1
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
2
|
CoCl 2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 2019; 52:12. [PMID: 30876462 PMCID: PMC6419504 DOI: 10.1186/s40659-019-0221-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Hypoxia microenvironment plays a crucial role during tumor progression and it tends to exhibit poor prognosis and make resistant to various conventional therapies. HIF-1α acts as an important transcriptional regulator directly or indirectly associated with genes involved in cell proliferation, angiogenesis, apoptosis and energy metabolism during tumor progression in hypoxic microenvironment. This study was aimed to investigate the expression pattern of the hypoxia associated genes and their association during breast cancer progression under hypoxic microenvironment in breast cancer cells. METHODS Cell proliferation in MCF-7 and MDA-MB-231 cell lines treated with different concentration of CoCl2 was analyzed by MTT assay. Flow cytometry was performed to check cell cycle distribution, whereas cell morphology was examined by phase contrast microscopy in both the cells during hypoxia induction. Expression of hypoxia associated genes HIF-1α, VEGF, p53 and BAX were determined by semiquantitative RT-PCR and real-time PCR. Western blotting was performed to detect the expression at protein level. RESULTS Our study revealed that cell proliferation in CoCl2 treated breast cancer cells were concentration dependent and varies with different cell types, further increase in CoCl2 concentration leads to apoptotic cell death. Further, accumulation of p53 protein in response to hypoxia as compare to normoxia showed that induction of p53 in breast cancer cells is HIF-1α dependent. HIF-1α dependent BAX expression during hypoxia revealed that after certain extent of hypoxia induction, over expression of BAX conquers the effect of anti-apoptotic proteins and ultimately leads to apoptosis in breast cancer cells. CONCLUSION In conclusion our results clearly indicate that CoCl2 simulated hypoxia induce the accumulation of HIF-1α protein and alter the expression of hypoxia associated genes involved in angiogenesis and apoptosis.
Collapse
|
3
|
Mohammadi Z, Shariati L, Khanahmad H, Kolahdouz M, Kianpoor F, Ghanbari JA, Hejazi Z, Salehi M, Nikpour P, Tabatabaiefar MA. A Lentiviral Vector Expressing Desired Gene Only in Transduced Cells: An Approach for Suicide Gene Therapy. Mol Biotechnol 2016; 57:793-800. [PMID: 26014225 DOI: 10.1007/s12033-015-9872-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into target cells. Inserting a toxin-encoding gene into a lentiviral vector leads to decreased efficiency of virus production due to lethal effect of toxin on packaging cells. In this study, we designed and constructed a transfer vector to express the toxin in transduced cells but not in packaging cells. Plasmid pLenti-F/GFP was constructed by cutting out R 5'LTR-R 3'LTR fragment with the AflII restriction endonuclease from a plasmid pLenti4-GW/H1/TO-laminshRNA, followed by ligating R 5'LTR-R 3'LTR fragment, constructed by three PCR stages. The promoter and GFP CDS were inserted in opposite strand. For lentiviral production, the HEK293T cell line was co-transfected with the PMD2G, psPAX2, and pLenti-F/GFP plasmids (envelope, packaging, and transfer plasmids).Viral vector titers were assayed. The HEK293T cell line was transduced with this virus. PCR was performed to confirm the presence of the promoter fragment between the R and U5 in 3'LTR. The lentivirus titers were approximately 2 × 10(5). The GFP expression was seen in 51 % of the HEK293T cells transduced with lentivirus. The PCR product size was 1440 bp confirming the promoter fragment position between the R and U5 in 3'LTR. The strategy enables us to use a broad spectrum of toxin genes in gene therapy and helps avoid the death of the packaging cells with lentiviral vectors carrying a toxin-encoding gene, thereby increasing the efficiency of viral production in packaging cells.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions. Ann Nucl Med 2014; 28:1011-9. [PMID: 25249501 PMCID: PMC4483249 DOI: 10.1007/s12149-014-0901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/24/2014] [Indexed: 11/03/2022]
Abstract
OBJECTIVE HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. METHODS Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. RESULTS (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. CONCLUSION The results of this study will help in the understanding and assessment of the activity of multiple HREs under hypoxia and become the basis for hypoxia-targeted imaging and therapy in the future.
Collapse
|
5
|
Boulaiz H, Aránega A, Blanca C, Pablo A, Fernando RS, Esmeralda C, Consolación M, Jose P. A Novel Double-Enhanced Suicide Gene Therapy in a Colon Cancer Cell Line Mediated by Gef and Apoptin. BioDrugs 2013; 28:63-74. [DOI: 10.1007/s40259-013-0055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Gene therapy for brain tumors: basic developments and clinical implementation. Neurosci Lett 2012; 527:71-7. [PMID: 22906921 DOI: 10.1016/j.neulet.2012.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/03/2012] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM.
Collapse
|
7
|
BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2504-12. [PMID: 21561597 DOI: 10.1016/j.ajpath.2011.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/30/2011] [Accepted: 02/07/2011] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme, which represents 80% of malignant gliomas, is characterized by aggressiveness and high recurrence rates. Despite therapeutic advances, patients with glioblastoma multiforme show a poor survival, and identification of novel markers and molecular targets for therapy is needed. A role for BAG3, a member of the BAG family of HSC/HSP70 co-chaperones, in promoting tumor cell growth in vivo has recently been described. We analyzed BAG3 levels by IHC in specimens from patients affected by brain tumors and we found that BAG3, although negative in normal brain tissues, was highly expressed in astrocytic tumors and increasingly expressed in more aggressive types of cancer; it was particularly high in glioblastomas. Down-regulating BAG3 both in vitro and in vivo in a rat glioblastoma model resulted in increased sensitivity to apoptosis, suggesting that BAG3 is a potential target for novel therapies. Finally, we determined that the underlying molecular mechanism requires the formation of a complex of BAG3, HSP70, and BAX that prevents BAX translocation to mitochondria, thus protecting tumor cells from apoptosis. Our data identify BAG3 as a potential marker of glial brain tumor sensitivity to therapy and thus also an attractive candidate for new molecular therapies.
Collapse
|
8
|
Abstract
Hypoxia is a common condition found in a wide range of solid tumors and is often associated with poor prognosis. Hypoxia increases tumor glycolysis, angiogenesis, and other survival responses, as well as invasion and metastasis by activating relevant gene expressions through hypoxia-inducible factors (HIF). HIF-1α and HIF-2α undergo oxygen-dependent regulation, and their overexpression is frequently associated with metastasis and poor clinical outcomes. Recent studies show that each step of the metastasis process, from the initial epithelial-mesenchymal transition to the ultimate organotropic colonization, can potentially be regulated by hypoxia, suggesting a master regulator role of hypoxia and HIFs in metastasis. Furthermore, modulation of cancer stem cell self-renewal by HIFs may also contribute to the hypoxia-regulated metastasis program. The hypoxia-induced metastatic phenotype may be one of the reasons for the modest efficacy of antiangiogenic therapies and may well explain the recent provocative findings that antiangiogenic therapy increased metastasis in preclinical models. Multiple approaches to targeting hypoxia and HIFs, including HIF inhibitors, hypoxia-activated bioreductive prodrugs, and gene therapies may become effective treatments to prevent or reduce metastasis.
Collapse
Affiliation(s)
- Xin Lu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
- Breast Cancer Program, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
9
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
10
|
Candolfi M, Kroeger KM, Muhammad AKMG, Yagiz K, Farrokhi C, Pechnick RN, Lowenstein PR, Castro MG. Gene therapy for brain cancer: combination therapies provide enhanced efficacy and safety. Curr Gene Ther 2010; 9:409-21. [PMID: 19860655 DOI: 10.2174/156652309789753301] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92:317-35. [PMID: 19357959 DOI: 10.1007/s11060-009-9827-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Hypoxia is implicated in many aspects of tumor development, angiogenesis, and growth in many different tumors. Brain tumors, particularly the highly aggressive glioblastoma multiforme (GBM) with its necrotic tissues, are likely affected similarly by hypoxia, although this involvement has not been closely studied. Invasion, apoptosis, chemoresistance, resistance to antiangiogenic therapy, and radiation resistance may all have hypoxic mechanisms. The extent of the influence of hypoxia in these processes makes it an attractive therapeutic target for GBM. Because of their relationship to glioma and meningioma growth and angiogenesis, hypoxia-regulated molecules, including hypoxia inducible factor-1, carbonic anhydrase IX, glucose transporter 1, and vascular endothelial growth factor, may be suitable subjects for therapies. Furthermore, other novel hypoxia-regulated molecules that may play a role in GBM may provide further options. Emerging imaging techniques may allow for improved determination of hypoxia in human brain tumors to better focus therapeutic treatments; however, tumor pseudoprogression, which may be prompted by hypoxia, poses further challenges. An understanding of the role of hypoxia in tumor development and growth is important for physicians involved in the care of patients with brain tumors.
Collapse
|
12
|
Hao YX, Zhong H, Yu PW, Zhang C, Zeng DZ, Shi Y, Tang B. Effects of HIF-1alpha on human gastric cancer cell apoptosis at different CO(2) pressures. Clin Exp Med 2008; 9:139-47. [PMID: 19048182 DOI: 10.1007/s10238-008-0023-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 11/10/2008] [Indexed: 01/06/2023]
Abstract
The effects and potential molecular mechanisms underlying carbon dioxide (CO(2)) pneumoperitoneum on gastric cancer cell apoptosis are not fully understood. In this study, we assessed the effects of CO(2) pneumoperitoneum on the apoptosis of MKN-45 gastric cancer cells. Additionally, we investigated the role of HIF-1alpha in CO(2) pneumoperitoneum-induced apoptosis of gastric cancer cells. MKN-45 cells were cultured in CO(2) or air pneumoperitoneum at 0, 12 and 15 mmHg pressures for 4 h. We observed a change in cells morphology and increasing apoptotic ratios in MKN-45 cells when they were put into a 15 mmHg CO(2) pneumoperitoneum environment. However, there was no significant difference between the 0, 12 mmHg CO(2) pneumoperitoneum and the control groups. Exposure to 15 mmHg CO(2) pneumoperitoneum significantly enhanced the expression levels of HIF-1alpha and Bax, while it attenuated Bcl-2 expression levels. When we inhibited HIF-1alpha by small interfering RNA (siRNA), we found that the apoptotic ratio of MKN-45 cells decreased in 15 mmHg CO(2) pneumoperitoneum. This treatment markedly elevated Bcl-2 levels and decreased Bax expression. These data suggest that CO(2) pneumoperitoneum may accelerate the apoptosis of MKN-45 cells at higher pressures. HIF-1alpha is a crucial factor that affects gastric cancer cell apoptosis by downregulating the Bcl-2/Bax ratio.
Collapse
Affiliation(s)
- Ying-Xue Hao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 400038 Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
He F, Deng X, Wen B, Liu Y, Sun X, Xing L, Minami A, Huang Y, Chen Q, Zanzonico PB, Ling CC, Li GC. Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 2008; 68:8597-606. [PMID: 18922936 PMCID: PMC2724017 DOI: 10.1158/0008-5472.can-08-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor hypoxia is important in the development and treatment of human cancers. We have developed a novel xenograft model for studying and imaging of hypoxia-induced gene expression. A hypoxia-inducible dual reporter herpes simplex virus type 1 thymidine kinase and enhanced green fluorescence protein (HSV1-TKeGFP), under the control of hypoxia response element (9HRE), was stably transfected into human colorectal HT29 cancer cells. Selected clones were further enriched by repeated live cell sorting gated for hypoxia-induced eGFP expression. Fluorescent microscopy, fluorescence-activated cell sorting, and radioactive substrate trapping assays showed strong hypoxia-induced expression of eGFP and HSV1-tk enzyme in the HT29-9HRE cells in vitro. Sequential micropositron emission tomography (PET) imaging of tumor-bearing animals, using the hypoxic cell tracer (18)F-FMISO and the reporter substrate (124)I-FIAU, yielded similar tumor hypoxia images for the HT29-9HRE xenograft but not in the parental HT29 tumor. Using autoradiography and IHC, detailed spatial distributions in tumor sections were obtained and compared for the following hypoxia-associated biomarkers in the HT29-9HRE xenograft: (124)I-FIAU, (18)F-FMISO, Hoechst (perfusion), lectin-TRITC (functional blood vessels), eGFP, pimonidazole, EF5, and CA9. Intratumoral distributions of (124)I-FIAU and (18)F-FMISO were similar, and eGFP, pimonidazole, EF5, and CA9 colocalized in the same areas but not in well-perfused regions that were positive for Hoechst and lectin-TRITC. In enabling the detection of hypoxia-induced molecular events and mapping their distribution in vivo with serial noninvasive positron emission tomography imaging, and multiple variable analysis with immunohistochemistry and fluorescence microscopy, this human xenograft model provides a valuable tool for studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia.
Collapse
Affiliation(s)
- Fuqiu He
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuelong Deng
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Bixiu Wen
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yueping Liu
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xiaorong Sun
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Akiko Minami
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yunhong Huang
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Qing Chen
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Pat B. Zanzonico
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - C. Clifton Ling
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gloria C. Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Cowen RL, Garside EJ, Fitzpatrick B, Papadopoulou MV, Williams KJ. Gene therapy approaches to enhance bioreductive drug treatment. Br J Radiol 2008; 81 Spec No 1:S45-56. [PMID: 18819998 DOI: 10.1259/bjr/55070206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypoxia, or a lack of oxygen, occurs in 50-60% of solid human tumours. Clinical studies have shown that the presence and extent of hypoxia in a tumour cannot be predicted by size or histopathological stage but it is predictive of a poor outcome following radiotherapy, chemotherapy and surgery. However, as a physiological feature of tumours, it can be exploited and researchers have developed many hypoxia-selective chemotherapies or bioreductive drugs that are in varying stages of clinical development. These agents are prodrugs that have two key requirements for their biological activation: they require the reductive environment of a hypoxic tumour cell and the appropriate complement of cellular reductase enzymes. To overcome tumour heterogeneity in reductase enzyme levels and enhance bioreductive drug metabolism a gene therapy strategy can be employed. We have reviewed this field and also present our own pre-clinical research using gene therapy to enhance bioreductive drug treatment for the treatment of cancer. We have specifically focused on studies enhancing lead clinical bioreductive drugs. We consider the metabolic requirements for their activation and we highlight the key in vivo studies supporting the future clinical development of hypoxia-targeted gene-directed enzyme prodrug therapy.
Collapse
Affiliation(s)
- R L Cowen
- Department of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
15
|
Malhotra R, Tyson DW, Rosevear HM, Brosius FC. Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells. BMC Cardiovasc Disord 2008; 8:9. [PMID: 18447926 PMCID: PMC2387135 DOI: 10.1186/1471-2261-8-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 04/30/2008] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions. METHODS Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1alpha) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1alpha), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1alpha. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax. RESULTS Overexpression of pcDNA3-DN-Hif-1alpha led to a significant reduction in hypoxia -induced apoptosis (17 +/- 2%, P < 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1alpha transfected cells. Moreover, selective ablation of HIF-1alpha protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1alpha exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1alpha led to a two-fold increase in Hif-1alpha levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1alpha also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1alpha constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression. CONCLUSION These data demonstrate that HIF-1alpha is an important component of the apoptotic signaling machinery in the two cell types.
Collapse
Affiliation(s)
- Ricky Malhotra
- Department of Internal Medicine/Nephrology, University of Michigan Medical Center, Ann Arbor, MI-48109-0676, USA
| | - David W Tyson
- Department of Internal Medicine/Nephrology, University of Michigan Medical Center, Ann Arbor, MI-48109-0676, USA
| | - Henry M Rosevear
- Department of Internal Medicine/Nephrology, University of Michigan Medical Center, Ann Arbor, MI-48109-0676, USA
| | - Frank C Brosius
- Department of Internal Medicine/Nephrology, University of Michigan Medical Center, Ann Arbor, MI-48109-0676, USA
- Department of Molecular and Integrative Physiology University of Michigan Medical Center, Ann Arbor, MI-48109-0676, USA
| |
Collapse
|
16
|
Tao J, Liu YQ, Li Y, Peng JL, Li L, Liu J, Shen X, Shen GX, Tu YT. Hypoxia: dual effect on the expression of transferrin receptor in human melanoma A375 cell line. Exp Dermatol 2008; 16:899-904. [PMID: 17927572 DOI: 10.1111/j.1600-0625.2007.00601.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Over-expression of transferrin receptor (TfR) is a common feature of human malignancies. Therapeutic strategies designed to interfere with tumor iron metabolism have targeted TfR. In previous studies, our laboratory successfully constructed the human-mouse chimeric antibody against TfR and it displayed a tumor-specificity distribution, and has a strong anti-tumor effect. We also found that there were still some limitations to anti-tumor effect in vivo. Oxygen and iron have a very tight relationship, and hypoxia is considered a fundamentally important characteristic of the tumor microenvironment. To exploit the target molecule TfR more rationally and effectively, we were prompted to explore TfR expression under hypoxia. OBJECTIVE To examine the expressing alteration of TfR of human melanoma A375 cell line under hypoxia at various time points (0, 12, 24, 36, 48 and 60 h). DESIGN The expressing alteration of TfR of A375 cell line under hypoxia at various time points (0, 12, 24, 36, 48 and 60 h) was assayed by flow cytometry, real-time RT-PCR and Western blot. RESULTS Hypoxia has dual effect on the expression of TfR in human melanoma A375 cell line. CONCLUSIONS These findings may have important implications for more rational, individualized gene-based therapy using TfR as target receptor in melanoma.
Collapse
Affiliation(s)
- Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wincewicz A, Sulkowska M, Koda M, Sulkowski S. Cumulative expression of HIF-1-alpha, Bax, Bcl-xL and P53 in human colorectal cancer. Pathology 2007; 39:334-8. [PMID: 17558861 DOI: 10.1080/00313020701329765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS AND METHODS Hypoxia-inducible factor (HIF-1) which contains oxygen regulated HIF-1alpha subunit maintains cytoprotective defence against hypoxic injury by induction of numerous genes. However, apoptotic regulators such as Bcl-xL, Bax and P53 have not been associated with HIF-1 dependent regulation in immunohistochemical evaluation of human colorectal cancer tumours so far. Thus, we visualised these proteins immunohistochemically and using Spearman's test compared for the first time their expression in regard to different clinicopathological traits in 123 (113 for P53 evaluation) human colorectal cancers. RESULTS HIF-1alpha correlated with Bcl-xL or Bax in all patients and particularly in node negative and node positive cancers, deeper intramural tumours (pT3+pT4) and adenocarcinomas. There was no significance in a small group of tumours with lesser extent through intestinal walls (pT1+pT2). In addition HIF-1alpha associated with Bcl-xL in mucinous cancers. Moreover, HIF-1alpha correlated with Bcl-xL or Bax in moderately (G2) and poorly differentiated (G3) cancers, rectal and colonic tumours and in different sex and age groups. P53 correlated only with Bax exclusively in younger patients. CONCLUSIONS HIF-1alpha may influence expression of Bax or Bcl-xL, at least indirectly, as correlations between HIF-1alpha and Bax or Bcl-xL occur constantly.
Collapse
Affiliation(s)
- Andrzei Wincewicz
- Department of Pathology, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | |
Collapse
|
18
|
Wouters A, Pauwels B, Lardon F, Vermorken JB. Review: implications of in vitro research on the effect of radiotherapy and chemotherapy under hypoxic conditions. Oncologist 2007; 12:690-712. [PMID: 17602059 DOI: 10.1634/theoncologist.12-6-690] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As it is now well established that human solid tumors frequently contain a substantial fraction of cells that are hypoxic, more and more in vitro research is focusing on the impact of hypoxia on the outcome of radiotherapy and chemotherapy. Indeed, the efficacy of irradiation and many cytotoxic drugs relies on an adequate oxygen supply. Consequently, hypoxic regions in solid tumors often contain viable cells that are intrinsically more resistant to treatment with radiotherapy or chemotherapy. Moreover, efforts have been made to exploit hypoxia as a potential difference between malignant and normal tissues.Nowadays, a body of evidence indicates that oxygen deficiency clearly influences some major intracellular pathways such as those involved in cell proliferation, cell cycle progression, apoptosis, cell adhesion, and others. Obviously, when investigating the effects of radiotherapy or chemotherapy or both combined under hypoxic conditions, it is essential to consider the influences of hypoxia itself on the cell. In this review, we first focus on the effects of hypoxia per se on some critical biological pathways. Next, we sketch an overview of preclinical and clinical research on radiotherapy, chemotherapy, and chemoradiation under hypoxic conditions.
Collapse
Affiliation(s)
- An Wouters
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
19
|
Coon KD, Dunckley TL, Stephan DA. A generic research paradigm for identification and validation of early molecular diagnostics and new therapeutics in common disorders. Mol Diagn Ther 2007; 11:1-14. [PMID: 17286446 DOI: 10.1007/bf03256218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically complex disorders continue to confound investigators because of their many underlying factors, both genetic and environmental. In order to tease apart the heritable from the non-heritable contributions to disease, clinicians are relying on researchers in the rapidly expanding fields of high-throughput genomics to identify surrogate clinical endpoints, called biomarkers, that provide a measure of the probability that an individual will succumb to the disease in question. The goals of current biomedical research into complex disorders are to identify and utilize these biomarkers, not only for early detection, but also for personalized treatment with knowledge-guided therapeutics. As the identification of these biomarkers is basically a problem of discovery, we discuss new insights into biomarker detection utilizing the most current genomic technologies available. Additionally, we present here a generic paradigm for the validation of such molecular diagnostics as well as new treatment modalities for complex and increasingly common diseases. Lastly, we delve into the ways genomic biomarkers might be implemented in a clinical setting to allow the subsequent application of targeted therapeutics, which can help the ever expanding groups of individuals experiencing these insidious diseases.
Collapse
Affiliation(s)
- Keith D Coon
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | |
Collapse
|
20
|
Abstract
Hypoxia is an integral characteristic of the tumor microenvironment, primarily due to the microvascular defects that accompany the accelerated neoplastic growth. The presence of tumor hypoxic areas correlates with negative outcome after radiotherapy, chemotherapy, and surgery, as hypoxia not only provides an environment directly facilitating chemo- and radio-resistance, but also encourages the evolution of phenotypic changes inducing permanent resistance to treatment and metastatic spread. Therefore, successful treatment of hypoxic cells has the potential to not only improve local control but also impact overall patient survival. Specific and selective targeting of hypoxic tumor areas can be achieved at all three steps of a gene therapy treatment: delivery of the therapeutic gene to the tumor, regulation of gene expression, and therapeutic efficacy. In this review the latest developments and innovations in hypoxia-targeted gene therapy are discussed. In particular, approaches such as hypoxia-conditionally replicating viruses, cellular vehicles, and gene therapy means to disrupt the hypoxia-inducible factor (HIF) signaling are outlined.
Collapse
Affiliation(s)
- Olga Greco
- Tumour Microcirculation Group, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | |
Collapse
|
21
|
Wincewicz A, Sulkowska M, Koda M, Kanczuga-Koda L, Witkowska E, Sulkowski S. Significant Coexpression of GLUT-1, Bcl-xL, and Bax in Colorectal Cancer. Ann N Y Acad Sci 2007; 1095:53-61. [PMID: 17404017 DOI: 10.1196/annals.1397.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypoxic cancer cells overexpress Glucose transporter 1 (GLUT-1) to accelerate glucose intake mainly for low effective, anaerobic respiration, so that they would not die of oxygen deficiency. Ischemic cell injury triggers apoptosis. Regulators of cell suicide like Bax and Bcl-xL combine their functions to cause apoptosis or to rescue cells from death. GLUT-1, Bax, and Bcl-xL are of prognostic significance in colorectal cancer but they have not been compared, yet. Thus, we aimed to determine eventual correlations between GLUT-1, Bax, and Bcl-xL in association with different clinicopathological features of colorectal cancer patients. Expressions of the proteins were evaluated in specimens of 150 colorectal patients by immunohistochemistry. The levels of tissue expressions were statistically analyzed with Spearman's correlation test. As in group of all the patients, GLUT-1 matched Bcl-xL and Bax in statistically significant manner regardless of different node status, grade of histological differentiation, histopathological type, tumor site, gender and age of patients. GLUT-1 correlated highly with Bcl-xL in both groups of various tumor growth extent: pT1 + pT2 and pT3 + pT4 tumors (P < 0.016, r = 0.6340, P < 0.0001, r = 0.5204, respectively). Bax correlated with GLUT-1 (P < 0.0001, r = 0.4284) and Bcl-xL (P < 0.0001, r = 0.5233) in pT3 and pT4 tumors without any statistical significance in a homologous comparison at pT1 and pT2 stage (P > 0.173, r = 0.1078, P > 0.744, r = 0.1, respectively). Significant coexpression of GLUT-1, Bcl-xL, and Bax could point to cooperation of these regulatory proteins in elimination due to irreversible injury, adaptation to hypoxia, reduction of further damage, and survival of colorectal cancer cells.
Collapse
Affiliation(s)
- Andrzej Wincewicz
- Departments of General and Clinical Pathomorphology, Medical University of Bialystok, Waszyngtona St. 13, 15-269 Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Yang WS, Park SO, Yoon AR, Yoo JY, Kim MK, Yun CO, Kim CW. Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol Cancer Ther 2006; 5:1610-9. [PMID: 16818521 DOI: 10.1158/1535-7163.mct-05-0515] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We cloned the streptolysin O gene from the Streptococcus pyogenes genome and tested the possibility of using it as an anticancer reagent. Transient transfection of the streptolysin O gene efficiently killed 293T cells after 12 hours of transfection as determined by lactate dehydrogenase release and propidium iodide uptake. No caspase activity was observed and necrosis was prominent during streptolysin O-induced cell death. Biochemical analysis of streptolysin O protein revealed that the deletion of only 5 amino acids from the COOH-terminal region of streptolysin O, which is essential for cholesterol binding activity, abolished its cell-killing activity, whereas the NH2-terminal region was more resilient, i.e., up to 115 amino acids could be deleted without changing its cell-killing activity. We generated a streptolysin O-expressing adenovirus and injected it into human cervical cancer cell-derived tumors grown in a nude mouse model. Twenty-one days postinjection, the average size of tumors in the streptolysin O adenovirus-injected group was 29.3% of that of the control PBS-treated group. Our results show that the genes of pore-forming toxins, like streptolysin O protein, have the potential to establish a novel class of suicide gene therapeutic reagents.
Collapse
Affiliation(s)
- Wan Seok Yang
- Department of Pathology, Tumor Immunity Medical Research Center and Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Fischer I, Gagner J, Law M, Newcomb EW, Zagzag D. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2006; 15:297-310. [PMID: 16389942 PMCID: PMC8096031 DOI: 10.1111/j.1750-3639.2005.tb00115.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by exuberant angiogenesis, a key event in tumor growth and progression. The pathologic mechanisms driving this change and the biological behavior of gliomas remain unclear. One mechanism may involve cooption of native blood vessels by glioma cells inducing expression of angiopoietin-2 by endothelial cells. Subsequently, vascular apoptosis and involution leads to necrosis and hypoxia. This in turn induces angiogenesis that is associated with expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF) in perinecrotic pseudopalisading glioma cells. Here we review the molecular and cellular mechanisms implicated in HIF-1-dependent and HIF-1-independent glioma-associated angiogenesis. In GBMs, both tumor hypoxia and genetic alterations commonly occur and act together to induce the expression of HIF-1. The angiogenic response of the tumor to HIF-1 is mediated by HIF-1-regulated target genes leading to the upregulation of several proangiogenic factors such as VEGF and other adaptive response molecules. Understanding the roles of these regulatory processes in tumor neovascularization, tumor growth and progression, and resistance to therapy will ultimately lead to the development of improved antiangiogenic therapies for GBMs.
Collapse
Affiliation(s)
- Ingeborg Fischer
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Jean‐Pierre Gagner
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Meng Law
- Department of Radiology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - Elizabeth W. Newcomb
- Department of Pathology, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - David Zagzag
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| |
Collapse
|
24
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|