1
|
Chang R, Prakash M. Topological damping in an ultrafast giant cell. Proc Natl Acad Sci U S A 2023; 120:e2303940120. [PMID: 37792511 PMCID: PMC10576051 DOI: 10.1073/pnas.2303940120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Cellular systems are known to exhibit some of the fastest movements in biology, but little is known as to how single cells can dissipate this energy rapidly and adapt to such large accelerations without disrupting internal architecture. To address this, we investigate Spirostomum ambiguum-a giant cell (1-4 mm in length) well-known to exhibit ultrafast contractions (50% of body length) within 5 ms with a peak acceleration of 15[Formula: see text]. Utilizing transmitted electron microscopy and confocal imaging, we identify an association of rough endoplasmic reticulum (RER) and vacuoles throughout the cell-forming a contiguous fenestrated membrane architecture that topologically entangles these two organelles. A nearly uniform interorganelle spacing of 60 nm is observed between RER and vacuoles, closely packing the entire cell. Inspired by the entangled organelle structure, we study the mechanical properties of entangled deformable particles using a vertex-based model, with all simulation parameters matching 10 dimensionless numbers to ensure dynamic similarity. We demonstrate how entangled deformable particles respond to external loads by an increased viscosity against squeezing and help preserve spatial relationships. Because this enhanced damping arises from the entanglement of two networks incurring a strain-induced jamming transition at subcritical volume fractions, which is demonstrated through the spatial correlation of velocity direction, we term this phenomenon "topological damping." Our findings suggest a mechanical role of RER-vacuolar meshwork as a metamaterial capable of damping an ultrafast contraction event.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford University, Palo Alto, CA94305
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Palo Alto, CA94305
- Woods Institute for the Environment, Stanford University, Palo Alto, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
2
|
Reza RN, Serra ND, Detwiler AC, Hanna-Rose W, Crook M. Noncanonical necrosis in 2 different cell types in a Caenorhabditis elegans NAD+ salvage pathway mutant. G3 (BETHESDA, MD.) 2022; 12:jkac033. [PMID: 35143646 PMCID: PMC8982427 DOI: 10.1093/g3journal/jkac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.
Collapse
Affiliation(s)
- Rifath N Reza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matt Crook
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA
| |
Collapse
|
3
|
Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms23031255. [PMID: 35163178 PMCID: PMC8835903 DOI: 10.3390/ijms23031255] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is an important pathomechanism found in numerous ocular degenerative diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Yen-Ning Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30012, Taiwan;
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 7855); Fax: +886-3-328-7798
| |
Collapse
|
4
|
Teulière J, Bernard G, Bapteste E. The Distribution of Genes Associated With Regulated Cell Death Is Decoupled From the Mitochondrial Phenotypes Within Unicellular Eukaryotic Hosts. Front Cell Dev Biol 2020; 8:536389. [PMID: 33072737 PMCID: PMC7539657 DOI: 10.3389/fcell.2020.536389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the evolutionary origin of the mitochondrion and of certain forms of RCD, in particular apoptosis, are thought to coincide, suggesting a central general role for mitochondria in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including functional mitochondria, metabolically diversified mitochondria, functionally reduced mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of mitochondria. We investigated the distribution of genes associated with various forms of RCD. No homologs for described mammalian regulators of regulated necrosis could be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily a mitochondriate Monocercomonoides exilis display heterogeneous reductions of apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be identified. These same species of protists with MRO and M. exilis harbored non-reduced autophagic cell death gene sets. Moreover, transiently multicellular protist taxa appeared enriched in apoptotic and autophagy associated genes compared to free-living protists. This analysis suggests that genes associated with apoptosis in animals and the presence of the mitochondria are significant yet non-essential biological components for RCD in protists. More generally, our results support the hypothesis of a selection for RCD, including both apoptosis and autophagy, as a developmental mechanism linked to multicellularity.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Guillaume Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
5
|
Hsu CH, Liou GG, Jiang YJ. Nicastrin Deficiency Induces Tyrosinase-Dependent Depigmentation and Skin Inflammation. J Invest Dermatol 2019; 140:404-414.e13. [PMID: 31437444 DOI: 10.1016/j.jid.2019.07.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Skin depigmentation diseases, such as vitiligo, are pigmentation disorders that often destroy melanocytes. However, their pathological mechanisms remain unclear, and therefore, promising treatments or prevention has been lacking. Here, we demonstrate that a zebrafish insertional mutant showing a significant reduction of nicastrin transcript possesses melanosome maturation defect, Tyrosinase-dependent mitochondrial swelling, and melanophore cell death. The depigmentation phenotypes are proven to be a result of γ-secretase inactivation. Furthermore, live imaging demonstrates that macrophages are recruited to and can phagocytose melanophore debris. Thus, we characterize a potential zebrafish depigmentation disease model, a nicastrinhi1384 mutant, which can be used for further treatment or drug development of diseases related to skin depigmentation and/or inflammation.
Collapse
Affiliation(s)
- Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
6
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Kubohara Y, Kikuchi H, Nguyen VH, Kuwayama H, Oshima Y. Evidence that differentiation-inducing factor-1 controls chemotaxis and cell differentiation, at least in part, via mitochondria in D. discoideum. Biol Open 2017; 6:741-751. [PMID: 28619991 PMCID: PMC5483011 DOI: 10.1242/bio.021345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Differentiation-inducing factor-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one (DIF-1)] is an important regulator of cell differentiation and chemotaxis in the development of the cellular slime mold Dictyostelium discoideum However, the entire signaling pathways downstream of DIF-1 remain to be elucidated. To characterize DIF-1 and its potential receptor(s), we synthesized two fluorescent derivatives of DIF-1, boron-dipyrromethene (BODIPY)-conjugated DIF-1 (DIF-1-BODIPY) and nitrobenzoxadiazole (NBD)-conjugated DIF-1 (DIF-1-NBD), and investigated their biological activities and cellular localization. DIF-1-BODIPY (5 µM) and DIF-1 (2 nM) induced stalk cell differentiation in the DIF-deficient strain HM44 in the presence of cyclic adenosine monosphosphate (cAMP), whereas DIF-1-NBD (5 µM) hardly induced stalk cell differentiation under the same conditions. Microscopic analyses revealed that the biologically active derivative, DIF-1-BODIPY, was incorporated by stalk cells at late stages of differentiation and was localized to mitochondria. The mitochondrial uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), at 25-50 nM, and dinitrophenol (DNP), at 2.5-5 µM, induced partial stalk cell differentiation in HM44 in the presence of cAMP. DIF-1-BODIPY (1-2 µM) and DIF-1 (10 nM), as well as CCCP and DNP, suppressed chemotaxis in the wild-type strain Ax2 in shallow cAMP gradients. These results suggest that DIF-1-BODIPY and DIF-1 induce stalk cell differentiation and modulate chemotaxis, at least in part, by disturbing mitochondrial activity.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Van Hai Nguyen
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
8
|
GHOLIPOUR Y, ERRA-BALSELLS R, NONAMI H. Blossom End Rot Tomato Fruit Diagnosis for In Situ Cell Analyses with Real Time Pico-Pressure Probe Ionization Mass Spectrometry. ACTA ACUST UNITED AC 2017. [DOI: 10.2525/ecb.55.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yousef GHOLIPOUR
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University
| | - Rosa ERRA-BALSELLS
- CIHIDECAR-CONICET, Departamento de Qumica Orgnica, Facultad de Ciencias Exactas y Naturales, Universidad
| | - Hiroshi NONAMI
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University
| |
Collapse
|
9
|
Mesquita A, Cardenal-Muñoz E, Dominguez E, Muñoz-Braceras S, Nuñez-Corcuera B, Phillips BA, Tábara LC, Xiong Q, Coria R, Eichinger L, Golstein P, King JS, Soldati T, Vincent O, Escalante R. Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 2016; 13:24-40. [PMID: 27715405 DOI: 10.1080/15548627.2016.1226737] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding the complexity of the mechanism and regulation of this process often benefits from the use of simple experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first review describing the potential of D. discoideum in autophagy, significant advances have been made that demonstrate both the experimental advantages and interest in using this model. Since our previous review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome formation and contributed significantly to the study of autophagy-related pathologies. Here, we review these advances, as well as the current techniques to monitor autophagy in D. discoideum. The comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model.
Collapse
Affiliation(s)
- Ana Mesquita
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,b University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Elena Cardenal-Muñoz
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Eunice Dominguez
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Sandra Muñoz-Braceras
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | | | - Ben A Phillips
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Luis C Tábara
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Qiuhong Xiong
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Roberto Coria
- d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Ludwig Eichinger
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Pierre Golstein
- g Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , Inserm, U1104, CNRS UMR7280, Marseille , France
| | - Jason S King
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Thierry Soldati
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Olivier Vincent
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Ricardo Escalante
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| |
Collapse
|
10
|
|
11
|
Bidle KD. The molecular ecophysiology of programmed cell death in marine phytoplankton. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:341-75. [PMID: 25251265 DOI: 10.1146/annurev-marine-010213-135014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey 08901;
| |
Collapse
|
12
|
Rajawat J, Alex T, Mir H, Kadam A, Begum R. Proteases involved during oxidative stress-induced poly(ADP-ribose) polymerase-mediated cell death in Dictyostelium discoideum. MICROBIOLOGY-SGM 2014; 160:1101-1111. [PMID: 24719454 DOI: 10.1099/mic.0.076620-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis involves a cascade of caspase activation leading to the ordered dismantling of critical cell components. However, little is known about the dismantling process in non-apoptotic cell death where caspases are not involved. Dictyostelium discoideum is a good model system to study caspase-independent cell death where experimental accessibility of non-apoptotic cell death is easier and molecular redundancy is reduced compared with other animal models. Poly(ADP-ribose) polymerase (PARP) is one of the key players in cell death. We have previously reported the role of PARP in development and the oxidative stress-induced cell death of D. discoideum. D. discoideum possesses nine PARP genes and does not have a caspase gene, and thus it provides a better model system to dissect the role of PARP in caspase-independent cell death. The current study shows that non-apoptotic cell death in D. discoideum occurs in a programmed fashion where proteases cause mitochondrial membrane potential changes followed by plasma membrane rupture and early loss of plasma membrane integrity. Furthermore, the results suggest that calpains and cathepsin D, which are instrumental in dismantling the cell, act downstream of PARP. Thus, PARP, apoptosis inducing factor, calpains and cathepsin D are the key players in D. discoideum caspase-independent cell death, acting in a sequential manner.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| | - Tina Alex
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| | - Hina Mir
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India
| |
Collapse
|
13
|
Zheng W, Rasmussen U, Zheng S, Bao X, Chen B, Gao Y, Guan X, Larsson J, Bergman B. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont. PLoS One 2013; 8:e66147. [PMID: 23822984 PMCID: PMC3688857 DOI: 10.1371/journal.pone.0066147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/02/2013] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.
Collapse
Affiliation(s)
- Weiwen Zheng
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Biotech Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Siping Zheng
- Biotech Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaodong Bao
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bin Chen
- Biotech Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yuan Gao
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Guan
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - John Larsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
14
|
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 2013; 8:e55497. [PMID: 23383204 PMCID: PMC3561218 DOI: 10.1371/journal.pone.0055497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
Collapse
|
15
|
Abstract
Dynamic variations in mitochondrial shape have been related to function. However, tools to automatically classify and enumerate mitochondrial shapes are lacking, as are systematic studies exploring the relationship of such shapes to mitochondrial stress. Here we show that during increased generation of mitochondrial reactive oxygen species (mtROS), mitochondria change their shape from tubular to donut or blob forms, which can be computationally quantified. Imaging of cells treated with rotenone or antimycin, showed time and dose-dependent conversion of tubular forms to donut-shaped mitochondria followed by appearance of blob forms. Time-lapse images showed reversible transitions from tubular to donut shapes and unidirectional transitions between donut and blob shapes. Blobs were the predominant sources of mtROS and appeared to be related to mitochondrial-calcium influx. Mitochondrial shape change could be prevented by either pretreatment with antioxidants like N-acetyl cysteine or inhibition of the mitochondrial calcium uniporter. This work represents a novel approach towards relating mitochondrial shape to function, through integration of cellular markers and a novel shape classification algorithm.
Collapse
|
16
|
Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 2011; 17:791-800. [PMID: 21773880 DOI: 10.1007/s12253-011-9433-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022]
Abstract
Programmed cell death is a key component of tissue homeostasis, normal development and wide variety of diseases. Conventional view refers to programmed cell death form as caspase-mediated apoptosis while necrosis is considered as an accidental and unwanted cell demise, carried out in a non-regulated manner and caused by extreme conditions. However, accumulating evidences indicate that necrotic cell death can also be a regulated process. The term necroptosis has been introduced to describe a cell death receptor-induced, caspase-independent, highly regulated type of programmed cell death process with morphological resemblance of necrosis. Necroptosis recently has been found to contribute to a wide range of pathologic cell death forms including ischemic brain injury, neurodegenerative diseases and viral infection, therefore a better understanding of the necroptotic signaling machinery has clinical relevance.
Collapse
Affiliation(s)
- Zsuzsanna Dunai
- Department of Pathogenetics, National Institute of Oncology, Ráth György street 7-9, Budapest H-1122, Hungary.
| | | | | |
Collapse
|
17
|
Vlahou G, Eliáš M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol 2010; 90:342-55. [PMID: 21131095 DOI: 10.1016/j.ejcb.2010.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023] Open
Abstract
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.
Collapse
Affiliation(s)
- Georgia Vlahou
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|
18
|
McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2010; 22:882-8. [PMID: 20889324 PMCID: PMC2993806 DOI: 10.1016/j.ceb.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
Necrosis has been thought to be an accidental or uncontrolled type of cell death rather than programmed. Recent studies from diverse organisms show that necrosis follows a stereotypical series of cellular and molecular events: swelling of organelles, increases in reactive oxygen species and cytoplasmic calcium, a decrease in ATP, activation of calpain and cathepsin proteases, and finally rupture of organelles and plasma membrane. Genetic and chemical manipulations demonstrate that necrosis can be inhibited, indicating that necrosis can indeed be controlled and follows a specific 'program.' This review highlights recent findings from C. elegans, yeast, Dictyostelium, Drosophila, and mammals that collectively provide evidence for conserved mechanisms of necrosis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Gözen I, Dommersnes P, Czolkos I, Jesorka A, Lobovkina T, Orwar O. Fractal avalanche ruptures in biological membranes. NATURE MATERIALS 2010; 9:908-912. [PMID: 20935656 DOI: 10.1038/nmat2854] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/11/2010] [Indexed: 05/30/2023]
Abstract
Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.
Collapse
Affiliation(s)
- Irep Gözen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| | | | | |
Collapse
|
21
|
Giusti C, Luciani MF, Ravens S, Gillet A, Golstein P. Autophagic cell death in Dictyostelium requires the receptor histidine kinase DhkM. Mol Biol Cell 2010; 21:1825-35. [PMID: 20375146 PMCID: PMC2877641 DOI: 10.1091/mbc.e09-11-0976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Through random mutagenesis, the receptor histidine kinase DhkM was found essential for autophagic cell death (ACD) in Dictyostelium. DhkM is the most downstream known molecule required for this model ACD. Different DhkM mutants showed distinct non-vacuolizing ACD phenotypes and genetically separated previously undissociated late cell death events. Dictyostelium constitutes a genetically tractable model for the analysis of autophagic cell death (ACD). During ACD, Dictyostelium cells first transform into paddle cells and then become round, synthesize cellulose, vacuolize, and die. Through random insertional mutagenesis, we identified the receptor histidine kinase DhkM as being essential for ACD. Surprisingly, different DhkM mutants showed distinct nonvacuolizing ACD phenotypes. One class of mutants arrested ACD at the paddle cell stage, perhaps through a dominant-negative effect. Other mutants, however, progressed further in the ACD program. They underwent rounding and cellulose synthesis but stopped before vacuolization. Moreover, they underwent clonogenic but not morphological cell death. Exogenous 8-bromo-cAMP restored vacuolization and death. A role for a membrane receptor at a late stage of the ACD pathway is puzzling, raising questions as to which ligand it is a receptor for and which moieties it phosphorylates. Together, DhkM is the most downstream-known molecule required for this model ACD, and its distinct mutants genetically separate previously undissociated late cell death events.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | |
Collapse
|
22
|
Vuosku J, Sutela S, Tillman-Sutela E, Kauppi A, Jokela A, Sarjala T, Häggman H. Pine embryogenesis: many licences to kill for a new life. PLANT SIGNALING & BEHAVIOR 2009; 4:928-32. [PMID: 19826239 PMCID: PMC2801355 DOI: 10.4161/psb.4.10.9535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In plants, programmed cell death (PCD) is an important mechanism that controls normal growth and development as well as many defence responses. At present, research on PCD in different plant species is actively carried out due to the possibilities offered by modern methods in molecular biology and the increasing amount of genome data. The pine seed provides a favourable model for PCD because it represents an interesting inheritance of seed tissues as well as an anatomically well-described embryogenesis during which several tissues die via morphologically different PCD processes.
Collapse
Affiliation(s)
- Jaana Vuosku
- Department of Biology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
24
|
Vuosku J, Sarjala T, Jokela A, Sutela S, Sääskilahti M, Suorsa M, Läärä E, Häggman H. One tissue, two fates: different roles of megagametophyte cells during Scots pine embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1375-86. [PMID: 19246593 PMCID: PMC2657542 DOI: 10.1093/jxb/erp020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the Scots pine (Pinus sylvestris L.) seed, embryos grow and develop within the corrosion cavity of the megagametophyte, a maternally derived haploid tissue, which houses the majority of the storage reserves of the seed. In the present study, histochemical methods and quantification of the expression levels of the programmed cell death (PCD) and DNA repair processes related genes (MCA, TAT-D, RAD51, KU80, and LIG) were used to investigate the physiological events occurring in the megagametophyte tissue during embryo development. It was found that the megagametophyte was viable from the early phases of embryo development until the early germination of mature seeds. However, the megagametophyte cells in the narrow embryo surrounding region (ESR) were destroyed by cell death with morphologically necrotic features. Their cell wall, plasma membrane, and nuclear envelope broke down with the release of cell debris and nucleic acids into the corrosion cavity. The occurrence of necrotic-like cell death in gymnosperm embryogenesis provides a favourable model for the study of developmental cell death with necrotic-like morphology and suggests that the mechanism underlying necrotic cell death is evolutionary conserved.
Collapse
Affiliation(s)
- Jaana Vuosku
- Department of Biology, University of Oulu, PO Box 3000, 90014 Oulu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1422-31. [PMID: 19133302 DOI: 10.1016/j.bbamcr.2008.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/24/2022]
Abstract
Autophagic cell death (ACD) can be operationally described as cell death with an autophagic component. While most molecular bases of this autophagic component are known, in ACD the mechanism of cell death proper is not well defined, in particular because in animal cells there is poor experimental distinction between what triggers autophagy and what triggers ACD. Perhaps as a consequence, it is often thought that in animal cells a little autophagy is protective while a lot is destructive and leads to ACD, thus that the shift from autophagy to ACD is quantitative. The aim of this article is to review current knowledge on ACD in Dictyostelium, a very favorable model, with emphasis on (1) the qualitative, not quantitative nature of the shift from autophagy to ACD, in contrast to the above, and (2) random or targeted mutations of in particular the following genes: iplA (IP3R), TalB (talinB), DcsA (cellulose synthase), GbfA, ugpB, glcS (glycogen synthase) and atg1. These mutations allowed the genetic dissection of ACD features, dissociating in particular vacuolisation from cell death.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, INSERM U631, CNRS UMR6102, Case 906, Faculté des Sciences de Luminy, Marseille F-13288, France
| | | | | | | |
Collapse
|
26
|
Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1. Cell Death Differ 2008; 16:564-70. [PMID: 19079140 DOI: 10.1038/cdd.2008.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autophagic or necrotic cell death (ACD and NCD, respectively), studied in the model organism Dictyostelium which offers unique advantages, require triggering by the same differentiation-inducing factor DIF-1. To initiate these two types of cell death, does DIF-1 act through only one or through two distinct recognition structures? Such distinct structures may recognize distinct motifs of DIF-1. To test this albeit indirectly, DIF-1 was modified at one or two of several positions, and the corresponding derivatives were tested for their abilities to induce ACD or NCD. The results strongly indicated that distinct biochemical motifs of DIF-1 were required to trigger ACD or NCD, and that these motifs were separately recognized at the onset of ACD or NCD. In addition, both ACD and NCD were induced more efficiently by DIF-1 than by either its precursors or its immediate catabolite. These results showed an unexpected relation between a differentiation factor, the cellular structures that recognize it, the cell death types it can trigger and the metabolic state of the cell. The latter seems to guide the choice of the signaling pathway to cell death, which in turn imposes the cell death type and the recognition pattern of the differentiation factor.
Collapse
|
27
|
Giusti C, Luciani MF, Klein G, Aubry L, Tresse E, Kosta A, Golstein P. Necrotic cell death: From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Exp Cell Res 2008; 315:26-38. [PMID: 18951891 DOI: 10.1016/j.yexcr.2008.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Dictyostelium atg1- mutant cells provide an experimentally and genetically favorable model to study necrotic cell death (NCD) with no interference from apoptosis or autophagy. In such cells subjected to starvation and cAMP, induction by the differentiation-inducing factor DIF or by classical uncouplers led within minutes to mitochondrial uncoupling, which causally initiated NCD. We now report that (1) in this model, NCD included a mitochondrial-lysosomal cascade of events, (2) mitochondrial uncoupling and therefore initial stages of death showed reversibility for a surprisingly long time, (3) subsequent lysosomal permeabilization could be demonstrated using Lysosensor blue, acridin orange, Texas red-dextran and cathepsin B substrate, (4) this lysosomal permeabilization was irreversible, and (5) the presence of the uncoupler was required to maintain mitochondrial lesions but also to induce lysosomal lesions, suggesting that signaling from mitochondria to lysosomes must be sustained by the continuous presence of the uncoupler. These results further characterized the NCD pathway in this priviledged model, contributed to a definition of NCD at the lysosomal level, and suggested that in mammalian NCD even late reversibility attempts by removal of the inducer may be of therapeutic interest.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Faculté des Sciences de Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Kosta A, Luciani MF, Geerts WJ, Golstein P. Marked mitochondrial alterations upon starvation without cell death, caspases or Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2013-9. [DOI: 10.1016/j.bbamcr.2008.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
29
|
Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2008; 16:21-30. [DOI: 10.1038/cdd.2008.120] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Deponte M. Programmed cell death in protists. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1396-405. [PMID: 18291111 DOI: 10.1016/j.bbamcr.2008.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/19/2008] [Indexed: 12/01/2022]
Abstract
Programmed cell death in protists does not seem to make sense at first sight. However, apoptotic markers in unicellular organisms have been observed in all but one of the six/eight major groups of eukaryotes suggesting an ancient evolutionary origin of this regulated process. This review summarizes the available data on apoptotic markers in non-opisthokonts and elucidates potential functions and evolution of programmed cell death. A newly discovered family of caspase-like proteases, the metacaspases, is considered to exert the function of caspases in unicellular organisms. Important results on metacaspases, however, showed that they cannot be always correlated to the measured proteolytic activity during protist cell death. Thus, a major challenge for apoptosis research in a variety of protists remains the identification of the molecular cell death machinery.
Collapse
Affiliation(s)
- Marcel Deponte
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
31
|
Giusti C, Kosta A, Lam D, Tresse E, Luciani MF, Golstein P. Analysis of autophagic and necrotic cell death in Dictyostelium. Methods Enzymol 2008; 446:1-15. [PMID: 18603113 DOI: 10.1016/s0076-6879(08)01601-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-apoptotic cell death types can be conveniently studied in Dictyostelium discoideum, an exceptionally favorable model not only because of its well-known genetic and experimental advantages, but also because in Dictyostelium there is no apoptosis machinery that could interfere with non-apoptotic cell death. We show here how to conveniently demonstrate, assess, and study these non-apoptotic cell death types. These can be generated by use of modifications of the monolayer technique of Rob Kay et al., and either wild-type HMX44A Dictyostelium cells, leading to autophagic cell death, or the corresponding atg1- autophagy gene mutant cells, leading to necrotic cell death. Methods to follow these non-apoptotic cell death types qualitatively and quantitatively will be reported.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie INSERM-CNRS-Univ.Medit. de Marseille-Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
32
|
Lam D, Kosta A, Luciani MF, Golstein P. The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 2007; 19:691-700. [PMID: 18077554 DOI: 10.1091/mbc.e07-08-0823] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The signaling pathways governing pathophysiologically important autophagic (ACD) and necrotic (NCD) cell death are not entirely known. In the Dictyostelium eukaryote model, which benefits from both unique analytical and genetic advantages and absence of potentially interfering apoptotic machinery, the differentiation factor DIF leads from starvation-induced autophagy to ACD, or, if atg1 is inactivated, to NCD. Here, through random insertional mutagenesis, we found that inactivation of the iplA gene, the only gene encoding an inositol 1,4,5-trisphosphate receptor (IP3R) in this organism, prevented ACD. The IP3R is a ligand-gated channel governing Ca(2+) efflux from endoplasmic reticulum stores to the cytosol. Accordingly, Ca(2+)-related drugs also affected DIF signaling leading to ACD. Thus, in this system, a main pathway signaling ACD requires IP3R and further Ca(2+)-dependent steps. This is one of the first insights in the molecular understanding of a signaling pathway leading to autophagic cell death.
Collapse
Affiliation(s)
- David Lam
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale U631, and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6102, Aix Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
33
|
Lam D, Levraud JP, Luciani MF, Golstein P. Autophagic or necrotic cell death in the absence of caspase and bcl-2 family members. Biochem Biophys Res Commun 2007; 363:536-41. [PMID: 17889831 DOI: 10.1016/j.bbrc.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/02/2007] [Indexed: 11/15/2022]
Abstract
How is one to investigate autophagic or necrotic cell death in the absence of interference from the apoptosis machinery? In the protist Dictyostelium, a model for the study of these two cell death types, we previously showed that autophagic cell death does not require paracaspase, the only caspase family member in this organism. In this report, we prepared two distinct paracaspase- atg1- double mutants, and we used them to demonstrate that paracaspase is not required for necrotic cell death either. Also, in silico investigation showed that the genome of Dictyostelium harbored no detectable member of the bcl-2 family and no single BH3 domain-bearing molecules. Altogether, in this model system both autophagic and necrotic cell death could occur, and could be investigated, with no interference from the two main molecular families involved in apoptosis, the caspase and the bcl-2 families.
Collapse
Affiliation(s)
- David Lam
- Centre d'Immunologie de Marseille-Luminy, Case 906, Faculté des Sciences de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
34
|
Golstein P, Kroemer G. A multiplicity of cell death pathways. Symposium on apoptotic and non-apoptotic cell death pathways. EMBO Rep 2007; 8:829-33. [PMID: 17721445 PMCID: PMC1973949 DOI: 10.1038/sj.embor.7401042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille–Luminy, Case 906, Avenue de Luminy, 13288 Marseille Cedex 9, France
- Centre d'Immunologie de Marseille–Luminy, Case 906, Avenue de Luminy, 13288 Marseille Cedex 9, France
- Centre d'Immunologie de Marseille–Luminy, Case 906, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Guido Kroemer
- INSERM Unit ‘Apoptosis, Cancer and Immunity', Institut Gustave Roussy, PR1, 39 rue Camille Desmoulins, F-94805 Villejuif, France
- INSERM Unit ‘Apoptosis, Cancer and Immunity', Institut Gustave Roussy, PR1, 39 rue Camille Desmoulins, F-94805 Villejuif, France
- INSERM Unit ‘Apoptosis, Cancer and Immunity', Institut Gustave Roussy, PR1, 39 rue Camille Desmoulins, F-94805 Villejuif, France
- Tel: +33 1 42 11 60 46; Fax: +33 1 42 11 60 47;
| |
Collapse
|
35
|
Tresse E, Kosta A, Luciani MF, Golstein P. From autophagic to necrotic cell death in Dictyostelium. Semin Cancer Biol 2006; 17:94-100. [PMID: 17150370 DOI: 10.1016/j.semcancer.2006.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 11/28/2022]
Abstract
Among unusual models to study cell death mechanisms, the protist Dictyostelium is remarkable because of its strategic phylogenetic position, with early emergence among eukaryotes and unicellular/multicellular transition, and its very favorable experimental and genetic flexibility. Dictyostelium shows developmental vacuolar cell death, and in vitro monolayer approaches revealed both an autophagic vacuolar and a necrotic type of cell death. These are described in some detail, as well as implications and future prospects.
Collapse
Affiliation(s)
- Emilie Tresse
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|