1
|
Cao ZX, Xiao GA, Zhang W, Ji J, Ye C, Liu D, Tian QQ, Prof YHS. Comprehensive investigation of alternative splicing and development of a prognostic risk score for prostate cancer based on six-gene signatures. J Cancer 2019; 10:5585-5596. [PMID: 31632503 PMCID: PMC6775697 DOI: 10.7150/jca.31725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: To systematically document alternative splicing profiles of prostate cancer in relatively large populations in order to construct a prognostic predictors model for prostate cancer. Methods: Splicing data and clinical information of 495 prostate cancer patients were obtained from The Cancer Genome Atlas (TCGA). The SpliceSeq database was used to extract information regarding splicing events. Multiple bioinformatic tools were used for functional and pathway enrichment analysis as well as for construction of gene interaction networks. Candidate gene expression profiles were verified with clinical samples using QRT-PCR. Results: We detected a total of 44070 alternative splicing events of 10381 genes in prostate cancer. 7 and 14 KEGG pathways were enriched and were associated with overall and recurrence-free survival, respectively. The expression of 396 genes among the 1526 overall survival genes associated alternative splicing events were associated with overall survival. The expression of 483 genes among the 1916 recurrence-free survival genes associated alternative splicing events were associated with recurrence-free survival. Lastly, we constructed the prognosis risk score system based on the expression profiles of six-gene signatures which in combination had an AUC of 0.941 for overall survival associated alternative splicing events, followed by overall survival associated gene expressions with an AUC of 0.794, a recurrence-free survival associated gene expression with an AUC of 0.752 and recurrence-free survival associated alternative splicing events with an AUC of 0.735, indicating its strong ability to predict patient outcome. The expression profile of the six genes was also confirmed in different prostate cell lines and clinic samples. Conclusion: Our comprehensive investigation of alternative splicing not only provided insight into the biological pathways of alternative splicing involved in the development of prostate cancer but also revealed new potential biomarkers for prognosticating as well as novel therapeutic targets for development of prostate cancer treatment.
Collapse
Affiliation(s)
- Zhe-Xu Cao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Guang-An Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Wei Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jin Ji
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Chen Ye
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Dan Liu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qin-Qin Tian
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Ying-Hao Sun Prof
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| |
Collapse
|
2
|
Liu X, Li Y, Sun X, Muftuoglu Y, Wang B, Yu T, Hu Y, Ma L, Xiang M, Guo G, You C, Gao X, Wei Y. Powerful anti-colon cancer effect of modified nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system. Theranostics 2018; 8:3490-3503. [PMID: 30026861 PMCID: PMC6037032 DOI: 10.7150/thno.24157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Colorectal cancer (CRC) is the third most commonly diagnosed cancer around the world. Over the past several years, immunotherapy has demonstrated considerable clinical benefit in CRC therapy, and the number of immunologic therapies for cancer treatment continues to climb each year. Interleukin-15 (IL15), a potent pro-inflammatory cytokine, has emerged as a candidate immunomodulator for the treatment of CRC. Methods: In this study, we developed a novel gene delivery system with a self-assembly method using DOTAP and MPEG-PLA (DMA) to carry pIL15, denoted as DMA-pIL15 which was used to treat tumor-bearing mice. Results: Supernatant from lymphocytes treated with supernatant derived from CT26 cells transfected with DMA-pIL15 inhibited the growth of CT26 cells and induced cell apoptosis in vitro. Treatment of tumor-bearing mice with DMA-pIL15 complex significantly inhibited tumor growth in both subcutaneous and peritoneal models in vivo by inhibiting angiogenesis, promoting apoptosis, and reducing proliferation through activation of the host immune system. Conclusion: The IL-15 plasmid and DMA complex showed promise for treating CRC clinically as an experimental new drug.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanyan Li
- Department of radiation oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaodong Sun
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | | | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Ma
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Mingli Xiang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Gang Guo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chao You
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuquan Wei
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
3
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
4
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res 2015; 123:277-317. [PMID: 25081534 DOI: 10.1016/b978-0-12-800092-2.00011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
6
|
Daines DA, Sun J, Uchakina ON, McKallip RJ. Development of a novel treatment for leukemia directed at tumor-associated mRNA splicing. Leuk Res 2013; 37:1125-31. [PMID: 23830513 DOI: 10.1016/j.leukres.2013.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
Abstract
This report describes a novel approach to cancer therapy that targets genes that are preferentially alternatively spliced and expressed in leukemia. We developed CD44v6 and CD44v8 splicing constructs fused with GFP or a humanized fragment of Pseudomonas aeruginosa exotoxin A (hPE24). Transfection of K562 leukemia cells with the GFP-linked splicing constructs led to subsequent production of detectable levels of GFP. Transfection of K562 cells with the hPE24-linked splicing constructs led to significant reduction of cell viability and an increase in the induction of apoptosis. Normal human PBMCs were unaffected by following transfection with these constructs.
Collapse
Affiliation(s)
- Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | | | | | | |
Collapse
|
7
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Exploiting the tumor microenvironment in the development of targeted cancer gene therapy. Cancer Gene Ther 2008; 16:279-90. [PMID: 18818709 DOI: 10.1038/cgt.2008.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The future success of cancer gene therapy is critically dependent upon the development of safe, practical and effective targeting strategies. In this study, we describe a novel and broadly applicable targeting approach in which the induction of apoptotic tumor cell death is linked to the differential expression within the tumor microenvironment of elevated levels of the pro-angiogenic cytokine vascular endothelial growth factor (VEGF). As VEGF is generally absent or produced at only low levels in most normal tissues, undesirable toxicity will not result even if the therapeutic gene in question is inadvertently expressed in non-targeted tissue sites. The basic approach makes use of a chimeric cell-surface protein in which the membrane-spanning and cytoplasmic 'death domain' of the pro-apoptotic protein Fas are fused in frame to the extracellular ligand-binding domain of the VEGF receptor Flk-1/KDR/VEGFR2 (Flk-1/Fas). The resultant chimeric Flk-1/Fas receptor was found to be stable and capable of inducing a rapid apoptotic response when expressed in tumor cells that produce endogenous VEGF. Importantly, in the absence of VEGF, transduced tumor cells remain viable although they can be triggered to die by the addition of recombinant VEGF. Given the key role played by VEGF in tumor development and progression, it is proposed that the Flk-1/Fas chimera may have great potential in the context of tumor cell-targeted cancer gene therapy.
Collapse
|
9
|
Guimarães GS, Latini FRM, Camacho CP, Maciel RMB, Dias-Neto E, Cerutti JM. Identification of candidates for tumor-specific alternative splicing in the thyroid. Genes Chromosomes Cancer 2006; 45:540-53. [PMID: 16493598 DOI: 10.1002/gcc.20316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing is the differential processing of exon junctions to produce a new transcript variant from one gene. Some aberrant splicing, however, has been shown to be cancer specific. Identification of these specific splice variations will provide important insight into the molecular mechanism of normal cellular physiology as well as the disease processes. To gain knowledge about whether alternative splicing is linked to thyroid tumorigenesis, we used our prediction database to select targets for analysis. Fifteen putatively new alternative splicing isoforms were selected on the basis of their expression in thyroid libraries and/or their origin in genes previously associated with carcinogenesis. Using a set of 66 normal, benign, and malignant thyroid tissue samples, new splicing events were confirmed by RT-PCR for 13 of 15 genes (a validation rate of 87%). In addition, new alternative splicing isoforms not predicted by the system and not previously described in public databases were identified. Five genes (PTPN18, ABI3BP, PFDN5, SULF2, and ST5) presented new and/or additional unpredicted isoforms differentially expressed between malignant and benign or normal thyroid tissues, confirmed by sequencing. PTPN18, ABI3BP, and PFDN5 revealed a statistically significant differential splicing profile. In addition, real-time PCR analysis revealed that expression of an alternative PFDN5 variant was higher in malignant lesions than in benign lesions or normal tissues.
Collapse
Affiliation(s)
- Gustavo S Guimarães
- Laboratory of Molecular Endocrinology, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Galiana-Arnoux D, Del Gatto-Konczak F, Gesnel MC, Breathnach R. Intronic UGG repeats coordinate splicing of CD44 alternative exons v8 and v9. Biochem Biophys Res Commun 2005; 336:667-73. [PMID: 16137657 DOI: 10.1016/j.bbrc.2005.08.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/22/2005] [Indexed: 11/28/2022]
Abstract
Alternative CD44 exons v8, v9, and v10 are spliced as a block in epithelial cells (for example SVK14 cells), but can be skipped as a block by other cells. Using a minigene approach, we show that downstream intronic UGG repeats participate in activation of v8 exon splicing in SVK14 cells. The repeats can activate splicing of a heterologous exon in SVK14 cells and act additively with a previously described v8 exon splicing enhancer in this context. An alternative v9 exon 5' splice site used by some cells to make an aberrant transcript is repressed by an immediately downstream (UGG)3 sequence in SVK14 cells. We conclude that UGG repeats both activate v8 exon splicing and repress use of the alternative v9 exon 5' splice site in SVK14 cells, thus participating in the coordination of correct epithelial cell splicing of the v8-10 block.
Collapse
|
11
|
Hayes GM, Dougherty ST, Davis PD, Dougherty GJ. Molecular mechanisms regulating the tumor-targeting potential of splice-activated gene expression. Cancer Gene Ther 2005; 11:797-807. [PMID: 15359288 DOI: 10.1038/sj.cgt.7700759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have suggested that differences in the ability of normal and malignant cells to process certain alternatively spliced pre-mRNA transcripts can be exploited as a potentially powerful means of targeting the expression of therapeutic genes to tumor cells in vivo and in vitro. Specifically, it was shown that efficient processing of minigene constructs containing the alternatively spliced CD44 exons v9 and v10 only occurs in tumor cells that express CD44 isoforms that incorporate these exons (e.g. CD44R1). In the present study, efforts were made to define the molecular mechanisms that underlie the apparent specificity of this process. RT-PCR analysis and DNA sequencing were used to characterize the various splicing events that occur between CD44 exons v8, v9 and v10 following transfection of minigene constructs containing these various exons into CD44R1-positive (PC3) and CD44R1-negative (T24) cell lines. The results obtained confirm that although the v8-v9 intron is efficiently removed in both CD44R1-positive and CD44R1-negative cells, the corresponding v9-v10 intron is accurately spliced and the exons appropriately joined only in lines that express v10-containing CD44 isoforms (e.g. PC3). In CD44R1-negative cell lines (e.g. T24) alternative 5' and 3' splice sites located within the v9-v10 intron are preferentially used, resulting in various portions of the intron being retained within the final processed mRNA product. It is proposed that identification of these functionally important intronic sequence elements will facilitate the development of second generation "splice activated gene expression" vectors that may prove useful in various cancer gene therapy applications.
Collapse
Affiliation(s)
- Gregory M Hayes
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | |
Collapse
|
12
|
Abstract
As a consequence of the dramatic progress that has been made in recent years towards elucidating the diverse molecular events involved in the development and pathogenesis of malignant disease, there is now no shortage of genes that can be exploited or targeted in the context of cancer gene therapy. Many of these have been shown to be effective both in vitro and in various animal models, and a number have progressed to the clinic. The results of these later studies, although generally encouraging, are perhaps less dramatic than one might have hoped. Although a number of factors undoubtedly contribute to this finding, it is evident that a major reason relates to the difficulties implicit in achieving efficient in vivo gene transfer, particularly in a clinical context. Targeting gene therapy, not to the malignant population, but instead to the vasculature upon which the survival and growth of a tumour depends constitutes an alternative approach that overcomes some of the delivery problems associated with established tumour cell-directed strategies.
Collapse
Affiliation(s)
- Graeme J Dougherty
- University of Arizona, Department of Radiation Oncology, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
13
|
Goodrich A, Parveen Z, Dornburg R, Schnell MJ, Pomerantz RJ. Spliced spleen necrosis virus vector RNA is not encapsidated: implications for retroviral replication and vector design. Mol Ther 2004; 9:557-65. [PMID: 15093186 DOI: 10.1016/j.ymthe.2004.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 01/10/2004] [Indexed: 11/18/2022] Open
Abstract
RNA splicing is a complex event in the retroviral life cycle and can involve multiple steps, as well as cis-acting sequences, to maintain a proper balance of spliced and unspliced viral RNA for translation and encapsidation. The retroviral RNA can be processed by cellular machinery and enables the removal of intronic sequences. We aimed to utilize the removal of a synthetic intron for targeted gene expression. To analyze intron removal and gene expression, we have constructed a novel self-inactivating gene-activating (SIGA) vector for potential universal gene therapy. New vectors for gene therapy are necessary for safe and effective gene delivery in humans. The SIGA vector is derived from spleen necrosis virus (SNV), which is an avian reticuloendotheliosis virus. The vector was designed so that expression of a therapeutic gene is blocked in helper cell lines due to an intervening sequence containing various blocks in transcription and translation. However, after one round of retroviral replication, the intervening sequence should be removed by the cellular machinery and the therapeutic gene will be selectively expressed in target cells. Our studies show that the intervening sequence in SIGA vector RNA is partially spliced. However, spliced vector RNA was not transduced to target cells. Previous studies showed that an infectious SNV vector enabled transduction of spliced RNA. However, yet-undefined differences in infectious and replication-deficient retroviral replication may have an effect on the transduction of spliced RNA. The results of this study present key information on spliced RNA and its encapsidation, as well as data for the construction of a new generation of SNV-derived retroviral vectors.
Collapse
Affiliation(s)
- Adrienne Goodrich
- Center for Human Virology and Biodefense, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
14
|
Ravichandran LV, Dean NM, Marcusson EG. Use of antisense oligonucleotides in functional genomics and target validation. Oligonucleotides 2004; 14:49-64. [PMID: 15104896 DOI: 10.1089/154545704322988058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the completion of sequencing of the human genome, a great deal of interest has been shifted toward functional genomics-based research for identification of novel drug targets for treatment of various diseases. The major challenge facing the pharmaceutical industry is to identify disease-causing genes and elucidate additional roles for genes of known functions. Gene functionalization and target validation are probably the most important steps involved in identifying novel potential drug targets. This review focuses on recent advances in antisense technology and its use for rapid identification and validation of new drug targets. The significance and applicability of this technology as a beginning of the drug discovery process are underscored by relevant cell culture-based assays and positive correlation in specific animal disease models. Some of the antisense inhibitors used to validate gene targets are themselves being developed as drugs. The current clinical trials based on such leads that were identified in a very short time further substantiate the importance of antisense technology-based functional genomics as an integral part of target validation and drug target identification.
Collapse
|
15
|
Abstract
Pre-mRNA splicing is a sophisticated and ubiquitous nuclear process, which is a natural source of cancer-causing errors in gene expression. Intronic splice site mutations of tumor suppressor genes often cause exon-skipping events that truncate proteins just like classical nonsense mutations. Also, many studies over the last 20 years have reported cancer-specific alternative splicing in the absence of genomic mutations. Affected proteins include transcription factors, cell signal transducers, and components of the extracellular matrix. Antibodies against alternatively spliced products on cancer cells are currently in clinical trials, and competitive reverse transcription-PCR across regions of alternative splicing is being used as a simple diagnostic test. As well as being associated with cancer, the nature of the alternative gene products is usually consistent with an active role in cancer; therefore, the alternative splicing process itself is a potential target for gene therapy.
Collapse
Affiliation(s)
- Julian P Venables
- University of Newcastle-upon-Tyne, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
16
|
Establishment and application of minigene models for studying pre-mRNA alternative splicing. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03182765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|