1
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
3
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
4
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
5
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
6
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|
7
|
Dapash M, Castro B, Hou D, Lee-Chang C. Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:4548. [PMID: 34572775 PMCID: PMC8467991 DOI: 10.3390/cancers13184548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic, translational, and clinical research, the treatment outcomes for patients with GBM are virtually unchanged over the past 15 years. GBM is one of the most immunologically "cold" tumors, in which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM characteristics contribute to the poor results obtained from immunotherapy. However, as indicated by an ongoing and expanding number of clinical trials, and despite the mostly disappointing results to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investigated immunotherapeutic strategies. This review article aims to provide a general overview of the current state of glioblastoma immunotherapy. Information was compiled through a literature search conducted on PubMed and clinical trials between 1961 to 2021.
Collapse
Affiliation(s)
- Mark Dapash
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Against the Resilience of High-Grade Gliomas: Gene Therapies (Part II). Brain Sci 2021; 11:brainsci11080976. [PMID: 34439595 PMCID: PMC8393930 DOI: 10.3390/brainsci11080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: High-grade gliomas (HGGs) still have a high rate of recurrence and lethality. Gene therapies were projected to overcome the therapeutic resilience of HGGs, due to the intrinsic genetic heterogenicity and immune evasion pathways. The present literature review strives to provide an updated overview of the novel gene therapies for HGGs treatment, highlighting evidence from clinical trials, molecular mechanisms, and future perspectives. Methods: An extensive literature review was conducted through PubMed/Medline and ClinicalTrials.gov databases, using the keywords “high-grade glioma,” “glioblastoma,” and “malignant brain tumor”, combined with “gene therapy,” “oncolytic viruses,” “suicide gene therapies,” “tumor suppressor genes,” “immunomodulatory genes,” and “gene target therapies”. Only articles in English and published in the last 15 years were chosen, further screened based on best relevance. Data were analyzed and described according to the PRISMA guidelines. Results: Viruses were the most vehicles employed for their feasibility and transduction efficiency. Apart from liposomes, other viral vehicles remain largely still experimental. Oncolytic viruses and suicide gene therapies proved great results in phase I, II preclinical, and clinical trials. Tumor suppressor, immunomodulatory, and target genes were widely tested, showing encouraging results especially for recurrent HGGs. Conclusions: Oncolytic virotherapy and suicide genes strategies are valuable second-line treatment options for relapsing HGGs. Immunomodulatory approaches, tumor suppressor, and target genes therapies may implement and upgrade standard chemoradiotherapy. Future research aims to improve safety profile and prolonging therapeutic effectiveness. Further clinical trials are needed to assess the efficacy of gene-based therapies.
Collapse
|
9
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 718] [Impact Index Per Article: 179.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Wang JL, Scheitler KM, Wenger NM, Elder JB. Viral therapies for glioblastoma and high-grade gliomas in adults: a systematic review. Neurosurg Focus 2021; 50:E2. [PMID: 33524943 DOI: 10.3171/2020.11.focus20854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-grade gliomas (HGGs) inevitably recur and progress despite resection and standard chemotherapies and radiation. Viral therapies have emerged as a theoretically favorable adjuvant modality that might overcome intrinsic factors of HGGs that confer treatment resistance. METHODS The authors present the results of systematic searches of the MEDLINE and ClinicalTrials.gov databases that were performed for clinical trials published or registered up to July 15, 2020. RESULTS Fifty-one completed clinical trials were identified that made use of a virus-based therapeutic strategy to treat HGG. The two main types of viral therapies were oncolytic viruses and viral vectors for gene therapy. Among clinical trials that met inclusion criteria, 20 related to oncolytic viruses and 31 to gene therapy trials. No oncolytic viruses have progressed to phase III clinical trial testing, although there have been many promising early-phase results and no reported cases of encephalitis or death due to viral therapy. Three phase III trials in which viral gene therapy was used have been completed but have not resulted in any FDA-approved therapy. Recent efforts in this area have been focused on the delivery of suicide genes such as herpes simplex virus thymidine kinase and cytosine deaminase. CONCLUSIONS Decades of research efforts and an improving understanding of the immunomodulatory effects of viral therapies for gliomas are informing ongoing clinical efforts aimed at improving outcomes in patients with HGG. The available clinical data reveal varied efficacy among different virus-based treatment strategies.
Collapse
Affiliation(s)
- Joshua L Wang
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Nicole M Wenger
- 3Department of Neurosurgery, University of Maryland, Baltimore, Maryland
| | - J Bradley Elder
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
11
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Giotta Lucifero A, Luzzi S, Brambilla I, Guarracino C, Mosconi M, Foiadelli T, Savasta S. Gene therapies for high-grade gliomas: from the bench to the bedside. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:32-50. [PMID: 32608374 PMCID: PMC7975827 DOI: 10.23750/abm.v91i7-s.9953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023]
Abstract
Background: Gene therapy is the most attractive therapeutic approach against high-grade gliomas (HGGs). This is because of its theoretical capability to rework gene makeup in order to yield oncolytic effects. However, some factors still limit the upgrade of these therapies at a clinical level of evidence. We report an overview of glioblastoma gene therapies, mainly focused on the rationale, classification, advances and translational challenges. Methods: An extensive review of the online literature on gene therapy for HGGs was carried out. The PubMed/MEDLINE and ClinicalTrials.gov websites were the main sources. Articles in English published in the last five years were sorted according to the best match with the multiple relevant keywords chosen. A descriptive analysis of the clinical trials was also reported. Results: A total of 85 articles and 45 clinical trials were selected. The main types of gene therapies are the suicide gene, tumor suppressor gene, immunomodulatory gene and oncolytic therapies (virotherapies). The transfer of genetic material entails replication-deficient and replication-competent oncolytic viruses and nanoparticles, such as liposomes and cationic polymers, each of them having advantages and drawbacks. Forty-eight clinical trials were collected, mostly phase I/II. Conclusion: Gene therapies constitute a promising approach against HGGs. The selection of new and more effective target genes, the implementation of gene-delivery vectors capable of greater and safer spreading capacity, and the optimization of the administration routes constitute the main translational challenges of this approach. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Carmen Guarracino
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Altshuler DB, Kadiyala P, Núñez FJ, Núñez FM, Carney S, Alghamri MS, Garcia-Fabiani MB, Asad AS, Nicola Candia AJ, Candolfi M, Lahann J, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opin Biol Ther 2020; 20:305-317. [PMID: 31959027 PMCID: PMC7059118 DOI: 10.1080/14712598.2020.1713085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023]
Abstract
Introduction: The field of neuro-oncology has experienced significant advances in recent years. More is known now about the molecular and genetic characteristics of glioma than ever before. This knowledge leads to the understanding of glioma biology and pathogenesis, guiding the development of targeted therapeutics and clinical trials. The goal of this review is to describe the state of basic, translational, and clinical research as it pertains to biological and synthetic pharmacotherapy for gliomas.Areas covered: Challenges remain in designing accurate preclinical models and identifying patients that are likely to respond to a particular targeted therapy. Preclinical models for therapeutic assessment are critical to identify the most promising treatment approaches.Expert opinion: Despite promising new therapeutics, there have been no significant breakthroughs in glioma treatment and patient outcomes. Thus, there is an urgent need to better understand the mechanisms of treatment resistance and to design effective clinical trials.
Collapse
Affiliation(s)
- David B. Altshuler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felipe J. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonela S. Asad
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Marianela Candolfi
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476:1-12. [PMID: 32044356 DOI: 10.1016/j.canlet.2020.02.002] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Gliomas are intrinsic brain tumors that originate from neuroglial progenitor cells. Conventional therapies, including surgery, chemotherapy, and radiotherapy, have achieved limited improvements in the prognosis of glioma patients. Immunotherapy, a revolution in cancer treatment, has become a promising strategy with the ability to penetrate the blood-brain barrier since the pioneering discovery of lymphatics in the central nervous system. Here we detail the current management of gliomas and previous studies assessing different immunotherapies in gliomas, despite the fact that the associated clinical trials have not been completed yet. Moreover, several drugs that have undergone clinical trials are listed as novel strategies for future application; however, these clinical trials have indicated limited efficacy in glioma. Therefore, additional studies are warranted to evaluate novel therapeutic approaches in glioma treatment.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Tamura R, Miyoshi H, Yoshida K, Okano H, Toda M. Recent progress in the research of suicide gene therapy for malignant glioma. Neurosurg Rev 2019; 44:29-49. [PMID: 31781985 DOI: 10.1007/s10143-019-01203-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Malignant glioma, which is characterized by diffuse infiltration into the normal brain parenchyma, is the most aggressive primary brain tumor with dismal prognosis. Over the past 40 years, the median survival has only slightly improved. Therefore, new therapeutic modalities must be developed. In the 1990s, suicide gene therapy began attracting attention for the treatment of malignant glioma. Some clinical trials used a viral vector for suicide gene transduction; however, it was found that viral vectors cannot cover the large invaded area of glioma cells. Interest in this therapy was recently revived because some types of stem cells possess a tumor-tropic migratory capacity, which can be used as cellular delivery vehicles. Immortalized, clonal neural stem cell (NSC) line has been used for patients with recurrent high-grade glioma, which showed safety and efficacy. Embryonic and induced pluripotent stem cells may be considered as sources of NSC because NSC is difficult to harvest, and ethical issues have been raised. Mesenchymal stem cells are alternative candidates for cellular vehicle and are easily harvested from the bone marrow. In addition, a new type of nonlytic, amphotropic retroviral replicating vector encoding suicide gene has shown efficacy in patients with recurrent high-grade glioma in a clinical trial. This replicating viral capacity is another possible candidate as delivery vehicle to tackle gliomas. Herein, we review the concept of suicide gene therapy, as well as recent progress in preclinical and clinical studies in this field.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
16
|
Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of human lung cancer cells in vitro and in vivo. Gene Ther 2019; 27:51-61. [PMID: 31439890 DOI: 10.1038/s41434-019-0096-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Cancer therapies that target a single protein or pathway may be limited by their specificity, thus missing key players that control cellular proliferation and contributing to the failure of the treatment. We propose that approaches to cancer therapy that hit multiple targets would limit the chances of escape. To this end, we have developed a bicistronic adenoviral vector encoding both the CDKN2A and p53 tumor suppressor genes. The bicistronic vector, AdCDKN2A-I-p53, supports the translation of both gene products from a single transcript, assuring that all transduced cells will express both proteins. We show that combined, but not single, gene transfer results in markedly reduced proliferation and increased cell death correlated with reduced levels of phosphorylated pRB, induction of CDKN1A and caspase 3 activity, yet avoiding the induction of senescence. Using isogenic cell lines, we show that these effects were not impeded by the presence of mutant p53. In a mouse model of in situ gene therapy, a single intratumoral treatment with the bicistronic vector conferred markedly inhibited tumor progression while the treatment with either CDKN2A or p53 alone only partially controlled tumor growth. Histologic analysis revealed widespread transduction, yet reduced proliferation and increased cell death was associated only with the simultaneous transfer of CDKN2A and p53. We propose that restoration of two of the most frequently altered genes in human cancer, mediated by AdCDKN2A-I-p53, is beneficial since multiple targets are reached, thus increasing the efficacy of the treatment.
Collapse
|
17
|
Lentiviral Vectors as Tools for the Study and Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11030417. [PMID: 30909628 PMCID: PMC6468594 DOI: 10.3390/cancers11030417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) has the worst prognosis among brain tumors, hence basic biology, preclinical, and clinical studies are necessary to design effective strategies to defeat this disease. Gene transfer vectors derived from the most-studied lentivirus-the Human Immunodeficiency Virus type 1-have wide application in dissecting GBM specific features to identify potential therapeutic targets. Last-generation lentiviruses (LV), highly improved in safety profile and gene transfer capacity, are also largely employed as delivery systems of therapeutic molecules to be employed in gene therapy (GT) approaches. LV were initially used in GT protocols aimed at the expression of suicide factors to induce GBM cell death. Subsequently, LV were adopted to either express small noncoding RNAs to affect different aspects of GBM biology or to overcome the resistance to both chemo- and radiotherapy that easily develop in this tumor after initial therapy. Newer frontiers include adoption of LV for engineering T cells to express chimeric antigen receptors recognizing specific GBM antigens, or for transducing specific cell types that, due to their biological properties, can function as carriers of therapeutic molecules to the cancer mass. Finally, LV allow the setting up of improved animal models crucial for the validation of GBM specific therapies.
Collapse
|
18
|
Neschadim A, Medin JA. Engineered Thymidine-Active Deoxycytidine Kinase for Bystander Killing of Malignant Cells. Methods Mol Biol 2019; 1895:149-163. [PMID: 30539536 DOI: 10.1007/978-1-4939-8922-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Suicide transgenes encode proteins that are either capable of activating specific prodrugs into cytotoxic antimetabolites that can trigger cancer cell apoptosis or are capable of directly inducing apoptosis. Suicide gene therapy of cancer (SGTC) involves the targeted or localized delivery of suicide transgene sequences into tumor cells by means of various gene delivery vehicles. SGTC that operates via the potentiation of small-molecule pharmacologic agents can elicit the elimination of cancer cells within a tumor beyond only those cells successfully transduced. Such "bystander effects ", typically mediated by the spread of activated cytotoxic antimetabolites from the transduced cells expressing the suicide transgene to adjacent cells in the tumor, can lead to a significant reduction of the tumor mass without the requirement of transduction of a high percentage of cells within the tumor. The spread of activated cytotoxic molecules to adjacent cells is mediated primarily by diffusion and normally involves gap junctional intercellular communications (GJIC). We have developed a novel SGTC system based on viral vector-mediated delivery of an engineered variant of human deoxycytidine kinase (dCK), which is capable of phosphorylating uridine- and thymidine-based nucleoside analogues that are not substrates for wild-type dCK, such as bromovinyl deoxyuridine (BVdU) and L-deoxythymidine (LdT). Since our dCK-based SGTC system is capable of mediating strong bystander cell killing, it holds promise for clinical translation. In this chapter, we detail the key procedures for the preparation of recombinant lentivectors for the delivery of engineered dCK, transduction of tumor cells, and evaluation of bystander cell killing effects in vitro and in vivo.
Collapse
Affiliation(s)
- Anton Neschadim
- Centre for Innovation, Canadian Blood Services, Toronto, ON, Canada
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Yi QY, Bai ZS, Cai B, Chen N, Chen LS, Yuan T, Mao JH. HSV‑TK/GCV can induce cytotoxicity of retinoblastoma cells through autophagy inhibition by activating MAPK/ERK. Oncol Rep 2018; 40:682-692. [PMID: 29845211 PMCID: PMC6072295 DOI: 10.3892/or.2018.6454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is an severe ophthalmic disease and the most common type intraocular malignant tumor, particularly in infants. Currently, few drugs and therapies are available. Gene therapy has been considered to be a potential treatment to cure cancer effectively and Herpes simplex virus type 1 thymidine kinase/ganciclovir (HSV-TK/GCV) is one type of suicide gene therapy that has been extensively studied. Numerous in vitro and in vivo studied have shown that this system can kill tumor cells, including liver and lung cancer cells. GCV is used as an antiviral drug, and the thymidine kinase, HSV-TK can phosphorylate GCV to GCV-TP, a competitive inhibitor of DNA synthesis, instead of guanine-5′-triphosphate in the process of DNA synthesis. This process prevents DNA chain elongation causing cell death via apoptosis. However, the toxic effects of HSV-TK/GCV on retinoblastoma cells remain unknown, and the molecular mechanisms of its therapeutic effects have not been fully elucidated. Our results suggest that HSV-TK/GCV can significantly cause the death of retinoblastoma cell lines, HXO-RB44 and Y79. Further studies have reported that this cell death is induced by the inhibition of autophagy by activating the MAPK/ERK (mitogen-activated protein kinase/ERK) signaling pathway. The mTOR inhibitor Torin1 can partially block the toxic effects of HSV-TK/GCV on HXO-RB44 cells. The above results demonstrate that the mechanism undertaken by HSV-TK/GCV to exhibit therapeutic effects mechanism may inhibit autophagy by activating MAPK/ERK. The findings of the present study may provide novel insight for the exploration of HSV-TK/GCV in the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Quan-Yong Yi
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhi-Sha Bai
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Bin Cai
- Ningbo Central Blood Center, Ningbo, Zhejiang 315040, P.R. China
| | - Nan Chen
- Department of Ophthalmology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Li-Shuang Chen
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Tao Yuan
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jing-Hai Mao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW More effective therapies for glioblastoma are urgently needed. Immunotherapeutic strategies appear particularly promising and are therefore intensively studied. This article reviews the current understanding of the immunosuppressive glioblastoma microenvironment, discusses the rationale behind various immunotherapies, and outlines the findings of several recently published clinical studies. RECENT FINDINGS The results of CheckMate-143 indicated that nivolumab is not superior to bevacizumab in patients with recurrent glioblastoma. A first-in man exploratory study evaluating EGFRvIII-specific CAR T cells for patients with newly diagnosed glioblastoma demonstrated overall safety of CAR T cell therapy and effective target recognition. A pilot study evaluating treatment with adoptively transferred CMV-specific T cells combined with a CMV-specific DC vaccine was found to be safe and resulted in increased polyclonality of CMV-specific T cells in vivo. Despite the success of immunotherapies in many cancers, clinical evidence supporting their efficacy for patients with glioblastoma is still lacking. Nevertheless, the recently published studies provide important proof-of-concept in several areas of immunotherapy research. The careful and critical interpretation of these results will enhance our understanding of the opportunities and challenges of immunotherapies for high-grade gliomas and improve the immunotherapeutic strategies investigated in future clinical trials.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Perlmutter Cancer Institute, Brain Tumor Program, NYU Langone Medical Center, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Kamran N, Alghamri MS, Nunez FJ, Shah D, Asad AS, Candolfi M, Altshuler D, Lowenstein PR, Castro MG. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018; 10:317-339. [PMID: 29421984 PMCID: PMC5810852 DOI: 10.2217/imt-2017-0122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kamran
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Felipe J Nunez
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Diana Shah
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - David Altshuler
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| |
Collapse
|
22
|
McGranahan T, Li G, Nagpal S. History and current state of immunotherapy in glioma and brain metastasis. Ther Adv Med Oncol 2017; 9:347-368. [PMID: 28529551 PMCID: PMC5424864 DOI: 10.1177/1758834017693750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022] Open
Abstract
Malignant brain tumors such as glioblastoma (GBM) and brain metastasis have poor prognosis despite conventional therapies. Successful use of vaccines and checkpoint inhibitors in systemic malignancy has increased the hope that immune therapies could improve survival in patients with brain tumors. Manipulating the immune system to fight malignancy has a long history of both modest breakthroughs and pitfalls that should be considered when applying the current immunotherapy approaches to patients with brain tumors. Therapeutic vaccine trials for GBM date back to the mid 1900s and have taken many forms; from irradiated tumor lysate to cell transfer therapies and peptide vaccines. These therapies were generally well tolerated without significant autoimmune toxicity, however also did not demonstrate significant clinical benefit. In contrast, the newer checkpoint inhibitors have demonstrated durable benefit in some metastatic malignancies, accompanied by significant autoimmune toxicity. While this toxicity was not unexpected, it exceeded what was predicted from pre-clinical studies and in many ways was similar to the prior trials of immunostimulants. This review will discuss the history of these studies and demonstrate that the future use of immune therapy for brain tumors will likely need a personalized approach that balances autoimmune toxicity with the opportunity for significant survival benefit.
Collapse
Affiliation(s)
- Tresa McGranahan
- Stanford Hospital and Clinics, Neurology, 300 Pasteur Drive, Stanford, CA 94305-2200, USA
| | - Gordon Li
- Stanford Hospital and Clinics, Neurosurgery, Stanford, CA, USA
| | - Seema Nagpal
- Stanford Hospital and Clinics, Neurology, Stanford, CA, USA
| |
Collapse
|
23
|
Abstract
Glioblastoma Multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival time of <24 months. This figure remains constant, despite significant progress in medical research and treatment. The lack of an efficient anti-tumor immune response and the micro-invasive nature of the glioma malignant cells have been explained by a multitude of immune-suppressive mechanisms, proven in different models. These immune-resistant capabilities of the tumor result in a complex interplay this tumor shares with the immune system. We present a short review on the immunology of GBM, discussing the different unique pathological and molecular features of GBM, current treatment modalities, the principles of cancer immunotherapy and the link between GBM and melanoma. Current knowledge on immunological features of GBM, as well as immunotherapy past and current clinical trials, is discussed in an attempt to broadly present the complex and formidable challenges posed by GBM.
Collapse
|
24
|
Liu Z, Meng Q, Bartek J, Poiret T, Persson O, Rane L, Rangelova E, Illies C, Peredo IH, Luo X, Rao MV, Robertson RA, Dodoo E, Maeurer M. Tumor-infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology 2016; 6:e1252894. [PMID: 28344863 DOI: 10.1080/2162402x.2016.1252894] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) may represent a viable source of T cells for the biological treatment of patients with gliomas. Glioma tissue was obtained from 16 patients, tumor cell lines were established, and TILs were expanded in 16/16 cases using a combination of IL-2/IL-15/IL-21. Intracellular cytokine staining (ICS, IL-2, IL-17, TNFα and IFNγ production) as well as a cytotoxicity assay was used to detect TIL reactivity against autologous tumor cells or shared tumor-associated antigens (TAAs; i.e., NY-ESO-1, Survivin or EGFRvIII). TILs were analyzed by flow cytometry, including T-cell receptor (TCR) Vβ family composition, exhaustion/activation and T-cell differentiation markers (CD45RA/CCR7). IL-2/IL-15/IL-21 expanded TILs exhibited a mixture of CD4+, CD8+, as well as CD3+ CD4-CD8- T cells with a predominant central memory CD45RA-CCR7+ phenotype. TIL showed low frequencies of T cells testing positive for PD-1, TIM-3 and CTLA-4. LAG3 tested positive in up to 30% of CD8+ TIL, with low (1.25%) frequencies in CD4+ T cells. TIL cultures exhibited preferential usage of Vβ families and recognition of autologous tumor cells defined by cytokine production and cytotoxicity. IL-2/IL-15/IL-21 expanded TILs represent a viable source for the cellular therapy of patients with gliomas.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas Poiret
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Oscar Persson
- Department of Neurosurgery, Karolinska University Hospital , Stockholm, Sweden
| | - Lalit Rane
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Elena Rangelova
- Department of Clinical Science, Intervention and Technology, Karolinska Hospital , Stockholm, Sweden
| | - Christopher Illies
- Department of Neurosurgery, Karolinska University Hospital , Stockholm, Sweden
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Martin Vijayakumar Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Rebecca Axelsson Robertson
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Ernest Dodoo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Zhou X, Brenner MK. Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Exp Hematol 2016; 44:1013-1019. [PMID: 27473568 PMCID: PMC5083205 DOI: 10.1016/j.exphem.2016.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Abstract
Adoptive transfer of T cells can be an effective anticancer treatment. However, uncontrolled or unpredictable immediate or persistent toxic effects are a source of concern. The ability to conditionally eliminate aberrant cells in vivo is therefore becoming a critical step for the successful translation of this approach to the clinic. We review the evolution of safety systems, focusing on a suicide switch that can be expressed stably and efficiently in human T cells without impairing phenotype, function, or antigen specificity. This system is based on the fusion of human caspase-9 to a modified human FK-binding protein, allowing conditional dimerization in the presence of an otherwise bio-inert small molecule drug. When exposed to the synthetic dimerizing drug, the inducible caspase-9 becomes activated, resulting in the rapid apoptosis of cells expressing this construct. We have illustrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant. Here we review the benefits and limitations of the approach.
Collapse
Affiliation(s)
- Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| |
Collapse
|
26
|
Sato T, Yanagisawa T. [The engineered thymidylate kinase (TMPK)/azidothymidine (AZT)-axis offers efficient bystander cell killing effect for suicide gene therapy for cancer]. Nihon Yakurigaku Zasshi 2016; 147:326-9. [PMID: 27301304 DOI: 10.1254/fpj.147.326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Kamran N, Calinescu A, Candolfi M, Chandran M, Mineharu Y, Asad AS, Koschmann C, Nunez FJ, Lowenstein PR, Castro MG. Recent advances and future of immunotherapy for glioblastoma. Expert Opin Biol Ther 2016; 16:1245-64. [PMID: 27411023 PMCID: PMC5014608 DOI: 10.1080/14712598.2016.1212012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Outcome for glioma (GBM) remains dismal despite advances in therapeutic interventions including chemotherapy, radiotherapy and surgical resection. The overall survival benefit observed with immunotherapies in cancers such as melanoma and prostate cancer has fuelled research into evaluating immunotherapies for GBM. AREAS COVERED Preclinical studies have brought a wealth of information for improving the prognosis of GBM and multiple clinical studies are evaluating a wide array of immunotherapies for GBM patients. This review highlights advances in the development of immunotherapeutic approaches. We discuss the strategies and outcomes of active and passive immunotherapies for GBM including vaccination strategies, gene therapy, check point blockade and adoptive T cell therapies. We also focus on immunoediting and tumor neoantigens that can impact the efficacy of immunotherapies. EXPERT OPINION Encouraging results have been observed with immunotherapeutic strategies; some clinical trials are reaching phase III. Significant progress has been made in unraveling the molecular and genetic heterogeneity of GBM and its implications to disease prognosis. There is now consensus related to the critical need to incorporate tumor heterogeneity into the design of therapeutic approaches. Recent data also indicates that an efficacious treatment strategy will need to be combinatorial and personalized to the tumor genetic signature.
Collapse
Affiliation(s)
- Neha Kamran
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Alexandra Calinescu
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Marianela Candolfi
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Mayuri Chandran
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Yohei Mineharu
- d Department of Neurosurgery , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Antonela S Asad
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Carl Koschmann
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Nunez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
28
|
Li Y, Min W, Li M, Han G, Dai D, Zhang L, Chen X, Wang X, Zhang Y, Yue Z, Liu J. Identification of hub genes and regulatory factors of glioblastoma multiforme subgroups by RNA-seq data analysis. Int J Mol Med 2016; 38:1170-8. [PMID: 27572852 PMCID: PMC5029949 DOI: 10.3892/ijmm.2016.2717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/04/2016] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor. This study aimed to identify the hub genes and regulatory factors of GBM subgroups by RNA sequencing (RNA-seq) data analysis, in order to explore the possible mechanisms responsbile for the progression of GBM. The dataset RNASeqV2 was downloaded by TCGA-Assembler, containing 169 GBM and 5 normal samples. Gene expression was calculated by the reads per kilobase per million reads measurement, and nor malized with tag count comparison. Following subgroup classification by the non-negative matrix factorization, the differentially expressed genes (DEGs) were screened in 4 GBM subgroups using the method of significance analysis of microarrays. Functional enrichment analysis was performed by DAVID, and the protein-protein interaction (PPI) network was constructed based on the HPRD database. The subgroup-related microRNAs (miRNAs or miRs), transcription factors (TFs) and small molecule drugs were predicted with predefined criteria. A cohort of 19,515 DEGs between the GBM and control samples was screened, which were predominantly enriched in cell cycle- and immunoreaction-related pathways. In the PPI network, lymphocyte cytosolic protein 2 (LCP2), breast cancer 1 (BRCA1), specificity protein 1 (Sp1) and chromodomain-helicase-DNA-binding protein 3 (CHD3) were the hub nodes in subgroups 1–4, respectively. Paired box 5 (PAX5), adipocyte protein 2 (aP2), E2F transcription factor 1 (E2F1) and cAMP-response element-binding protein-1 (CREB1) were the specific TFs in subgroups 1–4, respectively. miR-147b, miR-770-5p, miR-220a and miR-1247 were the particular miRNAs in subgroups 1–4, respectively. Natalizumab was the predicted small molecule drug in subgroup 2. In conclusion, the molecular regulatory mechanisms of GBM pathogenesis were distinct in the different subgroups. Several crucial genes, TFs, miRNAs and small molecules in the different GBM subgroups were identified, which may be used as potential markers. However, further experimental validations may be required.
Collapse
Affiliation(s)
- Yanan Li
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Weijie Min
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Mengmeng Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Guosheng Han
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Dongwei Dai
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xinglai Wang
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuhui Zhang
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhijian Yue
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
29
|
Hulou MM, Cho CF, Chiocca EA, Bjerkvig R. Experimental therapies: gene therapies and oncolytic viruses. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:183-197. [PMID: 26948355 DOI: 10.1016/b978-0-12-802997-8.00011-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development.
Collapse
Affiliation(s)
- M Maher Hulou
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Choi-Fong Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg; Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
30
|
Peng Z, Liang W, Li Z, Xu Y, Chen L. Interleukin-15-transferred cytokine-induced killer cells elevated anti-tumor activity in a gastric tumor-bearing nude mice model. Cell Biol Int 2015; 40:204-13. [PMID: 26503216 DOI: 10.1002/cbin.10553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Zheng Peng
- Department of General Surgery; Chinese PLA General Hospital; Beijing 100853 China
| | - Wentao Liang
- Institute of General Surgery; Chinese PLA General Hospital; Beijing 100853 China
| | - Zexue Li
- Institute of General Surgery; Chinese PLA General Hospital; Beijing 100853 China
| | - Yingxin Xu
- Institute of General Surgery; Chinese PLA General Hospital; Beijing 100853 China
| | - Lin Chen
- Department of General Surgery; Chinese PLA General Hospital; Beijing 100853 China
| |
Collapse
|
31
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
32
|
Dendritic cell immunotherapy for brain tumors. J Neurooncol 2015; 123:425-32. [PMID: 26037466 DOI: 10.1007/s11060-015-1830-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 12/15/2022]
Abstract
Glioblastomas are characterized by immunosuppression, rapid proliferation, angiogenesis, and invasion into the surrounding brain parenchyma. Limitations in current therapeutic approaches have spurred the development of personalized, patient-specific treatments. Among these, active immunotherapy has emerged as a viable option for glioma treatment. The ability to generate an immune response utilizing patient-derived dendritic cells (DCs) (professional antigen-presenting cells) is especially attractive. This approach to glioma treatment allows for the immunologic targeting and destruction of malignant cells. Data acquired in multiple pre-clinical models and clinical trials have shown significant responses and prolonged survival. Here we provide an overview of the current status of DC vaccination for the treatment of gliomas.
Collapse
|
33
|
Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 2015; 125:4103-13. [PMID: 25977584 DOI: 10.1182/blood-2015-02-628354] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/04/2015] [Indexed: 12/15/2022] Open
Abstract
To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.
Collapse
|
34
|
Oh T, Ivan ME, Sun MZ, Safaee M, Fakurnejad S, Clark AJ, Sayegh ET, Bloch O, Parsa AT. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma. Immunotherapy 2015; 6:737-53. [PMID: 25186604 DOI: 10.2217/imt.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.
Collapse
Affiliation(s)
- Taemin Oh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Feinberg School of Medicine, 676 N St Clair Street, Suite 2210, Chicago, IL 60611-2911, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
36
|
Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7:1073-104. [PMID: 26598957 PMCID: PMC4681396 DOI: 10.2217/imt.15.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
Collapse
Affiliation(s)
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gregory Baker
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Evaluation of Bystander Cell Killing Effects in Suicide Gene Therapy of Cancer: Engineered Thymidylate Kinase (TMPK)/AZT Enzyme-Prodrug Axis. Methods Mol Biol 2015; 1317:55-67. [PMID: 26072401 DOI: 10.1007/978-1-4939-2727-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Suicide gene therapy of cancer (SGTC) entails the introduction of a cDNA sequence into tumor cells whose polypeptide product is capable of either directly activating apoptotic pathways itself or facilitating the activation of pharmacologic agents that do so. The latter class of SGTC approaches is of the greater utility in cancer therapy owing to the ability of some small, activated cytotoxic compounds to diffuse from their site of activation into neighboring malignant cells, where they can also mediate destruction. This phenomenon, termed "bystander killing", can be highly advantageous in driving significant tumor regression in vivo without the requirement of transduction of each and every tumor cell with the suicide gene. We have developed a robust suicide gene therapy enzyme/prodrug system based on an engineered variant of the human thymidylate kinase (TMPK), which has been endowed with the ability to drive azidothymidine (AZT) activation. Delivery of this suicide gene sequence into tumors by means of recombinant lentivirus-mediated transduction embodies an SGTC strategy that successfully employs bystander cell killing as a mechanism to achieve significant ablation of solid tumors in vivo. Thus, this engineered TMPK/AZT suicide gene therapy axis holds great promise for clinical application in the treatment of inoperable solid tumors in the neoadjuvant setting. Here we present detailed procedures for the preparation of recombinant TMPK-based lentivirus, transduction of target cells, and various approaches for the evaluation of bystander cell killing effects in SGCT in both in vitro and in vivo models.
Collapse
|
38
|
Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, Brenner MK, Bouchier-Hayes L. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 2014; 21:472-482. [PMID: 25323693 DOI: 10.1038/cgt.2014.53] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.
Collapse
Affiliation(s)
- Miki Ando
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Shigeki Yagyu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Wade Tao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA.,Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Tang Y, Li Y, Lin X, Miao P, Wang Y, Yang GY. Stimulation of cerebral angiogenesis by gene delivery. Methods Mol Biol 2014; 1135:317-29. [PMID: 24510875 DOI: 10.1007/978-1-4939-0320-7_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis, an important process for long term neurological recovery, could be induced by ischemic brain injury. In this chapter, we describe a system to deliver adeno-associated viral (AAV) vector-mediated gene therapy for ischemic stroke. This includes the methods to construct, produce, and purify an AAV vector expressing target gene and an approach to quantify the number of microvessels and capillary density with synchrotron radiation angiography (SRA) imaging.
Collapse
Affiliation(s)
- Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Vaccine therapies for patients with glioblastoma. J Neurooncol 2014; 119:531-46. [PMID: 25163836 DOI: 10.1007/s11060-014-1502-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/06/2014] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is a high-grade glial tumor with an extremely aggressive clinical course and a median overall survival of only 14.6 months following maximum surgical resection and adjuvant chemoradiotherapy. A central feature of this disease is local and systemic immunosuppression, and defects in patient immune systems are closely associated with tumor progression. Immunotherapy has emerged as an important adjuvant in the therapeutic armamentarium of clinicians caring for patients with GBM. The fundamental aim of immunotherapy is to augment the host antitumor immune response. Active immunotherapy utilizes vaccines to stimulate adaptive immunity against tumor-associated antigens. A vast array of vaccine strategies have advanced from preclinical study to active clinical trials in patients with recurrent or newly diagnosed GBM, including those that employ peptides, heat shock proteins, autologous tumor cells, and dendritic cells. In this review, the rationale for glioma immunotherapy is outlined, and the prevailing forms of vaccine therapy are described.
Collapse
|
41
|
Okura H, Smith CA, Rutka JT. Gene therapy for malignant glioma. MOLECULAR AND CELLULAR THERAPIES 2014; 2:21. [PMID: 26056588 PMCID: PMC4451964 DOI: 10.1186/2052-8426-2-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.
Collapse
Affiliation(s)
- Hidehiro Okura
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Christian A Smith
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada
| | - James T Rutka
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario M5T 1P5 Canada ; Division of Neurosurgery, The Hospital for Sick Children, Suite 1503, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada
| |
Collapse
|
42
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
43
|
Abstract
Despite extensive research, current glioma therapies are still unsatisfactory, and novel approaches are pressingly needed. In recent years, both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment, and the mechanistic background of their cytotoxicity has been unveiled. A growing number of clinical trials have convincingly established viral therapies to be safe in glioma patients, and maximum tolerated doses have generally not been reached. However, evidence for therapeutic benefit has been limited: new generations of therapeutic vectors need to be developed in order to target not only tumor cells but also the complex surrounding microenvironment. Such therapies could also direct long-lasting immune responses toward the tumor while reducing early antiviral reactions. Furthermore, viral delivery methods are to be improved and viral spread within the tumor will have to be enhanced. Here, we will review the outcome of completed glioma virus therapy trials as well as highlight the ongoing clinical activities. On this basis, we will give an overview of the numerous strategies to enhance therapeutic efficacy of new-generation viruses and novel treatment regimens. Finally, we will conclude with approaches that may be crucial to the development of successful glioma therapies in the future.
Collapse
Affiliation(s)
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
VanderVeen N, Paran C, Appelhans A, Krasinkiewicz J, Lemons R, Appelman H, Doherty R, Palmer D, Ng P, Lowenstein PR, Castro MG. Marmosets as a preclinical model for testing "off-label" use of doxycycline to turn on Flt3L expression from high-capacity adenovirus vectors. Mol Ther Methods Clin Dev 2014; 1:10. [PMID: 25068145 PMCID: PMC4111110 DOI: 10.1038/mtm.2013.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/24/2013] [Indexed: 12/17/2022]
Abstract
We developed a combined conditional cytotoxic, i.e., herpes simplex type 1-thymidine kinase (TK), plus immune-stimulatory, i.e., fms-like tyrosine kinase ligand-3-mediated gene therapy for glioblastoma multiforme (GBM). Therapeutic transgenes were encoded within high-capacity adenoviral vectors (HC-Ad); TK was expressed constitutively, while Flt3L was under the control of the TetOn regulatable promoter. We previously assessed efficacy and safety in intracranial GBM rodent models. But, since this approach involves expression of a cytokine within the brain, we chose the nonhuman primate, i.e., Callithrix jaccus (marmoset) as it has been established that its immune response shares similarities with man. We characterized the safety, cell-type specific expression, and doxycycline (DOX)-inducibility of HC-Ad-TetOn-Flt3L delivered within the striatum. We used allometrically scaled DOX doses delivered orally, twice daily for one month, mimicking the route and duration of DOX administration planned for the GBM trial. Flt3L was effectively expressed within astrocytes, microglia, oligodendrocytes, and neurons. No evidence of brain or systemic toxicities due to the treatment was encountered. Our data indicate that DOX doses equivalent to those used in humans to treat infections can be safely used "off-label" to turn "on" therapeutic gene expression from HC-Ad-TetOn-Flt3L; providing evidence for the safety of this approach in the clinic.
Collapse
Affiliation(s)
- Nathan VanderVeen
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Christopher Paran
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Ashley Appelhans
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Johnny Krasinkiewicz
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rosemary Lemons
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Henry Appelman
- Department of Pathology, The University of Michigan School of Medicine, University Hospital, Ann Arbor, Michigan, USA
| | - Robert Doherty
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Kim HA, Park JH, Yi N, Lee M. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy. Mol Pharm 2014; 11:938-50. [PMID: 24467192 DOI: 10.1021/mp4006003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene therapy has been considered a promising approach for glioblastoma therapy. To avoid side effects and increase the specificity of gene expression, gene expression should be tightly regulated. In this study, glioma and hypoxia dual-specific plasmids (pEpo-NI2-SV-Luc and pEpo-NI2-SV-HSVtk) were developed by combining the erythropoietin (Epo) enhancer and nestin intron 2 (NI2). In the in vitro studies, pEpo-NI2-SV-Luc showed higher gene expression under hypoxia than normoxia in a glioblastoma-specific manner. The MTT and caspase assays demonstrated that pEpo-NI2-SV-HSVtk specifically induced caspase activity and cell death in hypoxic glioblastoma cells. For in vivo evaluation, subcutaneous and intracranial glioblastoma models were established. Dexamethasone-conjugated-polyethylenimine (PEI-Dexa) was used as a gene carrier, since PEI-Dexa efficiently delivers plasmid to glioblastoma cells and also has an antitumor effect due to the effect of dexamethasone. In the in vivo study in the subcutaneous and intracranial glioblastoma models, the tumor size was reduced more effectively in the pEpo-NI2-SV-HSVtk group than in the control and pSV-HSVtk groups. In addition, higher levels of HSVtk gene expression and TUNEL-positive cells were observed in the pEpo-NI2-SV-HSVtk group compared with the control and pSV-HSVtk groups, suggesting that pEpo-NI2-SV-HSVtk increased the therapeutic efficacy in hypoxic glioblastoma. Therefore, pEpo-NI2-SV-HSVtk/PEI-Dexa complex may be useful for glioblastoma-specific gene therapy.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Bioengineering, College of Engineering, Hanyang University , Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18:1052-66. [DOI: 10.1016/j.drudis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022]
|
47
|
Sato T, Neschadim A, Lavie A, Yanagisawa T, Medin JA. The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One 2013; 8:e78711. [PMID: 24194950 PMCID: PMC3806853 DOI: 10.1371/journal.pone.0078711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
We previously described a novel suicide (or ‘cell fate control’) gene therapy enzyme/prodrug system based on an engineered variant of human thymidylate kinase (TMPK) that potentiates azidothymidine (AZT) activation. Delivery of a suicide gene sequence into tumors by lentiviral transduction embodies a cancer gene therapy that could employ bystander cell killing as a mechanism driving significant tumor regression in vivo. Here we present evidence of a significant bystander cell killing in vitro and in vivo mediated by the TMPK/AZT suicide gene axis that is reliant on the formation of functional gap-junctional intercellular communications (GJICs). Potentiation of AZT activation by the engineered TMPK expressed in the human prostate cancer cell line, PC-3, resulted in effective bystander killing of PC-3 cells lacking TMPK expression – an effect that could be blocked by the GJIC inhibitor, carbenoxolone. Although GJICs are mainly formed by connexins, a new family of GJIC molecules designated pannexins has been recently identified. PC-3 cells expressed both connexin43 (Cx43) and Pannexin1 (Panx1), but Panx1 expression predominated at the plasma membrane, whereas Cx43 expression was primarily localized to the cytosol. The contribution of bystander effects to the reduction of solid tumor xenografts established by the PC-3 cell line was evaluated in an animal model. We demonstrate the contribution of bystander cell killing to tumor regression in a xenograft model relying on the delivery of expression of the TMPK suicide gene into tumors via direct intratumoral injection of recombinant therapeutic lentivirus. Taken together, our data underscore that the TMPK/AZT enzyme-prodrug axis can be effectively utilized in suicide gene therapy of solid tumors, wherein significant tumor regression can be achieved via bystander effects mediated by GJICs.
Collapse
Affiliation(s)
- Takeya Sato
- Molecular Pharmacology, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Anton Neschadim
- Research & Development, Canadian Blood Services, Toronto, Ontario, Canada
| | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612. [PMID: 23894720 PMCID: PMC3716755 DOI: 10.4161/onci.24612] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term "oncolytic viruses" is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called "oncotropic viruses" in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Mineharu Y, Muhammad AKMG, Yagiz K, Candolfi M, Kroeger KM, Xiong W, Puntel M, Liu C, Levy E, Lugo C, Kocharian A, Allison JP, Curran MA, Lowenstein PR, Castro MG. Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model. Neurotherapeutics 2012; 9:827-43. [PMID: 22996231 PMCID: PMC3480576 DOI: 10.1007/s13311-012-0144-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Yohei Mineharu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - AKM Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Eva Levy
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Claudia Lugo
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Adrina Kocharian
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| |
Collapse
|
50
|
|