1
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|
2
|
Arrigo A, Regua AT, Najjar MK, Lo HW. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy. Cancers (Basel) 2023; 15:2455. [PMID: 37173921 PMCID: PMC10177220 DOI: 10.3390/cancers15092455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.
Collapse
Affiliation(s)
- Austin Arrigo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| | - Mariana K. Najjar
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| |
Collapse
|
3
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L. Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells 2022; 11:984. [PMID: 35326434 PMCID: PMC8947048 DOI: 10.3390/cells11060984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Xiao-Qing Sun
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Shahood Fazal
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec, QC G1V4G5, Canada;
- Department of Medicine, Laval University, Québec, QC G1V4G5, Canada
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| |
Collapse
|
5
|
Meraz IM, Majidi M, Shao R, Meng F, Ha MJ, Shpall E, Roth JA. TUSC2 immunogene enhances efficacy of chemo-immuno combination on KRAS/LKB1 mutant NSCLC in humanized mouse model. Commun Biol 2022; 5:167. [PMID: 35210547 PMCID: PMC8873264 DOI: 10.1038/s42003-022-03103-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
KRAS/LKB1 (STK11) NSCLC metastatic tumors are intrinsically resistant to anti-PD-1 or PD-L1 immunotherapy. In this study, we use a humanized mouse model to show that while carboplatin plus pembrolizumab reduce tumor growth moderately and transiently, the addition of the tumor suppressor gene TUSC2, delivered systemically in nanovesicles, to this combination, eradicates tumors in the majority of animals. Immunoprofiling of the tumor microenvironment shows the addition of TUSC2 mediates: (a) significant infiltration of reconstituted human functional cytotoxic T cells, natural killer cells, and dendritic cells; (b) induction of antigen-specific T cell responses; (c) enrichment of functional central and memory effector T cells; and (d) decreased levels of PD-1+ T cells, myeloid-derived suppressor cells, Tregs, and M2 tumor associated macrophages. Depletion studies show the presence of functional central and memory effector T cells are required for the efficacy. TUSC2 sensitizes KRAS/LKB1 tumors to carboplatin plus pembrolizumab through modulation of the immune contexture towards a pro-immune tumor microenvironment. Meraz et al. explore the antitumor efficacy of TUSC2 tumor suppressor genetherapy via nanovisicles in combination with carboplatin and pembrolizumab against KRAS-LKB1 mutant NSCLC in humanized mouse model. They demonstrate a robust response and perform immune profiling studies, which show the development of a cytotoxic T cell effector response and effector memory cells.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - RuPing Shao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Meng
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Rimkus TK, Arrigo AB, Zhu D, Carpenter RL, Sirkisoon S, Doheny D, Regua AT, Wong GL, Manore S, Wagner C, Lin HK, Jin G, Ruiz J, Chan M, Debinski W, Lo HW. NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Lett 2022; 531:124-135. [PMID: 35167936 PMCID: PMC8920049 DOI: 10.1016/j.canlet.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.
Collapse
|
7
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
8
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
9
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
11
|
Mariniello RM, Maria Orlandella F, De Stefano AE, Iervolino PLC, Smaldone G, Luciano N, Cervone N, Munciguerra F, Esposito S, Mirabelli P, Salvatore G. The TUSC2 Tumour Suppressor Inhibits the Malignant Phenotype of Human Thyroid Cancer Cells via SMAC/DIABLO Protein. Int J Mol Sci 2020; 21:ijms21030702. [PMID: 31973107 PMCID: PMC7037188 DOI: 10.3390/ijms21030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine cancer and includes different forms. Among these, anaplastic thyroid carcinoma (ATC) is the rarest but the most lethal subtype, compared to papillary thyroid carcinoma (PTC) which shows an overall good prognosis. We have previously showed that Tumor Suppressor Candidate 2 (TUSC2), a known tumour suppressor gene, is downregulated in human PTC and ATC compared to normal thyroid samples. The aim of this study was to gain insight into the molecular mechanisms induced by TUSC2 in thyroid cancer cells. Here, we stably transfected TUSC2 in papillary (TPC-1) and in anaplastic (8505C) thyroid cancer cell lines and studied its effects on several biological processes, demonstrating that TUSC2 overexpression decreased thyroid cancer cell proliferation, migration and invasion. Through the proteome profiler apoptosis array, we observed that TUSC2 increased sensitivity to apoptosis by increasing the SMAC/DIABLO and CYTOCHROME C proteins. On the other hand, transient silencing of TUSC2, by siRNA, in an immortalized thyroid follicular epithelial cell line (Nthy-ori 3-1) showed the opposite effect. Finally modulation of SMAC/DIABLO partially rescued the biological effects of TUSC2. Thus, our data highlight a tumour suppressor role of TUSC2 in thyroid carcinogenesis, suggesting that it could be a promising target and biomarker for thyroid carcinoma.
Collapse
Affiliation(s)
- Raffaela Mariarosaria Mariniello
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Scienze Biomediche Avanzate, Universita’ “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | | | - Neila Luciano
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Nara Cervone
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Francesco Munciguerra
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Silvia Esposito
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Napoli, Italy
- Correspondence:
| |
Collapse
|
12
|
Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X, Zhu W. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol 2019; 145:2951-2967. [PMID: 31654121 DOI: 10.1007/s00432-019-03051-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide and new improvements are urgently needed. Several miRNA-targeted therapeutics have reached clinical development. MicroRNA-143 (miR-143) was found to significantly suppress the migration and invasion of NSCLC. It might be of great potential for NSCLC treatment. However, the therapeutic effect of miR-143 against NSCLC in vivo has not been explored until now. METHODS The cationic liposome/pVAX-miR-143 complex (CL-pVAX-miR-143) was prepared and its biodistribution was assessed. The tumor suppression effects of CL-pVAX-miR-143 were evaluated in early-stage and advanced experimental lung cancer metastasis mice models by systemic delivery, respectively, and also in subcutaneous tumor models by intratumoral injection. The toxicity of CL-pVAX-miR-143 was assessed by H&E analysis and biochemical measurements. The preliminary mechanism of CL-pVAX-miR-143 on tumor suppression was explored by immunochemistry and western blotting. RESULTS The assays on the stability and safety of CL-pVAX-miR-143 showed that it mainly accumulated in the lung after systemic administration. The intratumoral delivery of CL-pVAX-miR-143 effectively inhibited A549 subcutaneous tumor growth. Notably, systemic delivery of CL-pVAX-miR-143 significantly inhibited tumor metastasis and prolonged survival dose dependently in early-stage experimental lung cancer metastasis models. More importantly, same results were shown in advanced mice models with metastasis. CL-pVAX-miR-143 treatment did not induce obvious acute toxicity. The preliminary mechanism on inhibiting tumor metastasis might be induced by targeting CD44v3. CONCLUSIONS Our results suggested that CL-pVAX-miR-143 might be a promising strategy for clinical treatment of non-small cell lung cancer, especially for advanced NSCLC with metastasis.
Collapse
Affiliation(s)
- Qianqian Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Yue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Yi Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xinmei Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xueting Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Holt GE, Daftarian P. Non-small-cell lung cancer homing peptide-labeled dendrimers selectively transfect lung cancer cells. Immunotherapy 2019; 10:1349-1360. [PMID: 30474481 DOI: 10.2217/imt-2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Lung cancer gene therapies require reagents to selectively transfect lung tumors after systemic administration. MATERIALS & METHODS We created a reagent called NSCLC-NP by attaching a peptide with binding affinity for lung cancer to polyamidoamine dendrimers. The positively charged dendrimers electrostatically bind negatively charged nucleic acids, inhibit endogenous nucleases and transfect cells targeted by the attached peptide. RESULTS In vitro, NSCLC-NP complexed to DNA plasmids bound and transfected three human lung cancer cell lines producing protein expression of the plasmid's gene. In vivo, systemically administered NSCLC-NP selectively transfected lung cancer cells growing in RAG1KO mice. CONCLUSION The capability of NSCLC-NP to selectively transfect lung cancer allows its future use as a vehicle to implement human lung cancer gene therapy strategies.
Collapse
Affiliation(s)
- Gregory E Holt
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Miami, Miami, FL, USA.,Department of Medicine, Division of Pulmonology, Miami VA Medical Center, Miami, FL, USA
| | - Pirouz Daftarian
- Department of Ophthalmology, University of Miami, FL, USA.,JSR Micro Life Sciences, Sunnyvale, CA 94089, USA
| |
Collapse
|
14
|
Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular mechanisms of drug resistance, overall curative outcomes remain low, especially in metastatic disease. Nanotechnology, in particular nanoparticles (NPs), continue to progressively impact the way by which tumours are diagnosed and treated. The unique physicochemical properties of materials at the nanoscale grant access to a diverse molecular toolkit that can be manipulated for use in respiratory oncology. This realisation has resulted in several clinically approved NP formulations and many more in clinical trials. However, NPs are not a panacea and have yet to be utilised to maximal effect in lung cancer, and medicine in a wider context. This review serves to: describe the complexity of lung cancer, the current diagnostic and therapeutic environment, and highlight the recent advancements of nanotechnology based approaches in diagnosis and treatment of respiratory malignancies. Finally, a brief outlook on the future directions of nanomedicine is provided; presently the full potential of the field is yet to be realised. By gleaning lessons and integrating advancements from neighbouring disciplines, nanomedicine can be elevated to a position where the current barriers that stymie full clinical impact are lifted.
Collapse
|
15
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
16
|
Liu F, Gong R, He B, Chen F, Hu Z. TUSC2P suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and correlates with disease prognosis. BMC Cancer 2018; 18:894. [PMID: 30219035 PMCID: PMC6139140 DOI: 10.1186/s12885-018-4804-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pseudogenes are RNA transcripts with high homology with its parent protein-coding genes. Although pseudogenes lost the ability to produce protein, it still exert import biological function, and play important role in the pathogenesis of a wide varity of tumors; However, the role of pseudogenes in esophageal squamous cell carcinoma (ESCC) is poorly understood. METHODS TUSC2P function in ESCC were explored using both in vitro and in vivo experiments cell proliferation, invasion and apoptosis assay was performed to evaluated the effect of TUSC2P on the tumor biology of ESCC. Expression of relative genes was assessed by quantitative real-time PCR (qRT-PCR) and western blotting in EC109 and TE-1 cell, as well as ESCC patients. 3'UTR luciferase assay was used to confirm the direct binding of miRNAs with TUSC2 and TUSC2P 3'UTR. Relation betweenTUSC2P, TUSC2 and ESCC prognosis was predicted by survival analysis (n = 56). RESULTS Pseudogene TUSC2P was down regulated in ESCC tissues compared with paired normal adjacent tissues, and the expression of TUSC2P was significantly correlated with survivalof ESCC patients. Over expression of TUSC2P in EC109 and TE-1 cells resulted in altered expression of TUSC2, thus inhibited proliferation, invasion and promoted apoptosis. Dual luciferase assay demonstrated that TUSC2P 3'UTR decoyed miR-17-5p, miR-520a-3p, miR-608, miR-661 from binding to TUSC2. CONCLUSIONS TUSC2P can suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and may also serve as a prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Fengqiong Liu
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian 350108 People’s Republic of China
- Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian China
| | - Ruijie Gong
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian 350108 People’s Republic of China
| | - Baochang He
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian 350108 People’s Republic of China
- Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian China
| | - Fa Chen
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian 350108 People’s Republic of China
- Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian China
| | - Zhijian Hu
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian 350108 People’s Republic of China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian China
- Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian China
| |
Collapse
|
17
|
Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget 2018; 7:87081-87090. [PMID: 27894084 PMCID: PMC5349972 DOI: 10.18632/oncotarget.13499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
Curcumin is a novel drug for lung cancer treatment. However, the mechanism underlying the anti-tumor effect of curcumin remains elusive. Previous evidences indicated that, the methylating transferase DNMT1 is downregulated by curcumin, and the transcription factor 21 (TCF21) is suppressed by DNMT1. We hereby attempt to elucidate the correlation between curcumin treatment and TCF21 expression. Exosomes derived from curcumin-pretreated H1299 cells were used to treat BEAS-2B cells, which induced proliferation, colony formation and migration of BEAS-2B cells. An increase in TCF21 expression in response to curcumin was also seen, as revealed by real-time PCR (RT-PCR) and western blot. Analysis using the GEO database (access #GSE21210) indicated that a positive correlation existed between TCF21 levels and lung cancer patient survival. TCF21 overexpression and knockdown was introduced to H1299 cells through lentiviral system, which led to suppression and promotion of tumor growth, respectively. We also demonstrated that DNMT1 expression was downregulated by curcumin. Therefore, curcumin exerts its anti-cancer function by downregulating DNMT1, thereby upregulating TCF21.
Collapse
|
18
|
Meraz IM, Majidi M, Cao X, Lin H, Li L, Wang J, Baladandayuthapani V, Rice D, Sepesi B, Ji L, Roth JA. TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 2018; 6:163-177. [PMID: 29339375 DOI: 10.1158/2326-6066.cir-17-0273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/27/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Expression of the multikinase inhibitor encoded by the tumor suppressor gene TUSC2 (also known as FUS1) is lost or decreased in non-small cell lung carcinoma (NSCLC). TUSC2 delivered systemically by nanovesicles has mediated tumor regression in clinical trials. Because of the role of TUSC2 in regulating immune cells, we assessed TUSC2 efficacy on antitumor immune responses alone and in combination with anti-PD-1 in two Kras-mutant syngeneic mouse lung cancer models. TUSC2 alone significantly reduced tumor growth and prolonged survival compared with anti-PD-1. When combined, this effect was significantly enhanced, and correlated with a pronounced increases in circulating and splenic natural killer (NK) cells and CD8+ T cells, and a decrease in regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and T-cell checkpoint receptors PD-1, CTLA-4, and TIM-3. TUSC2 combined with anti-PD-1 induced tumor infiltrating more than NK and CD8+ T cells and fewer MDSCs and Tregs than each agent alone, both in subcutaneous tumor and in lung metastases. NK-cell depletion abrogated the antitumor effect and Th1-mediated immune response of this combination, indicating that NK cells mediate TUSC2/anti-PD-1 synergy. Release of IL15 and IL18 cytokines and expression of the IL15Rα chain and IL18R1 were associated with NK-cell activation by TUSC2. Immune response-related gene expression in the tumor microenvironment was altered by combination treatment. These data provide a rationale for immunogene therapy combined with immune checkpoint blockade in the treatment of NSCLC. Cancer Immunol Res; 6(2); 163-77. ©2018 AACR.
Collapse
Affiliation(s)
- Ismail M Meraz
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaobo Cao
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - David Rice
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 2017; 137:115-170. [PMID: 29405974 PMCID: PMC6550462 DOI: 10.1016/bs.acr.2017.11.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anish Babu
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ranganayaki Muralidharan
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Janani Panneerselvam
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Akhil Srivastava
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz Ahmed
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Meghna Mehta
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
20
|
Cao X, Zhao Y, Wang J, Dai B, Gentile E, Lin J, Pu X, Ji L, Wu S, Meraz I, Majidi M, Roth JA. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 2017; 8:107621-107629. [PMID: 29296193 PMCID: PMC5746095 DOI: 10.18632/oncotarget.22581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaobo Cao
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emanuela Gentile
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Lin
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ismail Meraz
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Abstract
Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein.
Collapse
Affiliation(s)
- Humberto Lara-Guerra
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ. Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. ADVANCED BIOSYSTEMS 2017; 1:1600013. [PMID: 30258983 PMCID: PMC6152940 DOI: 10.1002/adbi.201600013] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Overcoming the immunosuppressive tumor microenvironment (TME) is critical to realizing the potential of cancer immunotherapy strategies. Agonists of stimulator of interferon genes (STING), a cytosolic immune adaptor protein, have been shown to induce potent anti-tumor activity when delivered into the TME. However, the anionic properties of STING agonists make them poorly membrane permeable, and limit their ability to engage STING in the cytosol of responding cells. In this study, cationic liposomes with varying surface polyethylene glycol (PEG) levels were used to encapsulate cGAMP to facilitate its cytosolic delivery. In vitro studies with antigen-presenting cells (APCs) revealed that liposomal formulations substantially improved the cellular uptake of cGAMP and pro-inflammatory gene induction relative to free drug. Liposomal encapsulation allowed cGAMP delivery to metastatic melanoma tumors in the lung, leading to anti-tumor activity, whereas free drug produced no effect at the same dose. Injection of liposomal cGAMP into orthotopic melanoma tumors showed retention of cGAMP at the tumor site and co-localization with tumor-associated APCs. Liposomal delivery induced regression of injected tumors and produced immunological memory that protected previously treated mice from rechallenge with tumor cells. These results show that liposomal delivery improves STING agonist activity, and could improve their utility in clinical oncology.
Collapse
Affiliation(s)
- Sandeep T Koshy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander S Cheung
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Luo Gu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Amanda R Graveline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R. Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy. IEEE Trans Nanobioscience 2016; 15:849-863. [PMID: 28092499 PMCID: PMC6198667 DOI: 10.1109/tnb.2016.2621730] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene silencing through RNA interference (RNAi) has emerged as a potential strategy in manipulating cancer causing genes by complementary base-pairing mechanism. Small interfering RNA (siRNA) is an important RNAi tool that has found significant application in cancer therapy. However due to lack of stability, poor cellular uptake and high probability of loss-of-function due to degradation, siRNA therapeutic strategies seek safe and efficient delivery vehicles for in vivo applications. The current review discusses various nanoparticle systems currently used for siRNA delivery for cancer therapy, with emphasis on liposome based gene delivery systems. The discussion also includes various methods availed to improve nanoparticle based-siRNA delivery with target specificity and superior efficiency. Further this review describes challenges and perspectives on the development of safe and efficient nanoparticle based-siRNA-delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Ranganayaki Muralidharan
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Narsireddy Amreddy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Meghna Mehta
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA ()
| |
Collapse
|
24
|
Xiaobo C, Majidi M, Feng M, Shao R, Wang J, Zhao Y, Baladandayuthapani V, Song J, Fang B, Ji L, Mehran R, Roth JA. TUSC2(FUS1)-erlotinib Induced Vulnerabilities in Epidermal Growth Factor Receptor(EGFR) Wildtype Non-small Cell Lung Cancer(NSCLC) Targeted by the Repurposed Drug Auranofin. Sci Rep 2016; 6:35741. [PMID: 27845352 PMCID: PMC5109231 DOI: 10.1038/srep35741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Expression of the TUSC2/FUS1 tumor suppressor gene in TUSC2 deficient EGFR wildtype lung cancer cells increased sensitivity to erlotinib. Microarray mRNA expression analysis of TUSC2 inducible lung cancer cells treated with erlotinib uncovered defects in the response to oxidative stress suggesting that increasing reactive oxygen species (ROS) would enhance therapeutic efficacy. Addition of the thioredoxin reductase 1 inhibitor (TXNRD1) auranofin (AF) to NSCLC cells treated with combination of TUSC2 forced expression with erlotinib increased tumor cell apoptosis and inhibited colony formation. TXNRD1 overexpression rescued tumors from AF-TUSC2-erlotinib induced apoptosis. Neutralizing ROS with nordihydroguaiaretic acid (NDGA) abrogated cell death induced by AF-TUSC2-erlotinib, indicating a regulatory role for ROS in the efficacy of the three drug combination. Isobologram-based statistical analysis of this combination demonstrated superior synergism, compared with each individual treatment at lower concentrations. In NSCLC tumor xenografts, tumor growth was markedly inhibited and animal survival was prolonged over controls by AF-TUSC2-erlotinib. Microarray mRNA expression analysis uncovered oxidative stress and DNA damage gene signatures significantly upregulated by AF-TUSC2-erlotinib compared to TUSC2-erlotinib. Pathway analysis showed the highest positive z-score for the NRF2-mediated oxidative stress response. Taken together these findings show that the combination of TUSC2-erlotinib induces additional novel vulnerabilities that can be targeted with AF.
Collapse
Affiliation(s)
- Cao Xiaobo
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Feng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Ruping Shao
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinfomatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinfomatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Juhee Song
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bingliang Fang
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Reza Mehran
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Abstract
Nanobiotechnologies have been applied to improve drug delivery and to overcome some of the problems of drug delivery in cancer. These can be classified into many categories that include use of various nanoparticles, nanoencapsulation, targeted delivery to tumors of various organs, and combination with other methods of treatment of cancer such as radiotherapy. Nanoparticles are also used for gene therapy for cancer. Some of the technologies enable combination of diagnostics with therapeutics which will be important for the personalized management of cancer. Some of the limitations of these technologies and prospects for future development are discussed.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Blaesiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
26
|
Muralidharan R, Babu A, Amreddy N, Basalingappa K, Mehta M, Chen A, Zhao YD, Kompella UB, Munshi A, Ramesh R. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J Nanobiotechnology 2016; 14:47. [PMID: 27328938 PMCID: PMC4915183 DOI: 10.1186/s12951-016-0201-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/02/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. RESULTS The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C-FNP-treated cells. Finally, cell migration was significantly inhibited in HuR-FNP-treated H1299 cells compared to C-FNP. CONCLUSIONS Our results demonstrate that HuR is a molecular target for lung cancer therapy and its suppression using HuR-FNP produced significant therapeutic efficacy in vitro.
Collapse
Affiliation(s)
- Ranganayaki Muralidharan
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anish Babu
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kanthesh Basalingappa
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Allshine Chen
- Departments of Epidemiology and Statistics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yan Daniel Zhao
- Departments of Epidemiology and Statistics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Uday B Kompella
- Department of Pharmaceutical Sciences and Opthalmology, University of Colorado, Denver, CO, 80045, USA
| | - Anupama Munshi
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Pathology, Stanton L. Young Biomedical Research Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
27
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
28
|
Zhang X, Ke X, Pu Q, Yuan Y, Yang W, Luo X, Jiang Q, Hu X, Gong Y, Tang K, Su X, Liu L, Zhu W, Wei Y. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway. Oncotarget 2016; 7:14569-85. [PMID: 26910912 PMCID: PMC4924736 DOI: 10.18632/oncotarget.7538] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023] Open
Abstract
SLC34A2 had been reported to be down-regulated in human NSCLC cells and patient tissues, and played a significant role in lung cancer. However, the mechanism of its unusual expressionin NSCLC has not been fully elucidated. In present study, we identified SLC34A2 was a direct target of miR-410 and could be inhibited by miR-410 transcriptionally and post-transcriptionally. MiR-410 promoted the growth, invasion and migration of NSCLC cells in vitro. An orthotopic xenograft nude mouse model further affirmed that miR-410 promoted NSCLC cell growth and metastasis in vivo. Moreover, restoring SLC34A2 expression effectively reversed the miR-410-mediated promotion of cell growth, invasion and migration in NSCLC cells. In addition, miR-410high /SLC34A2low expression signature frequently existed in NSCLC cells and tumor tissues. MiR-410 significantly increased the expression of DVL2 and β-catenin protein while decreased that of Gsk3β protein of Wnt/β-catenin signaling pathway, while SLC34A2 partly blocked the effects of miR-410 on those protein expressions. Hence, our data for the first time delineated that unusual expression of SLC34A2 was modulated by miR-410, and miR-410 might positivelycontribute to the tumorigenesis and development of NSCLC by down-regulating SLC34A2 and activating Wnt/β-catenin signaling pathway. MiR-410 might be a new potential therapeutic target for NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Adult
- Aged
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/secondary
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Staging
- Prognosis
- Sodium-Phosphate Cotransporter Proteins, Type IIb/antagonists & inhibitors
- Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Wnt1 Protein/genetics
- Wnt1 Protein/metabolism
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Xuechao Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xixian Ke
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yue Yuan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Weihan Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xinmei Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qianqian Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xueting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Kui Tang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wen Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
29
|
Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, Fliman M, Schoen BW, Kaneti G, Machluf M. Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers. NANO LETTERS 2016; 16:1574-82. [PMID: 26901695 DOI: 10.1021/acs.nanolett.5b04237] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanoghosts derived from mesenchymal stem cells and retaining their unique surface-associated tumor-targeting capabilities were redesigned as a selective and safe universal nonviral gene-therapy platform. pDNA-loaded nanoghosts efficiently targeted and transfected diverse cancer cells, in vitro and in vivo, in subcutaneous and metastatic orthotopic tumor models, leading to no adverse effects. Nanoghosts loaded with pDNA encoding for a cancer-toxic gene inhibited the growth of metastatic orthotopic lung cancer and subcutaneous prostate cancer models and dramatically prolonged the animals' survival.
Collapse
Affiliation(s)
- Limor Kaneti
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Tomer Bronshtein
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Natali Malkah Dayan
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Inna Kovregina
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Nitzan Letko Khait
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Yael Lupu-Haber
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Miguel Fliman
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Beth W Schoen
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Galoz Kaneti
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| |
Collapse
|
30
|
Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR) Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy. PLoS One 2015; 10:e0123967. [PMID: 26053020 PMCID: PMC4460038 DOI: 10.1371/journal.pone.0123967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC) cell lines resistant to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR.
Collapse
|
31
|
Draghici B, Ilies MA. Synthetic Nucleic Acid Delivery Systems: Present and Perspectives. J Med Chem 2015; 58:4091-130. [PMID: 25658858 DOI: 10.1021/jm500330k] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bogdan Draghici
- Department
of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Marc A. Ilies
- Department
of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
- Temple Materials Institute, 1803 North Broad Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
32
|
Babu A, Templeton AK, Munshi A, Ramesh R. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 2014; 15:709-21. [PMID: 24550101 DOI: 10.1208/s12249-014-0089-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/17/2014] [Indexed: 01/15/2023] Open
Abstract
Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.
Collapse
|
33
|
Li L, Yu C, Ren J, Ye S, Ou W, Wang Y, Yang W, Zhong G, Chen X, Shi H, Su X, Chen L, Zhu W. Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo. J Cancer Res Clin Oncol 2014; 140:895-907. [PMID: 24659339 DOI: 10.1007/s00432-014-1607-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE LKB1 and FUS1 are two kinds of new tumor suppressor genes as well as early-stage genes in lung cancer. Recent studies showed that LKB1 and FUS1 play important roles in lung carcinogenesis process. We hypothesized that combined gene therapy with LKB1 and FUS1 could inhibit lung cancer growth and development synergistically. METHODS In this study, two kinds of tumor suppressor genes, LKB1 and FUS1, were constructed in an eukaryotic coexpression plasmid pVITRO(2), and then, we evaluated the synergistic effects of the two genes on anticancer activity and explored the relevant molecular mechanisms. RESULTS We defined coexpression of LKB1 and FUS1 could synergistically inhibited lung cancer cells growth,invasion and migration and induced the cell apoptosis and arrested cell cycle in vitro. Intratumoral administration of liposomes: pVITRO(2)–LKB1–FUS1 complex (LPs–pVITRO(2)–LKB1–FUS1) into subcutaneous lung tumor xenograft resulted in more significant inhibition of tumor growth. Furthermore, intravenous injection of LPs–pVITRO(2)–LKB1–FUS1 into mice bearing experimental A549 lung metastasis demonstrated synergistic decrease in the number of metastatic tumor nodules. Finally, combined treatment with LKB1 and FUS1 prolonged overall survival in lung tumor-bearing mice. Further study showed tha tthe synergistic anti-lung cancer effects of coexpression ofLKB1 and FUS1 might be related to upregulation of p-p53, p-AMPK and downregulation of p-mTOR, p-FAK, MMPs, NEDD9, VEGF/R and PDGF/R. CONCLUSIONS Our results suggest that combined therapy with eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes may be a novel and efficient treatment strategy for human lung cancer.
Collapse
|
34
|
Tsao AS, Roth JA. Novel and Emerging Agents in NSCLC. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Christensen CL, Zandi R, Gjetting T, Cramer F, Poulsen HS. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther 2014; 9:437-52. [DOI: 10.1586/era.09.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Meng J, Majidi M, Fang B, Ji L, Bekele BN, Minna JD, Roth JA. The tumor suppressor gene TUSC2 (FUS1) sensitizes NSCLC to the AKT inhibitor MK2206 in LKB1-dependent manner. PLoS One 2013; 8:e77067. [PMID: 24146957 PMCID: PMC3798310 DOI: 10.1371/journal.pone.0077067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
TUSC2-defective gene expression is detected in the majority of lung cancers and is associated with worse overall survival. We analyzed the effects of TUSC2 re-expression on tumor cell sensitivity to the AKT inhibitor, MK2206, and explored their mutual signaling connections, in vitro and in vivo. TUSC2 transient expression in three LKB1-defective non-small cell lung cancer (NSCLC) cell lines combined with MK2206 treatment resulted in increased repression of cell viability and colony formation, and increased apoptotic activity. In contrast, TUSC2 did not affect the response to MK2206 treatment for two LKB1-wild type NSCLC cell lines. In vivo, TUSC2 systemic delivery, by nanoparticle gene transfer, combined with MK2206 treatment markedly inhibited growth of tumors in a human LKB1-defective H322 lung cancer xenograft mouse model. Biochemical analysis showed that TUSC2 transient expression in LKB1-defective NSCLC cells significantly stimulated AMP-activated protein kinase (AMPK) phosphorylation and enzymatic activity. More importantly, AMPK gene knockdown abrogated TUSC2-MK2206 cooperation, as evidenced by reduced sensitivity to the combined treatment. Together, TUSC2 re-expression and MK2206 treatment was more effective in inhibiting the phosphorylation and kinase activities of AKT and mTOR proteins than either single agent alone. In conclusion, these findings support the hypothesis that TUSC2 expression status is a biological variable that potentiates MK2206 sensitivity in LKB1-defective NSCLC cells, and identifies the AMPK/AKT/mTOR signaling axis as an important regulator of this activity.
Collapse
Affiliation(s)
- Jieru Meng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bingliang Fang
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - B. Nebiyou Bekele
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research and Simmons Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jack A. Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
37
|
|
38
|
Han L, Ravoori M, Wu G, Sakai R, Yan S, Singh S, Xu K, Roth JA, Ji L, Kundra V. Somatostatin Receptor Type 2–Based Reporter Expression after Plasmid-Based in Vivo Gene Delivery to Non–Small Cell Lung Cancer. Mol Imaging 2013; 12:7290.2013.00060. [DOI: 10.2310/7290.2013.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Lin Han
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Murali Ravoori
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guanglin Wu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryo Sakai
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shaoyu Yan
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheela Singh
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kai Xu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jack A. Roth
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lin Ji
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vikas Kundra
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Savarala S, Brailoiu E, Wunder SL, Ilies MA. Tuning the self-assembling of pyridinium cationic lipids for efficient gene delivery into neuronal cells. Biomacromolecules 2013; 14:2750-64. [PMID: 23834644 DOI: 10.1021/bm400591d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are reporting a new set of biocompatible, low-toxicity pyridinium cationic lipids based on a dopamine backbone on which hydrophobic alkyl tails are attached via an ether linkage. Due to their optimized hydrophilic/hydrophobic interface and packing parameter, the new lipids are able to strongly self-assemble either alone or when coformulated with colipids DOPE or cholesterol. The supra-molecular assemblies generated with the novel pyridinium amphiphiles were characterized in bulk and in solution via a combination of techniques including DSC, nanoDSC, SAXS, TOPM, TEM, DLS, zeta potential, and electrophoretic mobility measurements. These cationic bilayers can efficiently condense and deliver DNA to a large variety of cell lines, as proven by our self-assembling/physicochemical/biological correlation study. Using the luciferase reporter gene plasmid, we have also conducted a comprehensive structure-activity relationship study, which identified the best structural parameters and formulations for efficient and nontoxic gene delivery. Several formulations greatly surpassed established transfection systems with proved in vitro and in vivo efficiency, being able to transfect a large variety of malignant cells even in the presence of elevated levels of serum. The most efficient formulation was able to transfect selectively primary rat dopaminergic neurons harvested from nucleus accumbens, and neurons from the frontal cortex, a premise that recommends these synthetic vectors for future in vivo delivery studies for neuronal reprogramming.
Collapse
Affiliation(s)
- Sushma Savarala
- Department of Chemistry, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
40
|
Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zörnig M, MacLeod AR, Spector DL, Diederichs S. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 2012; 73:1180-9. [PMID: 23243023 DOI: 10.1158/0008-5472.can-12-2850] [Citation(s) in RCA: 1290] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), also known as MALAT-1 or NEAT2 (nuclear-enriched abundant transcript 2), is a highly conserved nuclear noncoding RNA (ncRNA) and a predictive marker for metastasis development in lung cancer. To uncover its functional importance, we developed a MALAT1 knockout model in human lung tumor cells by genomically integrating RNA destabilizing elements using zinc finger nucleases. The achieved 1,000-fold MALAT1 silencing provides a unique loss-of-function model. Proposed mechanisms of action include regulation of splicing or gene expression. In lung cancer, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes. Consequently, MALAT1-deficient cells are impaired in migration and form fewer tumor nodules in a mouse xenograft. Antisense oligonucleotides (ASO) blocking MALAT1 prevent metastasis formation after tumor implantation. Thus, targeting MALAT1 with ASOs provides a potential therapeutic approach to prevent lung cancer metastasis with this ncRNA serving as both predictive marker and therapeutic target. Finally, regulating gene expression, but not alternative splicing, is the critical function of MALAT1 in lung cancer metastasis. In summary, 10 years after the discovery of the lncRNA MALAT1 as a biomarker for lung cancer metastasis, our loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center DKFZ & Institute of Pathology, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
YE SUJUAN, YANG WEIHAN, WANG YU, OU WENJING, MA QINGPING, YU CHUANJIANG, REN JIANG, ZHONG GUOXING, SHI HUASHAN, YUAN ZHU, SU XIAOLAN, ZHU WEN. Cationic liposome-mediated nitric oxide synthase gene therapy enhances the antitumor effects of cisplatin in lung cancer. Int J Mol Med 2012; 31:33-42. [DOI: 10.3892/ijmm.2012.1171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/02/2012] [Indexed: 11/06/2022] Open
|
42
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012. [PMID: 22905092 DOI: 10.1371/journal.pone.004045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
43
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012; 7:e40452. [PMID: 22905092 PMCID: PMC3414490 DOI: 10.1371/journal.pone.0040452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
44
|
Uzhachenko R, Issaeva N, Boyd K, Ivanov SV, Carbone DP, Ivanova AV. Tumour suppressor Fus1 provides a molecular link between inflammatory response and mitochondrial homeostasis. J Pathol 2012; 227:456-69. [PMID: 22513871 DOI: 10.1002/path.4039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 02/04/2023]
Abstract
Fus1, encoded by a 3p21.3 tumour suppressor gene, is down-regulated, mutated or lost in the majority of inflammatory thoracic malignancies. The mitochondrial localization of Fus1 stimulated us to investigate how Fus1 modulates inflammatory response and mitochondrial function in a mouse model of asbestos-induced peritoneal inflammation. Asbestos treatment resulted in a decreased Fus1 expression in wild-type (WT) peritoneal immune cells, suggesting that asbestos exposure may compromise the Fus1-mediated inflammatory response. Untreated Fus1(-/-) mice had an ~eight-fold higher proportion of peritoneal granulocytes than Fus1(+/+) mice, pointing at ongoing chronic inflammation. Fus1(-/-) mice exhibited a perturbed inflammatory response to asbestos, reflected in decreased immune organ weight and peritoneal fluid protein concentration, along with an increased proportion of peritoneal macrophages. Fus1(-/-) immune cells showed augmented asbestos-induced activation of key inflammatory, anti-oxidant and genotoxic stress response proteins ERK1/2, NFκB, SOD2, γH2AX, etc. Moreover, Fus1(-/-) mice demonstrated altered dynamics of pro- and anti-inflammatory cytokine expression, such as IFNγ, TNFα, IL-1A, IL-1B and IL-10. 'Late' response cytokine Ccl5 was persistently under-expressed in Fus1(-/-) immune cells at both basal and asbestos-activated states. We observed an asbestos-related difference in the size of CD3(+) CD4(-) CD8(-) DN T cell subset that was expanded four-fold in Fus1(-/-) mice. Finally, we demonstrated Fus1-dependent basal and asbestos-induced changes in major mitochondrial parameters (ROS production, mitochondrial potential and UCP2 expression) in Fus1(-/-) immune cells and in Fus1-depleted cancer cells, thus supporting our hypothesis that Fus1 establishes its immune- and tumour-suppressive activities via regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, Nunez MI, Wistuba II, Erasmus JJ, Hicks ME, Grimm EA, Reuben JM, Baladandayuthapani V, Templeton NS, McMannis JD, Roth JA. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One 2012; 7:e34833. [PMID: 22558101 PMCID: PMC3338819 DOI: 10.1371/journal.pone.0034833] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Background Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of–function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2. Methods Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks. Results Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6–10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10–25 fold increase) TUSC2 protein staining in post-treatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high post-treatment levels of TUSC2 mRNA and protein showed significant post-treatment changes in the intrinsic apoptotic pathway. Twenty-nine genes of the 82 tested in the apoptosis array were identified by Igenuity Pathway Analysis to be significantly altered post-treatment in both patients (Pearson correlation coefficient 0.519; p<0.01). Conclusions DOTAP:chol-TUSC2 can be safely administered intravenously in lung cancer patients and results in uptake of the gene by human primary and metastatic tumors, transgene and gene product expression, specific alterations in TUSC2-regulated pathways, and anti-tumor effects (to our knowledge for the first time for systemic DOTAP:cholesterol nanoparticle gene therapy). Trial Registration ClinicalTrials.gov NCT00059605
Collapse
Affiliation(s)
- Charles Lu
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Analysis of protein-protein interaction using proteinchip array-based SELDI-TOF mass spectrometry. Methods Mol Biol 2012; 818:217-26. [PMID: 22083826 PMCID: PMC3369541 DOI: 10.1007/978-1-61779-418-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein-protein interactions are key elements in the assembly of cellular regulatory and signaling protein complexes that integrate and transmit signals and information in controlling and regulating various cellular processes and functions. Many conventional methods of studying protein-protein interaction, such as the immuno-precipitation and immuno-blotting assay and the affinity-column pull-down and chromatographic analysis, are very time-consuming and labor intensive and lack accuracy and sensitivity. We have developed a simple, rapid, and sensitive assay using a ProteinChip array and SELDI-TOF mass spectrometry to analyze protein-protein interactions and map the crucial elements that are directly involved in these interactions. First, a purified "bait" protein or a synthetic peptide of interest is immobilized onto the preactivated surface of a PS10 or PS20 ProteinChip and the unoccupied surfaces on the chip are protected by application of a layer ethanolamine to prevent them from binding to other non-interactive proteins. Then, the target-containing cellular protein lysate or synthetic peptide containing the predicted amino acid sequence of protein-interaction motif is applied to the protected array with immobilized bait protein/peptide. The nonspecific proteins/peptides are washed off under various stringent conditions and only the proteins specifically interacting with the bait protein/peptide remain on the chip. Last, the captured interacting protein/peptide complexes are then analyzed by SELDI-TOF mass spectrometry and their identities are confirmed by their predicted distinctive masses. This method can be used to unambiguously detect the specific protein-protein interaction of known proteins/peptides, to easily identify potential cellular targets of proteins of interest, and to accurately analyze and map the structural elements of a given protein and its target proteins using synthetic peptides with the predicted potential protein interaction motifs.
Collapse
|
47
|
Edfeldt K, Björklund P, Åkerström G, Westin G, Hellman P, Stålberg P. Different gene expression profiles in metastasizing midgut carcinoid tumors. Endocr Relat Cancer 2011; 18:479-89. [PMID: 21636701 DOI: 10.1530/erc-10-0256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The genetic events leading the progression of midgut carcinoid tumors are largely unknown. The disease course varies from patient to patient, and there is a lack of reliable prognostic markers. In order to identify genes involved in tumor progression, gene expression profiling was performed on tumor specimens. Samples comprised 18 primary tumors, 17 lymph node (LN) metastases, and seven liver metastases from a total of 19 patients. Patients were grouped according to clinical data and histopathology into indolent or progressive course. RNA was subjected to a spotted oligo microarray and B-statistics were performed. Differentially expressed genes were verified using quantitative real-time PCR. Self-organizing maps demonstrated three clusters: 11 primary tumors separated in one cluster, five LN metastases in another cluster, whereas all seven liver metastases, seven primary, and 12 LN metastases formed a third cluster. There was no correlation between indolent and progressive behavior. The primary tumors with Ki67 >5%, with low frequency of the carcinoid syndrome, and a tendency toward shorter survival grouped together. Primary tumors differed in expression profile from their associated LN metastases; thus, there is evidence for genetic changes from primary tumors to metastases. ACTG2, GREM2, REG3A, TUSC2, RUNX1, TPH1, TGFBR2, and CDH6 were differentially expressed between clusters and subgroups of tumors. The expression profile that assembles tumors as being genetically similar on the RNA expression level may not be concordant with the clinical disease course. This study reveals differences in gene expression profiles and novel genes that may be of importance in midgut carcinoid tumor progression.
Collapse
Affiliation(s)
- Katarina Edfeldt
- Department of Surgical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Lin J, Xu K, Gitanjali J, Roth JA, Ji L. Regulation of tumor suppressor gene FUS1 expression by the untranslated regions of mRNA in human lung cancer cells. Biochem Biophys Res Commun 2011; 410:235-41. [PMID: 21645495 PMCID: PMC3129382 DOI: 10.1016/j.bbrc.2011.05.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/21/2011] [Indexed: 11/20/2022]
Abstract
FUS1, also known as tumor suppressor candidate 2 (TUSC2), is a tumor suppressor gene located in the human chromosome 3p21.3 region. FUS1 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous FUS1 protein could be detected in a majority of lung cancer cell lines and small cell and non-small cell lung tumor tissues. However, mechanisms regulating FUS1 protein expression and its inactivation in primary lung cancer cells are largely unknown. In this study, we investigated the role of the 5'- and 3'-untranslated regions (UTRs) of the FUS1 gene transcript in the regulation of FUS1 protein expression. We identified RNA sequence elements in FUS1 UTRs that regulate FUS1 protein expression. We found that two small upstream open-reading frames in the 5'UTR of FUS1 mRNA could inhibit the translational initiation of FUS1 protein by interfering with the "scanning" of the ribosome initiation complexes. Several secondary RNA structural elements/motifs on the 3'UTR of FUS1 also exhibited a significant inhibitory effect on FUS1 protein expression. The 3'UTR-mediated regulatory effect on FUS1 protein expression was also differentially detected in normal lung epithelial and fibroblast cells compared with lung cancer cells. Our results provide new insight into the molecular mechanisms involved in the regulation of FUS1 expression.
Collapse
Affiliation(s)
- Jing Lin
- Department of Thoracic and Cardiovascular Surgery, Unit1489, The University of Texas MD, Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Kai Xu
- Department of Thoracic and Cardiovascular Surgery, Unit1489, The University of Texas MD, Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Jayachandran Gitanjali
- Department of Thoracic and Cardiovascular Surgery, Unit1489, The University of Texas MD, Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, Unit1489, The University of Texas MD, Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, Unit1489, The University of Texas MD, Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| |
Collapse
|
49
|
Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C, Kumar P, Pappen BO, Rao DD, Templeton NS, Daniels EQ, Webb C, Monsma D, Scott S, Dylewski D, Frieboes HB, Brunicardi FC, Senzer N, Maples PB, Nemunaitis J, Tong AW. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 2011; 30:715-26. [PMID: 21612405 DOI: 10.1089/dna.2011.1240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bifunctional small hairpin RNAs (bi-shRNAs) are functional miRNA/siRNA composites that are optimized for posttranscriptional gene silencing through concurrent mRNA cleavage-dependent and -independent mechanisms (Rao et al., 2010 ). We have generated a novel bi-shRNA using the miR30 scaffold that is highly effective for knockdown of human stathmin (STMN1) mRNA. STMN1 overexpression well documented in human solid cancers correlates with their poor prognosis. Transfection with the bi-shSTMN1-encoding expression plasmid (pbi-shSTMN1) markedly reduced CCL-247 human colorectal cancer and SK-Mel-28 melanoma cell growth in vitro (Rao et al., 2010 ). We now examine in vivo the antitumor efficacy of this RNA interference-based approach with human tumor xenografted athymic mice. A single intratumoral (IT) injection of pbi-shSTMN1 (8 μg) reduced CCL-247 tumor xenograft growth by 44% at 7 days when delivered as a 1,2-dioleoyl-3-trimethyl-ammoniopropane:cholesterol liposomal complex. Extended growth reductions (57% at day 15; p < 0.05) were achieved with three daily treatments of the same construct. STMN1 protein reduction was confirmed by immunoblot analysis. IT treatments with pbi-shSTMN1 similarly inhibited the growth of tumorgrafts derived from low-passage primary melanoma (≥70% reduction for 2 weeks) and abrogated osteosarcoma tumorgraft growth, with the mature bi-shRNA effector molecule detectable for up to 16 days after last injection. Antitumor efficacy was evident for up to 25 days posttreatment in the melanoma tumorgraft model. The maximum tolerated dose by IT injection of >92 μg (Human equivalent dose [HED] of >0.3 mg/kg) in CCL-247 tumor xenograft-bearing athymic mice was ∼10-fold higher than the extrapolated IC(50) of 9 μg (HED of 0.03 mg/kg). Healthy, immunocompetent rats were used as biorelevant models for systemic safety assessments. The observed maximum tolerated dose of <100 μg for intravenously injected pbi-shSTMN1 (mouse equivalent of <26.5 μg; HED of <0.09 mg/kg) confirmed systemic safety of the therapeutic dose, hence supporting early-phase assessments of clinical safety and preliminary efficacy.
Collapse
|
50
|
Tumor suppressor gene-based nanotherapy: from test tube to the clinic. JOURNAL OF DRUG DELIVERY 2011; 2011:465845. [PMID: 21490751 PMCID: PMC3065904 DOI: 10.1155/2011/465845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023]
Abstract
Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.
Collapse
|