1
|
Li X, Han Z, Ai J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01042-6. [PMID: 40394240 DOI: 10.1038/s41585-025-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Park JH, Lee YK, Lee H, Choi DH, Rhee KJ, Kim HS, Seo JB. Sonoporation with Echogenic Liposomes: The Evaluation of Glioblastoma Applicability Using In Vivo Xenograft Models. Pharmaceutics 2025; 17:509. [PMID: 40284504 PMCID: PMC12030003 DOI: 10.3390/pharmaceutics17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: In previous studies, echogenic liposomes with liquid and gas cores were analyzed as alternative carriers of drug molecules and cavitation nuclei for sonoporation. The possibility of small interfering RNA (si-RNA) encapsulation has also been presented. In this study, the usability of echogenic liposomes as drug carriers and cavitation seeds was evaluated using an in vivo model. Methods: A doxorubicin-loaded echogenic liposome was synthesized as a drug carrier. The size distribution and the number of formed echogenic liposomes were measured. Five comparative in vivo experiments were conducted with and without doxorubicin-loaded echogenic liposomes, and the results were statically analyzed. Results: Sonoporation with doxorubicin-loaded echogenic liposomes at 3.05 W/cm2 of ISPTA ultrasound sonication and 0.98 MHz results in an average tumor volume growth of less than 25% of that following the simple administration of doxorubicin. Considering the p-value between the two groups is approximately 0.03, doxorubicin-loaded echogenic liposomes were effectively applicable as cavitation nuclei for sonoporation. Conclusions: Although further studies are needed to clarify the responses to incident ultrasound fields, the proposed echogenic liposome appears to be a promising alternative cavitation nuclei/carrier for sonoporation.
Collapse
Affiliation(s)
- Ju-Hyun Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Yoo-Kyung Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dong-Hyun Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jong-Bum Seo
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
3
|
Hu M, Liao X, Tao Y, Chen Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front Immunol 2023; 14:1285113. [PMID: 38022620 PMCID: PMC10652401 DOI: 10.3389/fimmu.2023.1285113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic viruses' therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Mingming Hu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - XuLiang Liao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wang G, Liu Y, Liu S, Lin Y, Hu C. Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. Int J Mol Sci 2022; 23:12647. [PMID: 36293504 PMCID: PMC9603894 DOI: 10.3390/ijms232012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
As the most common cancer of the genitourinary system, prostate cancer (PCa) is a global men's health problem whose treatments are an urgent research issue. Treatment options for PCa include active surveillance (AS), surgery, endocrine therapy, chemotherapy, radiation therapy, immunotherapy, etc. However, as the cancer progresses, the effectiveness of treatment options gradually decreases, especially in metastatic castration-resistant prostate cancer (mCRPC), for which there are fewer therapeutic options and which have a shorter survival period and worse prognosis. For this reason, oncolytic viral therapy (PV), with its exceptional properties of selective tumor killing, relatively good safety in humans, and potential for transgenic delivery, has attracted increasing attention as a new form of anti-tumor strategy for PCa. There is growing evidence that OV not only kills tumor cells directly by lysis but can also activate anticancer immunity by acting on the tumor microenvironment (TME), thereby preventing tumor growth. In fact, evidence of the efficacy of this strategy has been observed since the late 19th century. However, subsequently, interest waned. The renewed interest in this therapy was due to advances in biotechnological methods and innovations at the end of the 20th century, which was also the beginning of PCa therapy with OV. Moreover, in combination with chemotherapy, radiotherapy, gene therapy or immunotherapy, OV viruses can have a wide range of applications and can provide an effective therapeutic result in the treatment of PCa.
Collapse
Affiliation(s)
- Gongwei Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuoru Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou 528478, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
5
|
Abstract
Oral cancer ranks first among males and is the primary cause of cancer-related deaths in Pakistan. We studied the epidemiology and risk factors associated with this cancer. The main risk factors in the Pakistani population include the usage of chewable and non-chewable tobacco, areca nut, betel leaf, poor dental hygiene practices, oncogenic viral infections, and genetic predispositions. The impact of socioeconomic status and the available health resources on the management of oral cancer is also discussed. It is concluded that being a low-middle economy efforts should be primarily focused on awareness for early screening, diagnosis, and prevention strategies.
Collapse
Affiliation(s)
- Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan
| | - Sara Kazmi
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
6
|
Khodarovich YM, Rakhmaninova DD, Barishnikova AM, Deyev SM. Doxycycline Sensitive Two-Promoter Integrator Based on the TET-ON 3G Transactivator. Mol Biol 2020. [DOI: 10.1134/s0026893320020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Engineering and Characterization of Oncolytic Vaccinia Virus Expressing Truncated Herpes Simplex Virus Thymidine Kinase. Cancers (Basel) 2020; 12:cancers12010228. [PMID: 31963415 PMCID: PMC7016767 DOI: 10.3390/cancers12010228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are a promising class of anti-tumor agents; however, concerns regarding uncontrolled viral replication have led to the development of a replication-controllable oncolytic vaccinia virus (OVV). The engineering involves replacing the native thymidine kinase (VV-tk) gene, in a Wyeth strain vaccinia backbone, with the herpes simplex virus thymidine kinase (HSV-tk) gene, which allows for viral replication control via ganciclovir (GCV, an antiviral/cytotoxic pro-drug). Adding the wild-type HSV-tk gene might disrupt the tumor selectivity of VV-tk deleted OVVs; therefore, only engineered viruses that lacked tk activity were selected as candidates. Ultimately, OTS-412, which is an OVV containing a mutant HSV-tk, was chosen for characterization regarding tumor selectivity, sensitivity to GCV, and the influence of GCV on OTS-412 anti-tumor effects. OTS-412 demonstrated comparable replication and cytotoxicity to VVtk- (control, a VV-tk deleted OVV) in multiple cancer cell lines. In HCT 116 mouse models, OTS-412 replication in tumors was reduced by >50% by GCV (p = 0.004); additionally, combination use of GCV did not compromise the anti-tumor effects of OTS-412. This is the first report of OTS-412, a VV-tk deleted OVV containing a mutant HSV-tk transgene, which demonstrates tumor selectivity and sensitivity to GCV. The HSV-tk/GCV combination provides a safety mechanism for future clinical applications of OTS-412.
Collapse
|
8
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
9
|
Kasala D, Yoon AR, Hong J, Kim SW, Yun CO. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 2016; 11:1689-713. [PMID: 27348247 DOI: 10.2217/nnm-2016-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.,Department of Pharmaceutics & Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
10
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
11
|
Nissim L, Bar-Ziv RH. A tunable dual-promoter integrator for targeting of cancer cells. Mol Syst Biol 2011; 6:444. [PMID: 21179016 PMCID: PMC3018173 DOI: 10.1038/msb.2010.99] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/25/2010] [Indexed: 12/12/2022] Open
Abstract
Precise discrimination between similar cellular states is essential for autonomous decision-making scenarios, such as in vivo targeting of diseased cells. Discrimination could be achieved by delivering an effector gene expressed under a highly active context-specific promoter. Yet, a single-promoter approach has linear response and offers limited control of specificity and efficacy. Here, we constructed a dual-promoter integrator, which expresses an effector gene only when the combined activity of two internal input promoters is high. A tunable response provides flexibility in choosing promoter inputs and effector gene output. Experiments using one premalignant and four cancer cell lines, over a wide range of promoter activities, revealed a digital-like response of input amplification following a sharp activation threshold. The response function is cell dependent with its overall magnitude increasing with degree of malignancy. The tunable digital-like response provides robustness, acts to remove input noise minimizing false-positive identification of cell states, and improves targeting precision and efficacy.
Collapse
Affiliation(s)
- Lior Nissim
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
12
|
Toth K, Kuppuswamy M, Shashkova EV, Spencer JF, Wold WSM. A fully replication-competent adenovirus vector with enhanced oncolytic properties. Cancer Gene Ther 2010; 17:761-70. [PMID: 20596091 DOI: 10.1038/cgt.2010.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have studied the oncolytic efficacy of two adenovirus vectors named KD3 and INGN 007, which differ from each other only in that whereas KD3 has two small deletions in its e1a gene that restrict its replication to rapidly cycling cells, INGN 007 has wild-type e1a gene. Both vectors overexpress the adenovirus death protein (ADP). Both KD3 and INGN 007 effectively suppressed the growth of subcutaneous human A549 and Hep3B tumors in nude mice upon intratumoral injection, and contained the growth of subcutaneous LNCaP tumors after intravenous injection, making some tumors shrink or disappear. However, in a more demanding model, intravenous injections of neither KD3 nor wild-type Ad5 were effective against subcutaneous A549 tumors, whereas INGN 007 increased the mean survival time by 35%. INGN 007 was also effective in suppressing tumor growth in a challenging A549 orthotopic lung cancer model. INGN 007 was superior to dl1520 (ONYX-015) in repressing subcutaneous A549 tumors. Our results suggest that vectors such as INGN 007 might provide better antitumor efficacy in the clinic as well.
Collapse
Affiliation(s)
- K Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
13
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
14
|
Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2009; 18:251-63. [PMID: 20029399 DOI: 10.1038/mt.2009.283] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Abstract
The use of replication-competent viruses that can selectively replicate in and destroy neoplastic cells is an attractive strategy for treating cancer. Various oncolytic viruses have been taken to clinical trials since a recombinant virus was first applied to cancer patients a decade ago. The concept of the therapy is simple: infectious virus kills the host cancer cells in the course of viral replication. It is important, however, that the virus does not harm the surrounding normal tissue. Oncolytic viruses can be classified largely into two groups: DNA viruses genetically engineered to achieve cancer specificity (e.g. adenovirus, herpes simplex virus and vaccinia) and RNA viruses of which human is not the natural host (e.g. Newcastle disease virus and reovirus). Prostate cancer has always been one of the major targets of oncolytic virus therapy development. The result of six clinical trials for prostate cancer has been published and several trials are now going on. Forty-eight of 83 (58%) patients evaluated in the phase I studies demonstrated a >25% decrease in serum prostate-specific antigen level without evidence of severe toxicities. The result shows the oncolytic virus therapy is promising toward clinical application. Here, we review the recent advances in the field and summarize the results from clinical trials.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
16
|
A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther 2009; 16:1441-51. [DOI: 10.1038/gt.2009.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
18
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 PMCID: PMC2771947 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
| | | | - Dinesh S. Bangari
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Young A, McNeish IA. Oncolytic adenoviral gene therapy in ovarian cancer: why we are not wasting our time. Future Oncol 2009; 5:339-57. [PMID: 19374541 DOI: 10.2217/fon.09.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preclinical gene-therapy studies in the past 15 years have repeatedly raised hopes that we were about to enter a brave new era. However, many clinical trials have disappointed. For tumor types with poor response rates to first-line conventional cytotoxic chemotherapy and/or high rates of chemorefractory disease, there remain very few treatment options. In this article we review gene therapy within the context of ovarian cancer. We examine why clinical data have been discouraging and discuss how the lessons learned from earlier trials are being applied to current research.
Collapse
Affiliation(s)
- Am Young
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts & The London School of Medicine & Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
20
|
Huang X, Zhuang L, Cao Y, Gao Q, Han Z, Tang D, Xing H, Wang W, Lu Y, Xu G, Wang S, Zhou J, Ma D. Biodistribution and kinetics of the novel selective oncolytic adenovirus M1 after systemic administration. Mol Cancer Ther 2008; 7:1624-32. [PMID: 18566233 DOI: 10.1158/1535-7163.mct-07-2134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic adenoviruses represent a promising novel therapeutic option for the treatment of cancer. Despite their demonstrated safety in human clinical trials, the fundamental properties of oncolytic adenovirus biodistribution, spread, viral persistence, and replication in vivo have not been well characterized. The aim of this study was to evaluate the kinetics of viral distribution, spread, replication, and antitumoral efficacy after i.v. administration of a novel oncolytic mutant M1. This mutant consists of the E1A CR2-deleted Adv5 with a fragment of antisense polo-like kinase 1 (plk1) cDNA inserted into the deleted 6.7K/gp19K region, which combines oncolytic properties with efficient plk1 silencing, as described in our previous reports. In the present study, we established a new human orthotopic gastric carcinoma with a high frequency metastasis mouse model and showed that M1 spread not only in local primary tumors but also in disseminated metastases. M1 could effectively replicate in tumor cells leading to "oncolysis" and was able to eliminate expression of the targeted gene plk1 in human orthotopic gastric carcinoma model mice. Therefore, i.v. administration of M1 could prolong the survival time of tumor-bearing mice.
Collapse
Affiliation(s)
- Xiaoyuan Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li YM, Song ST, Jiang ZF, Zhang Q, Su CQ, Liao GQ, Qu YM, Xie GQ, Li MY, Ge FJ, Qian QJ. Telomerase-specific oncolytic virotherapy for human hepatocellular carcinoma. World J Gastroenterol 2008; 14:1274-9. [PMID: 18300357 PMCID: PMC2690679 DOI: 10.3748/wjg.14.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the therapeutic efficiency of replicative adenovirus CNHK300 targeted in telomerase-positive hepatocellular carcinoma.
METHODS: CNHK300, ONYX-015 (55 kDa protein deleted adenovirus) and wtAd5 (wild type adenovirus 5) were compared, and virus proliferation assay, cell viability assay, Western blot and fluorescence microscopy were used to evaluate the proliferation and cytolysis selectivity of CNHK300.
RESULTS: The replicative multiples in Hep3B and HepGII after 48 h of CNHK300 proliferation were 40 625 and 65 326 fold, respectively, similar to that of wtAd5.. However, CNHK300 exhibited attenuated replicative ability in normal fibroblast cell line BJ. CNHK300 could lyse hepatocellular carcinoma cells at a low multiplicity of infection (MOI), but could not affect growth of normal cells even at a high MOI.
CONCLUSION: CNHK300 is a cancer-selective replication-competent adenovirus which can cause oncolysis of liver cancer cells as well as wtAd5 (wild type adenovirus 5), but had severely attenuated replicative and cytolytic ability in normal cells. This novel strategy of cancer treatment offers a promising treatment platform.
Collapse
|
22
|
Cheong SC, Wang Y, Meng JH, Hill R, Sweeney K, Kirn D, Lemoine NR, Halldén G. E1A-expressing adenoviral E3B mutants act synergistically with chemotherapeutics in immunocompetent tumor models. Cancer Gene Ther 2008; 15:40-50. [PMID: 18034197 PMCID: PMC2268748 DOI: 10.1038/sj.cgt.7701099] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/10/2007] [Accepted: 09/14/2007] [Indexed: 01/06/2023]
Abstract
The majority of clinical trials evaluating replication-selective oncolytic adenoviruses utilized mutants with immunomodulatory E3B genes deleted, likely contributing to the attenuated efficacy. We investigated whether an intact immune response could contribute to the observed improved efficacy in response to combinations with chemotherapeutics. Seven carcinoma cell lines were evaluated by combining viral mutants; dl309 (DeltaE3B), dl704 (DeltaE3gp19K), dl312 (DeltaE1A) or wild-type Ad5 with the commonly used clinical drugs cisplatin and paclitaxel. Synergistic effects on cell death were determined by generation of combination indexes in cultured cells. In vivo tumor growth inhibition was achieved by virotherapy alone and was most efficacious with wild-type virus and least with the DeltaE3B mutant. Significantly higher efficacy was observed when the viruses were combined with drugs. The greatest enhancement of tumor inhibition was in combination with the DeltaE3B mutant restoring potency to that of Ad5 wild-type levels, observed only in animals with intact immune response. Increases in infectivity, viral gene expression and replication were identified as potential mechanisms contributing to the synergistic effects. Our results suggest that the attenuation of DeltaE3B mutants can be overcome by low doses of chemotherapeutics only in the presence of an intact immune response indicating a role for T-cell-mediated functions.
Collapse
Affiliation(s)
- SC Cheong
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Y Wang
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J-H Meng
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R Hill
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - K Sweeney
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - D Kirn
- Department of Pharmacology, Oxford University Medical School, Oxford, UK
| | - NR Lemoine
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - G Halldén
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Hedley D, Ogilvie L, Springer C. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nat Rev Cancer 2007; 7:870-9. [PMID: 17943135 DOI: 10.1038/nrc2247] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) aims to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending.
Collapse
Affiliation(s)
- Douglas Hedley
- Institute of Cancer Research Haddow Laboratories, 15, Cotswold Road, Sutton, Surrey, UK
| | | | | |
Collapse
|
24
|
Alonso MM, Cascallo M, Gomez-Manzano C, Jiang H, Bekele BN, Perez-Gimenez A, Lang FF, Piao Y, Alemany R, Fueyo J. ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo. Cancer Res 2007; 67:8255-63. [PMID: 17804740 DOI: 10.1158/0008-5472.can-06-4675] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During 2007, approximately 200,000 people in the United States will be diagnosed with brain tumors. Gliomas account for 77% of primary malignant brain tumors, and the prognosis has hardly changed in the past 20 years, with only 30% of patients with malignant glioma surviving 5 years after diagnosis. Oncolytic adenoviruses are promising therapies for the treatment of gliomas. Here, report the antiglioma activity of the tumor-selective ICOVIR-5 adenovirus, which encompasses an early 1A adenoviral (E1A) deletion in the retinoblastoma (Rb) protein-binding region, substitution of the E1A promoter for E2F-responsive elements, and an RGD-4C peptide motif inserted into the adenoviral fiber to enhance adenoviral tropism. Mechanistic studies showed a dramatic addiction of ICOVIR-5 to the E2F1 oncogene in vitro and in vivo. This addiction was mediated by the occupancy of the ectopic adenoviral E2F1-responsive elements by the endogenous E2F1 protein resulting in high level of E1A expression in cancer cells and potent antiglioma effect. Importantly, we showed for the first time the ability of oncolytic adenoviruses to enhance E2F transcriptional activity in vivo, and we provided direct evidence of the interaction of the E2F1 protein with native and ectopic adenovirus promoters. Restoration of Rb function led to the association of Rb/E2F1 repressor complexes with ICOVIR-5 ectopic E2F1 promoter and subsequent down-modulation of E1A, dramatically impairing adenoviral replication. In xenografted mice, intratumoral injection of ICOVIR-5 resulted in a significant improvement of the median survival (P < 0.0001), and furthermore, led to 37% of long-term survivors free of disease. The antitumor activity of ICOVIR-5 suggests that it has the potential to be an effective agent in the treatment of gliomas.
Collapse
Affiliation(s)
- Marta M Alonso
- Brain Tumor Center, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R. Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 2007; 15:1607-15. [PMID: 17579575 DOI: 10.1038/sj.mt.6300239] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
E2F acts as a transcriptional repressor when bound to unphosphorylated RB during the G(1) or G(0) phase. Upon phosphorylation, E2F is released from the E2F-RB complexes to activate transcription. Tumor cells are characterized by an increase in the level of "free" E2F as a consequence of the absence or hyperphosphorylation of RB. The E2F-1 promoter is a well-characterized E2F-responsive promoter, and it can be used to control adenovirus E1a gene expression as a strategy to achieve tumor-selective expression and replication of an adenovirus. ICOVIR-5 (Ad-DM-E2F-K-Delta24RGD) is an optimized oncolytic adenovirus that combines E1a transcriptional control by an insulated form of the E2F promoter with the Delta24 mutation of E1a to improve the therapeutic index of AdDelta24RGD. ICOVIR-5 also contains the Kozak sequence at the E1a start codon, which is important to restore E1a expression and viral replication to AdwtRGD levels in tumor cells. The unique combination of genetic elements in ICOVIR-5 allows the selectivity for cells with a deregulated E2F-RB pathway to be increased and potent anti-tumoral activity to be maintained. Dose-response toxicological and efficacy studies after a single systemic administration in pre-clinical models in mice are presented to demonstrate that this virus holds promise for treatment of disseminated cancer.
Collapse
Affiliation(s)
- Manel Cascallo
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Su CQ, Wang XH, Chen J, Liu YJ, Wang WG, Li LF, Wu MC, Qian QJ. Antitumor activity of an hTERT promoter-regulated tumor-selective oncolytic adenovirus in human hepatocellular carcinoma. World J Gastroenterol 2006; 12:7613-20. [PMID: 17171789 PMCID: PMC4088042 DOI: 10.3748/wjg.v12.i47.7613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To construct a tumor-selective replication-competent adenovirus (RCAd), SG300, using a modified promoter of human telomerase reverse transcriptase (hTERT).
METHODS: The antitumor efficacy of SG300 in hepatocellular carcinoma was assessed in vitro and
in vivo. In vitro cell viability by MTT assay was used to assess the tumor-selective oncolysis and safety features of SG300, and in vivo antitumor activity of SG300 was assessed in established hepatocellular carcinoma models in nude mice.
RESULTS: SG300 could lyse hepatocellular carcinoma cells at a low multiplicity of infection (MOI), but could not affect growth of normal cells even at a high MOI. Both in Hep3B and SMMC-7721 xenograft models of hepatocellular carcinoma, SG300 had an obvious antitumor effect, resulting in a decrease in tumor volume. Its selective oncolysis to tumor cells and safety to normal cells was also superior to that of ONYX-015. Pathological examination of tumor specimens showed that SG300 replicated selectively in cancer cells and resulted in apoptosis and necrosis of cancer cells.
CONCLUSION: hTERT promoter-regulated replicative adenovirus SG300 has a better cancer-selective replication-competent ability, and can specifically kill a wide range of cancer cells with positive telomerase activity, and thus has better potential for targeting therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chang-Qing Su
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kuppuswamy M, Spencer JF, Doronin K, Tollefson AE, Wold WSM, Toth K. Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression. Gene Ther 2006; 12:1608-17. [PMID: 16034456 DOI: 10.1038/sj.gt.3302581] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have constructed a novel oncolytic adenovirus (Ad) vector, named VRX-011, in which the replication of the vector is targeted to cancer cells by the replacement of the wild-type Ad E4 promoter with the human telomerase reverse transcriptase (hTERT) promoter. Genes in the Ad E4 transcription unit are essential for Ad replication; therefore, VRX-011 will grow efficiently only in cells in which the hTERT promoter is active, that is, in a wide range of cancer and immortalized cells but not in most somatic cells. Consistent with these expectations, VRX-011 replicated efficiently in all cancer cell lines examined, while its growth was restricted in various primary and normal cells. VRX-011 overexpresses ADP (also known as E3-11.6K), an Ad protein required for efficient cell lysis and release of virions from cells at late stages of infection. This overexpression enhances cell-to-cell spread and could significantly increase antitumor efficacy. In a xenograft model in nude mice, both intratumoral and intravenous administration of VRX-011 effectively suppressed the growth of subcutaneous Hep3B human liver tumors. Also, intravenous delivery of VRX-011 greatly reduced the number and size of A549 human lung cancer cell nodules in a disseminated lung tumor model in nude mice. Importantly, tail vein administration of different doses of VRX-011 in C57BL/6 mice showed minimal liver toxicity. Considering its broad range of lytic replication in cancer cells, its attenuated phenotype in primary cells, its efficacy in suppressing xenografts, and its low toxicity in mouse liver, VRX-011 is a promising candidate for further evaluation as an anticancer therapeutic.
Collapse
Affiliation(s)
- M Kuppuswamy
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Majem M, Cascallo M, Bayo-Puxan N, Mesia R, Germa JR, Alemany R. Control of E1A under an E2F-1 promoter insulated with the myotonic dystrophy locus insulator reduces the toxicity of oncolytic adenovirus Ad-Δ24RGD. Cancer Gene Ther 2006; 13:696-705. [PMID: 16498429 DOI: 10.1038/sj.cgt.7700940] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously described Ad-Delta24RGD as an enhanced-infectivity oncolytic adenovirus that targets tumors with an impaired RB pathway. The common alteration of this pathway in cancer eliminates the interaction of pRB with E2F and releases free E2F to activate E2F-responsive promoters, including the E2F-1 promoter. To improve the selectivity towards RB pathway-defective tumors and reduce the toxicity of Ad-Delta24RGD we aimed to control E1A-Delta24 expression under the E2F-1 promoter. A polyA signal was inserted upstream of the E2F-1 promoter to stop transcription initiated at the adenovirus ITR and packaging signal. The human myotonic dystropy locus insulator (DM-1) was also located between the E1a enhancers and the E2F-1 promoter to further insulate the promoter. The Ad-Delta24RGD derivative containing these insulation sequences expressed less E1a-Delta24 in normal cells and resulted less toxic while maintaining the potent oncolytic activity of the parental virus. These results demonstrate that the human DM-1 inslulator can function in an adenovirus context to maintain heterologous promoter selectivity. The new oncolytic adenovirus presented here may represent a valuable therapeutic option for a broad range of tumors with a deregulated E2F/pRB pathway.
Collapse
Affiliation(s)
- M Majem
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Li Y, Idamakanti N, Arroyo T, Thorne S, Reid T, Nichols S, VanRoey M, Colbern G, Nguyen N, Tam O, Working P, Yu DC. Dual promoter-controlled oncolytic adenovirus CG5757 has strong tumor selectivity and significant antitumor efficacy in preclinical models. Clin Cancer Res 2006; 11:8845-55. [PMID: 16361574 DOI: 10.1158/1078-0432.ccr-05-1757] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Transcriptionally controlled oncolytic adenovirus CG5757 is engineered with two tumor-specific promoters from E2F-1 and human telomerase reverse transcriptase genes. This virus has broad anticancer spectrum and higher specificity. The objective of the current study is to show its antitumor selectivity and therapeutic potential. EXPERIMENTAL DESIGN The antitumor specificity of E2F-1 and human telomerase reverse transcriptase promoters was evaluated in a panel of tumor and normal cells. Under the control of these promoters, the tumor-selective expression of E1a and E1b genes was evaluated. Further in vitro antitumor specificity and potency of this virus were characterized by viral replication and cytotoxicity assays followed by a newly developed ex vivo tumor culture assay. Subsequently, in vivo antitumor efficacy and toxicology studies were carried out to assess the therapeutic potential of this oncolytic agent. RESULTS In a broad panel of cells, E2F-1 and human telomerase reverse transcriptase promoters were activated in a tumor-selective manner. Under the control of these promoters, expression of E1a and E1b genes appears only in tumor cells. This specificity is extended to viral replication and hence the cytotoxicity in a broad range of cancer cells. Furthermore, CG5757 only replicates in cancer tissues but not in normal tissues that are derived from clinical biopsies. The safety profile was further confirmed in in vivo toxicology studies, and strong efficacy was documented in several tumor xenograft models after CG5757 was given via different routes and regimens. CONCLUSIONS CG5757 has strong antitumor selectivity and potency. It has low toxicity and has great potential as a therapeutic agent for different types of cancers.
Collapse
Affiliation(s)
- Yuanhao Li
- Cell Genesys, Inc., South San Francisco, California 94080 and Stanford University, Palo Alto, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Working PK, Lin A, Borellini F. Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene 2005; 24:7792-801. [PMID: 16299538 DOI: 10.1038/sj.onc.1209045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oncolytic adenoviruses have been considered for use as anticancer therapy for decades, and numerous means of conferring tumor selectivity have been developed. As with any new therapy, the trip from the laboratory bench to the clinic has revealed a number of significant development hurdles. Viral therapies are subject to specific regulations and must meet a variety of well-defined criteria for purity, potency, stability, and product characterization prior to their use in the clinic. Published regulatory guidelines, although developed specifically for biotechnology-derived products, are applicable to the production of oncolytic adenoviruses and other cell-based products, and they should be consulted early during development. Most importantly, both the manufacturing process and the development of characterization and release assays should be science-driven, use the best available science and technology, and must consider the unique nature of the product: a living, and mutatable, virus. Potentially significant impacts on product quality and safety stem from the possibility of genetic instability related to over-engineering the viruses (as evidenced by their recombination and/or occasional reversion to wild-type virus during manufacturing). This report provides examples of some of the critical components affecting the development and production of clinical grade material and summarizes the significant progress made in recent years.
Collapse
|
31
|
Abstract
Changes initiated at the cellular and systemic levels as a result of viral infection or neoplastic transformation share significant overlap. Therefore, the use of replicating viruses to treat tumors has long been postulated as a promising avenue for oncolytic therapy. Over the last 10 years, transcriptionally regulated adenoviruses have become a popular platform for the development of such oncolytic viruses. Placement of heterologous promoters in front of key adenoviral transcription units to achieve tumor- or tissue-specific viral replication is well documented. Various derivatives of this general strategy have led to considerable insight into its limitations, pitfalls, and potential. Although a general process can be described by which to develop transcriptionally regulated adenoviruses, it is apparent that few set rules can yet be defined as to what constitutes a safe, stable, and therapeutically effective vector. Clinical experiences to date suggest the short-term potential for this class of therapeutics lies in combination therapy regimens. Such lessons from the clinic suggest the next generation of transcriptionally regulated oncolytic adenoviruses take advantage of the ability of the platform to carry transgenes in order to deliver a multimodal therapy from a single agent. Beyond this 'arming' of the vectors lies the detargeting, retargeting, and coating of adenoviruses to improve the delivery of the agent to the treatment site(s). As a therapeutic platform, transcriptionally regulated adenoviruses are at an early stage of development with considerable opportunities for advancement.
Collapse
Affiliation(s)
- Derek Ko
- Cell Genesys, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
32
|
Wirth T, Kühnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL, Manns M, Zender L, Kubicka S. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 2005; 65:7393-402. [PMID: 16103092 DOI: 10.1158/0008-5472.can-04-3664] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinomas (HCC) are drug-resistant tumors that frequently possess high telomerase activity. It was therefore the aim of our study to investigate the potential of telomerase-dependent virotherapy in multimodal treatment of HCC. In contrast to normal liver, HCC xenografts showed high telomerase activity, resulting in tumor-restricted expression of E1A by a telomerase-dependent replicating adenovirus (hTERT-Ad). Neither tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or chemotherapy alone nor the combined treatment with both agents resulted in significant destruction of HCC cells. Application of hTERT-Ad at low titers was also not capable to destroy HCC cells, but telomerase-dependent virotherapy overcame the resistance of HCC against TRAIL and chemotherapy. The synergistic effects are explained by a strong down-regulation of Mcl-1 expression through hTERT-Ad that sensitizes HCC for TRAIL- and chemotherapy-mediated apoptosis. To investigate whether down-regulation of Mcl-1 alone is sufficient to explain synergistic effects observed with virotherapy, Mcl-1 expression was inhibited by RNA interference. Treatment with Mcl-1-siRNA significantly enhanced caspase-3 activity after chemotherapy and TRAIL application, confirming that elimination of Mcl-1 is responsible for the drug sensitization by hTERT-Ad. Consistent with these results, heterologous overexpression of Mcl-1 significantly reduced the sensitization of hTERT-Ad transduced cells against apoptosis-inducing agents. Chemotherapy did not interfere with quantitative hTERT-Ad production in HCC cells. Whereas hTERT-Ad virotherapy alone was only capable to inhibit the growth of Hep3B xenografts, virochemotherapy resulted in vast destruction of the drug-resistant HCC. In conclusion our data indicate that telomerase-dependent virotherapy is an attractive strategy to overcome the natural resistance of HCC against anticancer drugs by elimination of Mcl-1.
Collapse
Affiliation(s)
- Thomas Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schepelmann S, Hallenbeck P, Ogilvie LM, Hedley D, Friedlos F, Martin J, Scanlon I, Hay C, Hawkins LK, Marais R, Springer CJ. Systemic Gene-Directed Enzyme Prodrug Therapy of Hepatocellular Carcinoma Using a Targeted Adenovirus Armed with Carboxypeptidase G2. Cancer Res 2005; 65:5003-8. [PMID: 15958540 DOI: 10.1158/0008-5472.can-05-0393] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide, and there is no effective therapy for unresectable disease. We have developed a targeted systemic therapy for hepatocellular carcinoma. The gene for a foreign enzyme is selectively expressed in the tumor cells and a nontoxic prodrug is then given, which is activated to a potent cytotoxic drug by the tumor-localized enzyme. This approach is termed gene-directed enzyme prodrug therapy (GDEPT). Adenoviruses have been used to target cancer cells, have an intrinsic tropism for liver, and are efficient gene vectors. Oncolytic adenoviruses produce clinical benefits, particularly in combination with conventional anticancer agents and are well tolerated. We rationalized that such adenoviruses, if their expression were restricted to telomerase-positive cancer cells, would make excellent gene vectors for GDEPT therapy of hepatocellular carcinoma. Here we use an oncolytic adenovirus to deliver the prodrug-activating enzyme carboxypeptidase G2 (CPG2) to tumors in a single systemic administration. The adenovirus replicated and produced high levels of CPG2 in two different hepatocellular carcinoma xenografts (Hep3B and HepG2) but not other tissues. GDEPT enhanced the adenovirus-alone therapy to elicit tumor regressions in the hepatocellular carcinoma models. This is the first time that CPG2 has been targeted and expressed intracellularly to effect significant therapy, showing that the combined approach holds enormous potential as a tumor-selective therapy for the systemic treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Silke Schepelmann
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|