosin cables in the margin and separation of the blastomeres from the yolk cell. In the yolk syncytial layer, Nrz appears to prevent the release of Ca(2+) from the endoplasmic reticulum by directly interacting with the IP3R1 Ca(2+) channel. Thus, the Bcl-2 family may participate in early development, not only by controlling apoptosis but also by acting on cytoskeletal dynamics and cell movements via Ca(2+) fluxes inside the embryo.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- CRCL U1052 INSERM, UMS 3443 CNRS, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of Unique Signature Sequences in the Divergent Maternal Protein Bcl2l10. Mol Biol Evol 2011; 28:3271-83. [DOI: 10.1093/molbev/msr152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J, Handyside A, Hamamah S. Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction 2011; 141:549-61. [PMID: 21339285 DOI: 10.1530/rep-10-0504] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In women, up to 99.9% of the oocyte stockpile formed during fetal life is decimated by apoptosis. Apoptotic features are also detected in human preimplantation embryos both in vivo and in vitro. Despite the important consequences of cell death processes to oocyte competence and early embryonic development, little is known about its genetic and molecular control. B cell lymphoma-2 (BCL2) family proteins are major regulators of cell death and survival. Here, we present a literature review on BCL2 family expression and protein distribution in human and animal oocytes and early embryos. Most of the studies focused on the expression of two antagonistic members: the founding and survival family member BCL2 and its proapoptotic homolog BAX. However, recent transcriptomic analyses have identified novel candidate genes related to oocyte and/or early embryonic viability (such as BCL2L10) or commitment to apoptosis (e.g. BIK). Interestingly, some BCL2 proteins appear to be differentially distributed at the subcellular level during oocyte maturation and early embryonic development, a process probably linked to the functional compartmentalization of the ooplasm and blastomere. Assessment of BCL2 family involvement in regulating the survival of human oocytes and embryos may be of particular value for diagnosis and assisted reproductive technology. We suggest that implications of not only aberrant gene expression but also abnormal subcellular protein redistribution should be established in pathological conditions resulting in infertility.
Collapse
Affiliation(s)
- Imene Boumela
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier F-34000, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hong SK, Levin CS, Brown JL, Wan H, Sherman BT, Huang DW, Lempicki RA, Feldman B. Pre-gastrula expression of zebrafish extraembryonic genes. BMC DEVELOPMENTAL BIOLOGY 2010; 10:42. [PMID: 20423468 PMCID: PMC2873407 DOI: 10.1186/1471-213x-10-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/27/2010] [Indexed: 01/11/2023]
Abstract
Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent. Conclusion We have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Feng CY, Rise ML. Characterization and expression analyses of anti-apoptotic Bcl-2-like genes NR-13, Mcl-1, Bcl-X1, and Bcl-X2 in Atlantic cod (Gadus morhua). Mol Immunol 2010; 47:763-84. [DOI: 10.1016/j.molimm.2009.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 12/16/2022]
|
32
|
|
33
|
Les régulateurs d’apoptose de la famille Bcl-2 dans les gamètes et lors du développement embryonnaire précoce. ACTA ACUST UNITED AC 2009; 37:720-32. [DOI: 10.1016/j.gyobfe.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/04/2009] [Indexed: 01/20/2023]
|
34
|
Guillemin Y, Lalle P, Gillet G, Guerin JF, Hamamah S, Aouacheria A. Oocytes and early embryos selectively express the survival factor BCL2L10. J Mol Med (Berl) 2009; 87:923-40. [DOI: 10.1007/s00109-009-0495-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|
35
|
Gouttenoire J, Valcourt U, Bougault C, Aubert-Foucher E, Arnaud E, Giraud L, Mallein-Gerin F. Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish. J Biol Chem 2007; 282:30960-73. [PMID: 17720815 DOI: 10.1074/jbc.m705730200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) act as multifunctional regulators in morphogenesis during development. In particular they play a determinant role in the formation of cartilage molds and their replacement by bone during endochondral ossification. In cell culture, BMP-2 favors chondrogenic expression and promotes hypertrophic maturation of chondrocytes. In mouse chondrocytes we have identified a BMP-2-sensitive gene encoding a protein of 301 amino acids. This protein, named mIFT46, is the mouse ortholog of recently identified Caenorhabditis elegans and Chlamydomonas reinhardtii intraflagellar transport (IFT) proteins. After generation of a polyclonal antibody against mIFT46, we showed for the first time that the endogenous protein is located in the primary cilium of chondrocytes. We also found that mIFT46 is preferentially expressed in early hypertrophic chondrocytes located in the growth plate. Additionally, mIFT46 knockdown by small interfering RNA oligonucleotides in cultured chondrocytes specifically stimulated the expression of several genes related to skeletogenesis. Furthermore, Northern blotting analysis indicated that mIFT46 is also expressed before chondrogenesis in embryonic mouse development, suggesting that the role of mIFT46 might not be restricted to cartilage. To explore the role of IFT46 during early development, we injected antisense morpholino oligonucleotides in Danio rerio embryos to reduce zebrafish IFT46 protein (zIFT46) synthesis. Dramatic defects in embryonic development such as a dorsalization and a tail duplication were observed. Thus our results taken together indicate that the ciliary protein IFT46 has a specific function in chondrocytes and is also essential for normal development of vertebrates.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Université de Lyon, Lyon, F-69003, Université Lyon 1, CNRS UMR5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, Lyon F-69367, France
| | | | | | | | | | | | | |
Collapse
|