1
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
2
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
3
|
Abstract
Conditionally replicating adenoviruses (CRAds) have many advantages as agents for cancer virotherapy and have been safely used in human clinical trials. However, replicating adenoviruses have been limited in their ability to eliminate tumors by oncolysis. Thus, the efficacy of these agents must be improved. To this end, CRAds have been engineered to express therapeutic transgenes that exert antitumor effects independent of direct viral oncolysis. These transgenes can be expressed under native gene control elements, in which case placement within the genome determines the expression profile, or they can be controlled by exogenous promoters. The therapeutic transgenes used to arm replicating adenoviruses can be broadly classified into three groups. There are those that mediate killing of the infected cell, those that modulate the tumor microenvironment and those with immunomodulatory functions. Overall, the studies to date in animal models have shown that arming a CRAd with a rationally chosen therapeutic transgene can improve its antitumor efficacy over that of an unarmed CRAd. However, a number of obstacles must be overcome before the full potential of armed CRAds can be realized in the human clinical context. Hence, strategies are being developed to permit intravenous delivery to disseminated cancer cells, overcome the immune response and enable in vivo monitoring of the biodistribution and activity of armed CRAds.
Collapse
Affiliation(s)
- J J Cody
- Division of Human Gene Therapy, Department of Medicine, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
4
|
Ma G, Shimada H, Hiroshima K, Tada Y, Suzuki N, Tagawa M. Gene medicine for cancer treatment: commercially available medicine and accumulated clinical data in China. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:115-22. [PMID: 19920899 PMCID: PMC2761194 DOI: 10.2147/dddt.s3535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of p53 function compromises genetic homeostasis, which induces deregulated DNA replication, damages DNA, and subsequently results in increased resistance to anticancer agents. Pharmacological approaches using recombinant adenoviruses (Ad) have been developed to restore the p53 functions. Another approach for gene medicine is to modify Ad replication in a tumor-specific manner, which induces tumor cell death without damaging normal tissues in the vicinity. The Ad-derived gene medicines, Ad expressing the wild-type p53 gene and replication-competent Ad defective of the E1B-55kDa gene, have been tested for their clinical feasibility and became commercially available in China. These agents demonstrated their antitumor activities as a monotherapy and in combination with conventional chemotherapeutic agents. In this article, we summarize the outcomes of clinical trials in China, most of which have been published in domestic Chinese journals, and discuss potential directions of cancer gene therapy with these agents.
Collapse
Affiliation(s)
- Guangyu Ma
- Division of Pathology, Chiba Cancer Center Research Institute, 666-1 Nitona, Chuo-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
6
|
Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials. J Control Release 2007; 126:255-64. [PMID: 18207275 DOI: 10.1016/j.jconrel.2007.12.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/19/2007] [Accepted: 12/02/2007] [Indexed: 12/14/2022]
Abstract
Bio-nanocapsules (BNCs) consisting of hepatitis B virus (HBV) surface antigen (HBsAg) are approximately 50-nm hollow particles displaying a human hepatocyte-recognizing molecule (pre-S1 peptide). They have been used as an HB vaccine for the last two decades. Original BNC can incorporate various payloads (e.g., drugs, genes) by electroporation and deliver them to human hepatocytes specifically by utilizing the HBV infection mechanism. Here, we developed a new BNC conjugated with liposomes and succeeded in incorporating large materials (100-nm fluorescence-labeled polystyrene beads and >30 kbp plasmids) into the BNC-liposome complex. The complex delivered these large materials to human hepatocytes specifically ex vivo and in vivo. The transfection efficiency of the BNC-liposome complex was significantly higher than that of the original BNC. These results indicated that BNC confers the tissue- and cell-specificity on the conventional liposomes and raises new possibilities for drug delivery systems, gene delivery systems, and bio-imaging systems in vivo.
Collapse
|
7
|
Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y, Denny WA, Wilson WR, Patterson AV. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther 2007; 14:953-67. [DOI: 10.1038/sj.cgt.7701088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Robinson M, Ge Y, Ko D, Yendluri S, Laflamme G, Hawkins L, Jooss K. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression. Cancer Gene Ther 2007; 15:9-17. [PMID: 17853920 DOI: 10.1038/sj.cgt.7701093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arming oncolytic adenoviral vectors with anticancer transgenes that can be expressed in a tumor-selective manner may enable the engineering of vectors with increased potency, while retaining their safety profile. Armed oncolytic adenoviral vectors were constructed in which transgene expression has been linked via modified splice acceptor sequences that did not necessitate the deletion of any part of the adenoviral genome. Several oncolytic adenoviral vectors were compared in which the transgene was inserted in place of either the E3 or the L3 region. While all vectors had similar viral growth and cytotoxicity characteristics, the highest level of transgene expression was observed from a vector in which the transgene had been inserted downstream of the L3 23K protease gene, the Ad-23K-GM vector. Notably, no transgene expression occurred with this vector in the absence of DNA replication either in vitro or in vivo. In contrast, viruses in which the transgene was inserted into E3 locations exhibited a low level of transgene expression even in the absence of DNA replication. In summary, by utilizing the L3 region for arming oncolytic viruses, higher levels of tumor-specific transgene expression can be obtained without the need to delete any parts of the viral genome.
Collapse
Affiliation(s)
- M Robinson
- Cell Genesys Inc., South San Francisco, California, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Van Roy M, Wielockx B, Baker A, Libert C. The use of tissue inhibitors of matrix metalloproteinases to increase the efficacy of a tumor necrosis factor/interferonγ antitumor therapy. Cancer Gene Ther 2007; 14:372-9. [PMID: 17218947 DOI: 10.1038/sj.cgt.7701020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to its impressive ability to kill tumor cells, especially in combination with interferon-gamma (IFNgamma), tumor necrosis factor (TNF) is widely appreciated as being a potential systemic therapeutic for the treatment of cancer. On the other hand, owing to its proinflammatory activities, administration of TNF leads to many systemic side effects and eventually to a potentially lethal systemic inflammatory response syndrome (SIRS). However, systemic treatment of tumor-bearing mice with TNF/IFNgamma in combination with BB-94 (a broad-spectrum metalloproteinase inhibitor) confers protection against TNF/IFNgamma-induced mortality, whereas preserving the antitumor activity. In this study, we investigated the effect of the adenoviral delivery of human tissue inhibitors of matrix metalloproteinase (hTIMP)-1 and hTIMP-2 genes on the outcome of TNF/IFNgamma antitumor therapy. The dose of adenovirus was limited to 10(8) PFU per mouse owing to the additive toxicity of combining it with TNF/IFNgamma therapy. Nevertheless, this dose was sufficient to achieve highly efficient adenoviral transfer and expression of hTIMP-1 and hTIMP-2 in the liver, but not the tumor. Treatment with this low dose of AdhTIMP-1 or AdhTIMP-2 was not enough to protect the host against the toxic effects of TNF/IFNgamma. However, it was sufficient to show a synergistic effect of hTIMPs with TNF/IFNgamma such that tumors regressed significantly faster. Interestingly, only AdTIMP-2 was able to prevent relapses after treatment.
Collapse
Affiliation(s)
- M Van Roy
- Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology and Ghent University, Zwijnaarde, Ghent, Belgium
| | | | | | | |
Collapse
|
10
|
Lun X, Senger DL, Alain T, Oprea A, Parato K, Stojdl D, Lichty B, Power A, Johnston RN, Hamilton M, Parney I, Bell JC, Forsyth PA. Effects of intravenously administered recombinant vesicular stomatitis virus (VSV(deltaM51)) on multifocal and invasive gliomas. J Natl Cancer Inst 2006; 98:1546-57. [PMID: 17077357 DOI: 10.1093/jnci/djj413] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND An ideal virus for the treatment of cancer should have effective delivery into multiple sites within the tumor, evade immune responses, produce rapid viral replication, spread within the tumor, and infect multiple tumors. Vesicular stomatitis virus (VSV) has been shown to be an effective oncolytic virus in a variety of tumor models, and mutations in the matrix (M) protein enhance VSV's effectiveness in animal models. METHODS We evaluated the susceptibility of 14 glioma cell lines to infection and killing by mutant strain VSV(deltaM51), which contains a single-amino acid deletion in the M protein. We also examined the activity and safety of this strain against the U87 and U118 experimental models of human malignant glioma in nude mice and analyzed the distribution of the virus in the brains of U87 tumor-bearing mice using fluorescence labeling. Finally, we examined the effect of VSV(deltaM51) on 15 primary human gliomas cultured from surgical specimens. All statistical tests were two-sided. RESULTS All 14 glioma cell lines were susceptible to VSV(deltaM51) infection and killing. Intratumoral administration of VSV(deltaM51) produced marked regression of malignant gliomas in nude mice. When administered systemically, live VSV(deltaM51) virus, as compared with dead virus, statistically significantly prolonged survival of mice with unilateral U87 tumors (median survival: 113 versus 46 days, P = .0001) and bilateral U87 tumors (median survival: 73 versus 46 days, P = .0025). VSV(deltaM51) infected multifocal gliomas, invasive glioma cells that migrated beyond the main glioma, and all 15 primary human gliomas. There was no evidence of toxicity. CONCLUSIONS Systemically delivered VSV(deltaM51) was an effective and safe oncolytic agent against laboratory models of multifocal and invasive malignant gliomas, the most challenging clinical manifestations of this disease.
Collapse
Affiliation(s)
- XueQing Lun
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang YA, Nemunaitis J, Samuel SK, Chen P, Shen Y, Tong AW. Antitumor Activity of an Oncolytic Adenovirus-Delivered Oncogene Small Interfering RNA. Cancer Res 2006; 66:9736-43. [PMID: 17018633 DOI: 10.1158/0008-5472.can-06-1617] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite successes in animal models, cancer gene therapy with small interfering RNAs (siRNA) is hindered by the lack of an optimal delivery platform. We examined the applicability of the replication-competent, oncolytic adenovirus, ONYX-411, to deliver a mutant K-ras siRNA transgene to human cancer cells. Proof-of-principle studies showed an additive tumor growth-inhibitory response through siRNA-mediated K-ras knockdown and ONYX-411-mediated cancer cell lysis. A novel construct, termed Internavec (for interfering RNA vector), was generated by cloning a K-ras(v12)-specific siRNA(ras-4) hairpin construct under the control of the human H1 promoter into the deleted E3b region of ONYX-411. Internavec acquired an increase in potency of approximately 10-fold in human cancer cells expressing the relevant K-ras(v12) mutation (H79, H441, and SW480), as defined by a reduction in the effective dose needed to achieve 50% growth inhibition (ED(50)). Internavec remained attenuated in nonmalignant epithelial cells. Daily intratumoral injections of Internavec (five daily injections of 1 x 10(8) plaque-forming units) significantly reduced the growth of s.c. H79 pancreatic cancer xenografts in nu/nu mice by 85.5%, including complete growth suppression in three of five mice. Parental ONYX-411 or ONYX-411-siRNA(GFP) was markedly less effective (47.8% growth reduction, P = 0.03; and 44.1% growth reduction, P = 0.03, respectively). siRNA(ras) transgene activity contributed to cell cycle blockage, increased apoptosis, and marked down-regulation of Ras signaling-related gene expression (AKT2, GSK3 beta, E2F2, and MAP4K5). These findings indicate that Internavec can generate a two-pronged attack on tumor cells through oncogene knockdown and viral oncolysis, resulting in a significantly enhanced antitumor outcome.
Collapse
Affiliation(s)
- Yu-An Zhang
- The Mary Crowley Medical Research Center, Dallas, Texas
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Malaeb BS, Gardner TA, Margulis V, Yang L, Gillenwater JY, Chung LWK, Macik G, Koeneman KS. Elevated activated partial thromboplastin time during administration of first-generation adenoviral vectors for gene therapy for prostate cancer: identification of lupus anticoagulants. Urology 2005; 66:830-4. [PMID: 16230147 DOI: 10.1016/j.urology.2005.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/30/2005] [Accepted: 04/20/2005] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To evaluate the cause and significance of elevated activated partial thromboplastin time (aPTT) in a group of patients who received a first-generation adenoviral vector (Ad-OC-TK) delivering a toxic gene to prostate cancer cells as part of a Phase I clinical trial at the University of Virginia. METHODS Eleven subjects were injected intratumorally to metastatic lesions of prostate cancer in the prostatic fossa, retroperitoneal lymph nodes, or bone (iliac, ischium, or vertebrae). After the initial laboratory evaluation, patients with elevated aPTT underwent a series of additional tests, including mixing studies, coagulation factor, prekallikrein, and high-molecular-weight kininogen, and lupus anticoagulant studies (modified Russell viper venom time) with phospholipid correction, and a Staclot LA assay. RESULTS Of the 11 subjects who were enrolled in the trial, 6 had elevated aPTT values. Of the 6 patients, 3 had aPTT elevation of more than 10 seconds above normal. Two of the subjects with higher values demonstrated an inhibitory pattern with the factor VIII and XI assays, and the lupus anticoagulant studies were positive. No clinical sequelae to the elevated aPTT values were observed. CONCLUSIONS This is, to our knowledge, the first formal report of a first-generation adenoviral vector causing a slight transient elevation of the aPTT through the induction of an antiphospholipid antibody. No clinical sequelae related to elevated aPTT values were observed. The adenoviral protocol was safe; similar protocols should be aware of this phenomenon.
Collapse
Affiliation(s)
- Bahaa S Malaeb
- Center for Prostate Cancer, Department of Urologic Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mocellin S, Costa R, Nitti D. RNA interference: ready to silence cancer? J Mol Med (Berl) 2005; 84:4-15. [PMID: 16283143 DOI: 10.1007/s00109-005-0709-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/13/2005] [Indexed: 12/26/2022]
Abstract
RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological and Surgical Sciences, University of Padova, via Giustiniani 2, 35128 Padua, Italy.
| | | | | |
Collapse
|
15
|
Schepelmann S, Hallenbeck P, Ogilvie LM, Hedley D, Friedlos F, Martin J, Scanlon I, Hay C, Hawkins LK, Marais R, Springer CJ. Systemic Gene-Directed Enzyme Prodrug Therapy of Hepatocellular Carcinoma Using a Targeted Adenovirus Armed with Carboxypeptidase G2. Cancer Res 2005; 65:5003-8. [PMID: 15958540 DOI: 10.1158/0008-5472.can-05-0393] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide, and there is no effective therapy for unresectable disease. We have developed a targeted systemic therapy for hepatocellular carcinoma. The gene for a foreign enzyme is selectively expressed in the tumor cells and a nontoxic prodrug is then given, which is activated to a potent cytotoxic drug by the tumor-localized enzyme. This approach is termed gene-directed enzyme prodrug therapy (GDEPT). Adenoviruses have been used to target cancer cells, have an intrinsic tropism for liver, and are efficient gene vectors. Oncolytic adenoviruses produce clinical benefits, particularly in combination with conventional anticancer agents and are well tolerated. We rationalized that such adenoviruses, if their expression were restricted to telomerase-positive cancer cells, would make excellent gene vectors for GDEPT therapy of hepatocellular carcinoma. Here we use an oncolytic adenovirus to deliver the prodrug-activating enzyme carboxypeptidase G2 (CPG2) to tumors in a single systemic administration. The adenovirus replicated and produced high levels of CPG2 in two different hepatocellular carcinoma xenografts (Hep3B and HepG2) but not other tissues. GDEPT enhanced the adenovirus-alone therapy to elicit tumor regressions in the hepatocellular carcinoma models. This is the first time that CPG2 has been targeted and expressed intracellularly to effect significant therapy, showing that the combined approach holds enormous potential as a tumor-selective therapy for the systemic treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Silke Schepelmann
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.
Collapse
Affiliation(s)
- Eugene Lin
- Mary Crowley Medical Research Center, Dallas, Texas, USA
| | | |
Collapse
|