1
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
2
|
Yoon AR, Jiao A, Hong J, Kim B, Yun CO. Tumor microenvironment-modulating oncolytic adenovirus combined with GSK-3β inhibitor enhances antitumor immune response against bladder cancer. Front Immunol 2024; 15:1360436. [PMID: 38812516 PMCID: PMC11133599 DOI: 10.3389/fimmu.2024.1360436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Bladder cancer is a common type of cancer around the world, and the majority of patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC). Although low-risk NMIBC has a good prognosis, the disease recurrence rate and development of treatment-refractory disease remain high in intermediate- to high-risk NMIBC patients. To address these challenges for the treatment of NMIBC, a novel combination therapy composed of an oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and relaxin (RLX; HY-oAd) and a clinical-stage glycogen synthase kinase (GSK)-3β inhibitor (9-ING-41; elraglusib) was investigated in the present report. Our findings demonstrate that HY-oAd and 9-ING-41 combination therapy (HY-oAd+9-ING-41) exerted superior inhibition of tumor growth compared with respective monotherapy in a syngeneic NMIBC tumor model. HY-oAd+9-ING-41 induced high-level tumor extracellular matrix (ECM) degradation and a more potent antitumor immune response than the respective monotherapy. In detail, HY-oAd+9-ING-41 induced superior accumulation of intratumoral T cells, prevention of immune cell exhaustion, and induction of tumor-specific adaptive immune response compared to either monotherapy. Collectively, these results demonstrate that the combination of HY-oAd and 9-ING-41 may be a promising approach to elicit a potent antitumor immune response against bladder cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| | - Bomi Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
3
|
Zou H, Mou X, Zhu B. Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200094. [PMID: 36618103 PMCID: PMC9818137 DOI: 10.1002/gch2.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Oncolytic viruses have found a good place in the treatment of cancer. Administering oncolytic viruses directly or by applying genetic changes can be effective in cancer treatment through the lysis of tumor cells and, in some cases, by inducing immune system responses. Moreover, oncolytic viruses induce antitumor immune responses via releasing tumor antigens in the tumor microenvironment (TME) and affect tumor cell growth and metabolism. Despite the success of virotherapy in cancer therapies, there are several challenges and limitations, such as immunosuppressive TME, lack of effective penetration into tumor tissue, low efficiency in hypoxia, antiviral immune responses, and off-targeting. Evidence suggests that oncolytic viruses combined with cancer immunotherapy-based methods such as immune checkpoint inhibitors and adoptive cell therapies can effectively overcome these challenges. This review summarizes the latest data on the use of oncolytic viruses for the treatment of cancer and the challenges of this method. Additionally, the effectiveness of mono, dual, and triple therapies using oncolytic viruses and other anticancer agents has been discussed based on the latest findings.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Zhou Mou
- General SurgeryCancer CenterDepartment of Hepatobiliary and Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College)Hangzhou310014China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang ProvinceZhejiang Provincial People's HospitalAffiliated People's Hospital of Hangzhou Medical CollegeHangzhou310014China
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
4
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
5
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
6
|
Yoon AR, Jung BK, Choi E, Chung E, Hong J, Kim JS, Koo T, Yun CO. CRISPR-Cas12a with an oAd Induces Precise and Cancer-Specific Genomic Reprogramming of EGFR and Efficient Tumor Regression. Mol Ther 2020; 28:2286-2296. [PMID: 32682455 PMCID: PMC7545006 DOI: 10.1016/j.ymthe.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022] Open
Abstract
CRISPR-Cas12a represents a class 2/type V CRISPR RNA-guided endonuclease, holding promise as a precise genome-editing tool in vitro and in vivo. For efficient delivery of the CRISPR-Cas system into cancer, oncolytic adenovirus (oAd) has been recognized as a promising alternative vehicle to conventional cancer therapy, owing to its cancer specificity; however, to our knowledge, it has not been used for genome editing. In this study, we show that CRISPR-Cas12a mediated by oAd disrupts the oncogenic signaling pathway with excellent cancer specificity. The intratumoral delivery of a single oAd co-expressing a Cas12a and a CRISPR RNA (crRNA) targeting the epidermal growth factor receptor (EGFR) gene (oAd/Cas12a/crEGFR) induces efficient and precise editing of the targeted EGFR gene in a cancer-specific manner, without detectable off-target nuclease activity. Importantly, oAd/Cas12a/crEGFR elicits a potent antitumor effect via robust induction of apoptosis and inhibition of tumor cell proliferation, ultimately leading to complete tumor regression in a subset of treated mice. Collectively, in this study we show precise genomic reprogramming via a single oAd vector-mediated CRISPR-Cas system and the feasibility of such system as an alternative cancer therapy.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Bo-Kyeong Jung
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunyoung Choi
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd., Seoul 04763, Republic of Korea
| | - Jin-Soo Kim
- Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| | - Taeyoung Koo
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd., Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Santry LA, van Vloten JP, Knapp JP, Matuszewska K, McAusland TM, Minott JA, Mould RC, Stegelmeier AA, Major PP, Wootton SK, Petrik JJ, Bridle BW. Tumour vasculature: Friend or foe of oncolytic viruses? Cytokine Growth Factor Rev 2020; 56:69-82. [PMID: 32893095 DOI: 10.1016/j.cytogfr.2020.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses. These differing mechanisms have led to a paradoxical divergence in strategies employed to further increase the potency of oncolytic virotherapies. On one hand, the tumour neovasculature is seen as a vital lifeline to the survival of the tumour, leading some to use OVs to target the tumour vasculature in hopes to starve cancers. Therapeutics causing vascular collapse can potentiate tumour hypoxia, nutrient restriction and pro-inflammatory cytokine release, which has shown promise in oncological studies. On the other hand, the same vasculature plays an important role for the dissemination of OVs, trafficking of effector cells and other therapeutics, which has prompted researchers to find ways of normalizing the vasculature to enhance infiltration of leukocytes and delivery of therapeutic agents. This article describes the recent developments of therapies aimed to shut down versus normalize tumour vasculature in order to inform researchers striving to optimize OV-based therapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jason P Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Kathy Matuszewska
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Pierre P Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
8
|
Morshneva A, Gnedina O, Marusova T, Igotti M. Expression of Adenoviral E1A in Transformed Cells as an Additional Factor of HDACi-Dependent FoxO Regulation. Cells 2019; 9:E97. [PMID: 31906031 PMCID: PMC7016946 DOI: 10.3390/cells9010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022] Open
Abstract
The adenoviral early region 1A (E1A) protein has proapoptotic and angiogenic activity, along with its chemosensitizing effect, making it the focus of increased interest in the context of cancer therapy. It was previously shown that E1A-induced chemosensitization to different drugs, including histone deacetylases inhibitors (HDACi), appears to be mediated by Forkhead box O (FoxO) transcription factors. In this study, we explore the relationship between E1A expression and the modulation of FoxO activity with HDACi sodium butyrate (NaBut). We show here that the basal FoxO level is elevated in E1A-expressing cells. Prolonged NaBut treatment leads to the inhibition of the FoxO expression and activity in E1A-expressing cells. However, in E1A-negative cells, NaBut promotes the transactivation ability of FoxO over time. A more detailed investigation revealed that the NaBut-induced decrease of FoxO activity in E1A-expressing cells is due to the NaBut-dependent decrease in E1A expression. Therefore, NaBut-induced inhibition of FoxO in E1A-positive cells can be overcome under unregulated overexpression of E1A. Remarkably, the CBP/p300-binding domain of E1Aad5 is responsible for stabilization of the FoxO protein. Collectively, these data show that the expression of E1A increases the FoxO stability but makes the FoxO level more sensitive to HDACi treatment.
Collapse
Affiliation(s)
| | | | | | - Maria Igotti
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.M.); (O.G.); (T.M.)
| |
Collapse
|
9
|
Yang X, Li S, Wang H, Chen W, Mou X, Wang S. Expression of coxsackie and adenovirus receptor is correlated with inferior prognosis in liver cancer patients. Oncol Lett 2018; 17:2485-2490. [PMID: 30719117 DOI: 10.3892/ol.2018.9868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/07/2018] [Indexed: 01/07/2023] Open
Abstract
The coxsackie and adenovirus receptor (CAR), a tumor suppressor, is vital for the effectiveness of therapies which utilize the adenovirus. However, studies on CAR expression in hepatocellular carcinoma (HCC) are conflicting and its clinical significance requires exploration. In this study, immunohistochemistry has been carried out on tissue microarrays consisting of 198 pairs of HCC and neighboring healthy tissue specimens from Chinese Han patients to evaluate CAR expression. Relative to normal tissues, decreased CAR expression (56% vs. 57%; P>0.05) was detected in HCC samples. CAR immunopositivity in tumors was not dependent upon sex, age, tumor dimensions, differentiation, TNM stage or metastasis in HCC patients; however, positive expression was observed in 56% of the samples from patients with hepatic metastasis, which was the same as those devoid of metastasis (56%; P=0.042). Furthermore, survival analysis confirmed that the expression of CAR revealed no correlation with the prognosis. It was established that CAR exerted complex effects during liver tumorigenesis, potentially based on the stage of the cancer. Therefore, CAR expression analysis has to be carried out prior to adenoviral oncolytic therapy to stratify the patients.
Collapse
Affiliation(s)
- Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shuangshuang Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
10
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Ahn HM, Hong J, Yun CO. Oncolytic adenovirus coexpressing interleukin-12 and shVEGF restores antitumor immune function and enhances antitumor efficacy. Oncotarget 2018; 7:84965-84980. [PMID: 27821803 PMCID: PMC5356712 DOI: 10.18632/oncotarget.13087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Tumor microenvironment is extremely immunosuppressive, preventing efficient induction of antitumor immunity. To overcome tumor-mediated immunosuppression and enhance the potency of immunogene therapy, oncolytic adenovirus (Ad) co-expressing interleukin (IL)-12 and vascular endothelial growth factor (VEGF)-specific short hairpin ribonucleic acid (shVEGF; RdB/IL12/shVEGF) was generated. Intratumoral injection of RdB/IL12/shVEGF induced a strong antitumor effect in an immune competent B16-F10 melanoma model. RdB/IL12/shVEGF restored immune surveillance function in tumor tissues and actively recruited immune cells by elevating the expression levels of IL-12 and interferon-γ. RdB/IL12/shVEGF efficiently suppressed expression of immunosuppressive VEGF, resulting in restoration of the antitumor immune response and prevention of thymic atrophy. In situ delivery of RdB/IL12/shVEGF to tumor tissues resulted in massive infiltration of differentiated CD4+ T cells, CD8+ T cells, natural killer cells, and dendritic cells to tissues surrounding the necrotic region of tumor. Furthermore, RdB/IL12/shVEGF induced a potent tumor-specific T helper type 1 immune response, implying that attenuation of the immunosuppressive environment mediated by downregulation of VEGF can significantly enhance immune stimulatory functions in the tumor milieu. Collectively, these findings indicate the potential of inducing and restoring potent antitumor immunity using intratumorally administered oncolytic Ad co-expressing IL-12 and shVEGF.
Collapse
Affiliation(s)
- Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, 222 Wangsimni-ro 133-791, Seoul, Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, 222 Wangsimni-ro 133-791, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, 222 Wangsimni-ro 133-791, Seoul, Korea
| |
Collapse
|
12
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
13
|
Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Ther 2017; 25:54-65. [PMID: 28925992 PMCID: PMC5817393 DOI: 10.1038/gt.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.
Collapse
|
14
|
El-Shemi AG, Ashshi AM, Na Y, Li Y, Basalamah M, Al-Allaf FA, Oh E, Jung BK, Yun CO. Combined therapy with oncolytic adenoviruses encoding TRAIL and IL-12 genes markedly suppressed human hepatocellular carcinoma both in vitro and in an orthotopic transplanted mouse model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:74. [PMID: 27154307 PMCID: PMC4859966 DOI: 10.1186/s13046-016-0353-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gene-based virotherapy mediated by oncolytic viruses is currently experiencing a renaissance in cancer therapy. However, relatively little attention has been given to the potentiality of dual gene virotherapy strategy as a novel therapeutic approach to mediate triplex anticancer combination effects, particularly if the two suitable genes are well chosen. Both tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interleukin-12 (IL-12) have been emerged as promising pharmacological candidates in cancer therapy; however, the combined efficacy of TRAIL and IL-12 genes for treatment of human hepatocellular carcinoma (HCC) remains to be determined. METHODS Herein, we investigated the therapeutic efficacy of concurrent therapy with two armed oncolytic adenoviruses encoding human TRAIL gene (Ad-ΔB/TRAIL) and IL-12 gene (Ad-ΔB/IL-12), respectively, on preclinical models of human HCC, and also elucidated the possible underlying mechanisms. The effects of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy were assessed both in vitro on Hep3B and HuH7 human HCC cell lines and in vivo on HCC-orthotopic model established in the livers of athymic nude mice by intrahepatic implantation of human Hep3B cells. RESULTS Compared to therapy with non-armed control Ad-ΔB, combined therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 elicited profound anti-HCC killing effects on Hep3B and HuH7 cells and on the transplanted Hep3B-orthotopic model. Efficient viral replication and TRAIL and IL-12 expression were also confirmed in HCC cells and the harvested tumor tissues treated with this combination therapy. Mechanistically, co-therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 exhibited an enhanced effect on apoptosis promotion, activation of caspase-3 and-8, generation of anti-tumor immune response evidenced by upregulation of interferon gamma (IFN-γ) production and infiltration of natural killer-and antigen presenting cells, and remarkable repression of intratumor vascular endothelial growth factor (VEGF) and cluster of differentiation 31 (CD31) expression and tumor microvessel density. CONCLUSIONS Overall, our data showed a favorable therapeutic effect of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy against human HCC, and may therefore constitute a promising and effective therapeutic strategy for treating human HCC. However, further studies are warranted for its reliable clinical translation.
Collapse
Affiliation(s)
- Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia. .,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ahmad Mohammed Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Korea
| | - Yan Li
- Graduate Program for Nanomedical Science, Yonsei University, Seoul, Korea
| | - Mohammed Basalamah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Faisal Ahmad Al-Allaf
- Science and Technology Unit & Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Korea
| | - Bo-Kyeong Jung
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Korea.
| |
Collapse
|
15
|
Abstract
In this study, Kim et al. identified WD repeat and SOCS box-containing protein 1 (WSB1) as a novel regulator of pVHL through WSB1's E3 ligase activity. These findings provide important new insights into the understanding of misregulation of the pVHL–HIF pathway in cancer cell invasion and metastasis. The von Hippel-Lindau tumor suppressor pVHL is an E3 ligase that targets hypoxia-inducible factors (HIFs). Mutation of VHL results in HIF up-regulation and contributes to processes related to tumor progression such as invasion, metastasis, and angiogenesis. However, very little is known with regard to post-transcriptional regulation of pVHL. Here we show that WD repeat and SOCS box-containing protein 1 (WSB1) is a negative regulator of pVHL through WSB1's E3 ligase activity. Mechanistically, WSB1 promotes pVHL ubiquitination and proteasomal degradation, thereby stabilizing HIF under both normoxic and hypoxic conditions. As a consequence, WSB1 up-regulates the expression of HIF-1α’s target genes and promotes cancer invasion and metastasis through its effect on pVHL. Consistent with this, WSB1 protein level negatively correlates with pVHL level and metastasis-free survival in clinical samples. This work reveals a new mechanism of pVHL's regulation by which cancer acquires invasiveness and metastatic tendency.
Collapse
|
16
|
Passaro C, Borriello F, Vastolo V, Di Somma S, Scamardella E, Gigantino V, Franco R, Marone G, Portella G. The oncolytic virus dl922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma. Oncotarget 2016; 7:1500-15. [PMID: 26625205 PMCID: PMC4811476 DOI: 10.18632/oncotarget.6430] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/15/2015] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human solid tumor and current treatments are ineffective in increasing patients' survival. Thus, the development of new therapeutic approaches for ATC is needed. We have previously shown that the oncolytic adenovirus dl922-947 induces ATC cell death in vitro and tumor regression in vivo. However, the impact of dl922-947 on the pro-tumorigenic ATC microenvironment is still unknown. Since viruses are able to regulate cytokine and chemokine production from infected cells, we sought to investigate whether dl922-947 virotherapy has such effect on ATC cells, thereby modulating ATC microenvironment. dl922-947 decreased IL-8/CXCL8 and MCP-1/CCL2 production by the ATC cell lines 8505-c and BHT101-5. These results correlated with dl922-947-mediated reduction of NF-κB p65 binding to IL8 promoter in 8505-c and BHT101-5 cells and CCL2 promoter in 8505-c cells. IL-8 stimulates cancer cell proliferation, survival and invasion, and also angiogenesis. dl922-947-mediated reduction of IL-8 impaired ATC cell motility in vitro and ATC-induced angiogenesis in vitro and in vivo. We also show that dl922-947-mediated reduction of the monocyte-attracting chemokine CCL2 decreased monocyte chemotaxis in vitro and tumor macrophage density in vivo. Interestingly, dl922-947 treatment induced the switch of tumor macrophages toward a pro-inflammatory M1 phenotype, likely by increasing the expression of the pro-inflammatory cytokine interferon-γ. Altogether, we demonstrate that dl922-947 treatment re-shape the pro-tumorigenic ATC microenvironment by modulating cancer-cell intrinsic factors and the immune response. An in-depth knowledge of dl922-947-mediated effects on ATC microenvironment may help to refine ATC virotherapy in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Carmela Passaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Viviana Vastolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Eloise Scamardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Gigantino
- CNR Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Naples, Italy
| | - Renato Franco
- Experimental Oncology, IRCCS Fondazione Pascale, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- CNR Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Ulasov I, Borovjagin AV, Kaverina N, Schroeder B, Shah N, Lin B, Baryshnikov A, Cobbs C. MT1-MMP silencing by an shRNA-armed glioma-targeted conditionally replicative adenovirus (CRAd) improves its anti-glioma efficacy in vitro and in vivo. Cancer Lett 2015; 365:240-50. [PMID: 26052095 DOI: 10.1016/j.canlet.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/28/2022]
Abstract
MMP14 (MT1-MMP) is a cell membrane-associated proteinase of the extracellular matrix, whose biological roles vary from angiogenesis to cell proliferation and survival. We recently found a direct correlation between MMP14 expression levels in brain tumors of glioma patients and the disease progression. By using gene silencing as an experimental approach we found that MMP14 knockdown decreases production of pro-angiogenic factors such as VEGF and IL8 and thereby suppresses angiogenesis in glioma tumors. Although the clinical relevance of MMP14 down-regulation and its possible implications for glioma therapy in humans remain unclear, we observed a significant improvement in animal survival upon down-regulation of MMP14 in murine intracranial glioma xenografts infected with MMP14 shRNA-expressing CRAd. We further found that down-regulation of MMP14 in gliomas by combinational treatment with CRAd-S-5/3 and Marimastat, a chemical inhibitor of metalloproteinases, augments suppression of pro-angiogenic factors, caused by the replication-competent adenovirus. We also demonstrated that delivery of MMP14-targeting shRNA by a fiber-modified adenoviral vector to the glioma cells effectively suppresses their proliferation in vitro and in vivo. Thus our data indicate that inhibition of MMP14 expression in tumors in combination with glioma virotherapy could be effectively utilized to suppress angiogenesis and neovascularization of glioma tumors by decreasing production of pro-angiogenic factors.
Collapse
Affiliation(s)
- Ilya Ulasov
- Center for Advanced Brain Tumor Center, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA 98122, USA; Laboratory of Experimental Diagnostics and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 123481, Russia.
| | - Anton V Borovjagin
- School of Dentistry, Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Natalya Kaverina
- Laboratory of Experimental Diagnostics and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 123481, Russia
| | - Brett Schroeder
- College of Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Nameeta Shah
- Center for Advanced Brain Tumor Center, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA 98122, USA
| | - Biaoyang Lin
- Center for Advanced Brain Tumor Center, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA 98122, USA
| | - Anatoly Baryshnikov
- Laboratory of Experimental Diagnostics and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 123481, Russia
| | - Charles Cobbs
- Center for Advanced Brain Tumor Center, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA 98122, USA.
| |
Collapse
|
18
|
Choi IK, Shin H, Oh E, Yoo JY, Hwang JK, Shin K, Yu DC, Yun CO. Potent and long-term antiangiogenic efficacy mediated by FP3-expressing oncolytic adenovirus. Int J Cancer 2015; 137:2253-69. [PMID: 25944623 DOI: 10.1002/ijc.29592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023]
Abstract
Various ways to inhibit vascular endothelial growth factor (VEGF), a key facilitator in tumor angiogenesis, are being developed to treat cancer. The soluble VEGF decoy receptor (FP3), due to its high affinity to VEGF, is a highly effective and promising strategy to disrupt VEGF signaling pathway. Despite potential advantage and potent therapeutic efficacy, its employment has been limited by very poor in vivo pharmacokinetic properties. To address this challenge, we designed a novel oncolytic adenovirus (Ad) expressing FP3 (RdB/FP3). To demonstrate the VEGF-specific nature of RdB/FP3, replication-incompetent Ad expressing FP3 (dE1/FP3) was also generated. dE1/FP3 was highly effective in reducing VEGF expression and functionally elicited an antiangiogeneic effect. Furthermore, RdB/FP3 exhibited a potent antitumor effect compared with RdB or recombinant FP3. Consistent with these data, RdB/FP3 was shown to greatly decrease VEGF expression level and vessel density and increase apoptosis in both tumor endothelial and tumor cells, verifying potent suppressive effects of RdB/FP3 on VEGF-mediated tumor angiogenesis in vivo. Importantly, the therapeutic mechanism of antitumor effect mediated by RdB/FP3 is associated with prolonged VEGF silencing efficacy and enhanced oncolysis via cancer cell-specific replication of oncolytic Ad. Taken together, RdB/FP3 provides a new promising therapeutic approach in the treatment of cancer and angiogenesis-related diseases.
Collapse
Affiliation(s)
- Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - Hyewon Shin
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - Ji Young Yoo
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - Kyungsub Shin
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| | - De-Chao Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, Korea
| |
Collapse
|
19
|
Angarita FA, Acuna SA, Ottolino-Perry K, Zerhouni S, McCart JA. Mounting a strategic offense: fighting tumor vasculature with oncolytic viruses. Trends Mol Med 2013; 19:378-92. [PMID: 23540715 DOI: 10.1016/j.molmed.2013.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Blood supply within a tumor drives progression and ultimately allows for metastasis. Many anticancer therapies target tumor vasculature, but their individual effectiveness is limited because they induce indirect cell death. Agents that disrupt nascent and/or established tumor vasculature while simultaneously killing cancer cells would certainly have a greater impact. Oncolytic virotherapy utilizes attenuated viruses that replicate specifically within a tumor. They induce cytotoxicity through a combination of direct cell lysis, antitumor immune stimulation, and recently identified antitumor vascular effects. This review summarizes the novel preclinical and clinical evidence regarding the antitumor vascular effects of oncolytic viruses, which include infection and lysis of tumor endothelial cells, natural or genetically engineered antiangiogenic properties, and combination therapy with clinically approved antivascular agents.
Collapse
Affiliation(s)
- Fernando A Angarita
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2M1 Canada
| | | | | | | | | |
Collapse
|
20
|
Lee JS, Hur MW, Lee SK, Choi WI, Kwon YG, Yun CO. A novel sLRP6E1E2 inhibits canonical Wnt signaling, epithelial-to-mesenchymal transition, and induces mitochondria-dependent apoptosis in lung cancer. PLoS One 2012; 7:e36520. [PMID: 22606268 PMCID: PMC3351461 DOI: 10.1371/journal.pone.0036520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 04/03/2012] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy. We designed a Wnt antagonist sLRP6E1E2, and generated a replication-incompetent adenovirus (Ad), dE1-k35/sLRP6E1E2, and a replication-competent oncolytic Ad, RdB-k35/sLRP6E1E2, both expressing sLRP6E1E2. sLRP6E1E2 prevented Wnt-mediated stabilization of cytoplasmic β-catenin, decreased Wnt/β-catenin signaling and cell proliferation via the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways. sLRP6E1E2 induced apoptosis, cytochrome c release, and increased cleavage of PARP and caspase-3. sLRP6E1E2 suppressed growth of the human lung tumor xenograft, and reduced motility and invasion of cancer cells. In addition, sLRP6E1E2 upregulated expression of epithelial marker genes, while sLRP6E1E2 downregulated mesenchymal marker genes. Taken together, sLRP6E1E2, by inhibiting interaction between Wnt and its receptor, suppressed Wnt-induced cell proliferation and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jung-Sun Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Kyung Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Il Choi
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry and Molecular Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 2011; 19:1558-68. [PMID: 21468000 PMCID: PMC3149171 DOI: 10.1038/mt.2011.29] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dendritic cell (DC)-based vaccination is a promising strategy for cancer immunotherapy. However, clinical trials have indicated that immunosuppressive microenvironments induced by tumors profoundly suppress antitumor immunity and inhibit vaccine efficacy, resulting in insufficient reduction of tumor burdens. To overcome these obstacles and enhance the efficiency of DC vaccination, we generated interleukin (IL)-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-coexpressing oncolytic adenovirus (Ad-ΔB7/IL12/GMCSF) as suitable therapeutic adjuvant to eliminate immune suppression and promote DC function. By treating tumors with Ad-ΔB7/IL12/GMCSF prior to DC vaccination, DCs elicited greater antitumor effects than in response to either treatment alone. DC migration to draining lymph nodes (DLNs) dramatically increased in mice treated with the combination therapy. This result was associated with upregulation of CC-chemokine ligand 21 (CCL21+) lymphatics in tumors treated with Ad-ΔB7/IL12/GMCSF. Moreover, the proportion of CD4+CD25+ T-cells and vascular endothelial growth factor (VEGF) expression was decreased in mice treated with the combination therapy. Furthermore, combination therapy using immature DCs also showed effective antitumor effects when combined with Ad-ΔB7/IL12/GMCSF. The combination therapy had a remarkable therapeutic efficacy on large tumors. Taken together, oncolytic adenovirus coexpressing IL-12 and GM-CSF in combination with DC vaccination has synergistic antitumor effects and can act as a potent adjuvant for promoting and optimizing DC vaccination.
Collapse
|
22
|
Holzmüller R, Mantwill K, Haczek C, Rognoni E, Anton M, Kasajima A, Weichert W, Treue D, Lage H, Schuster T, Schlegel J, Gänsbacher B, Holm PS. YB-1 dependent virotherapy in combination with temozolomide as a multimodal therapy approach to eradicate malignant glioma. Int J Cancer 2011; 129:1265-76. [DOI: 10.1002/ijc.25783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/03/2010] [Indexed: 12/23/2022]
|
23
|
Cherry T, Longo SL, Tovar-Spinoza Z, Post DE. Second-generation HIF-activated oncolytic adenoviruses with improved replication, oncolytic, and antitumor efficacy. Gene Ther 2010; 17:1430-41. [PMID: 20664541 PMCID: PMC2978277 DOI: 10.1038/gt.2010.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is a need to develop more potent oncolytic adenoviruses that exhibit increased anti-tumor activity in patients. The HYPR-Ads are targeted oncolytic adenoviruses that specifically kill tumor cells which express active hypoxia-inducible factor (HIF). While therapeutically efficacious, the HYPR-Ads exhibited attenuated replication and oncolytic activity. To overcome these deficiencies and improve anti-tumor efficacy, we created new HIF-activated oncolytic Ads, HIF-Ad and HIF-Ad-IL4, which have two key changes: (i) a modified HIF-responsive promoter to regulate the E1A replication gene and (ii) insertion of the E3 gene region. The HIF-Ads demonstrated conditional activation of E1A expression under hypoxia. Importantly, the HIF-Ads exhibit hypoxia-dependent replication, oncolytic, and cellular release activities and potent anti-tumor efficacy, all of which are significantly greater than the HYPR-Ads. Notably, HIF-Ad-IL4 treatment led to regressions in tumor size by 70% and extensive tumor infiltration by leukocytes resulting in an anti-tumor efficacy that is up to 6-fold greater than the HYPR-Ads, HIF-Ad, and wild-type adenovirus treatment. These studies demonstrate that treatment with a HIF-activated oncolytic adenovirus leads to a measurable therapeutic response. The novel design of the HIF-Ads represents a significant improvement compared to first-generation oncolytic Ads and has great potential to increase the efficacy of this cancer therapy.
Collapse
Affiliation(s)
- T Cherry
- Department of Neurosurgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
24
|
Kaur B, Cripe TP, Chiocca EA. "Buy one get one free": armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 2010; 9:341-55. [PMID: 19860649 DOI: 10.2174/156652309789753329] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oncolytic viral therapy is a promising biological therapy for the treatment of cancer. Recent advances in genetic engineering have facilitated the construction of custom-built oncolytic viruses that can be exquisitely targeted to tumors by exploiting each cancer's unique biology and their efficacy can be further enhanced by "arming" them with additional therapeutic genes. Such an approach allows the virus to unload its "therapeutic cargo" at the tumor site, thereby enhancing its anti-neoplastic properties. While several clever strategies have been recently described using genes that can induce cellular apoptosis/suicide and/or facilitate tumor/virus imaging, viruses armed with genes that also affect the tumor microenvironment present an exciting and promising approach to therapy. In this review we discuss recently developed oncolytic viruses armed with genes encoding for angiostatic factors, inflammatory cytokines, or proteases that modulate the extracellular matrix to regulate tumor vascularization, anti-tumor immune responses and viral spread throughout the solid tumor.
Collapse
Affiliation(s)
- Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, 400 West 12th Avenue, Columbus, OH 43210,USA.
| | | | | |
Collapse
|
25
|
Kaliberova LN, Della Manna DL, Krendelchtchikova V, Black ME, Buchsbaum DJ, Kaliberov SA. Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene. Mol Cancer Ther 2008; 7:2845-54. [PMID: 18790765 DOI: 10.1158/1535-7163.mct-08-0347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The combination of molecular chemotherapy with radiation therapy has the potential to become a powerful approach for treatment of pancreatic cancer. We have developed an adenoviral vector (AdbCD-D314A) encoding a mutant bacterial cytosine deaminase (bCD) gene, which converts the prodrug 5-fluorocytosine (5-FC) into the active drug 5-fluorouracil. The aim of this study was to investigate AdbCD-D314A/5-FC-mediated cytotoxicity in vitro and therapeutic efficacy in vivo alone and in combination with radiation against human pancreatic cancer cells and xenografts. AdbCD-D314A/5-FC-mediated cytotoxicity alone and in combination with radiation was analyzed using crystal violet inclusion and clonogenic survival assays. CD enzyme activity was determined by measuring conversion of [3H]5-FC to [3H]5-fluorouracil after adenoviral infection of pancreatic cancer cells in vitro and pancreatic tumor xenografts by TLC. S.c. pancreatic tumor xenografts were used to evaluate the therapeutic efficacy of AdbCD-D314A/5-FC molecular chemotherapy in combination with radiation therapy. AdbCD-D314A infection resulted in increased 5-FC-mediated pancreatic cancer cell killing that correlated with significantly enhanced CD enzyme activity compared with AdbCDwt encoding wild-type of bCD. Animal studies showed significant inhibition of growth of human pancreatic tumors treated with AdbCD-D314A/5-FC in comparison with AdbCDwt/5-FC. Also, a significantly greater inhibition of growth of Panc2.03 and MIA PaCA-2 tumor xenografts was produced by the combination of AdbCD-D314A/5-FC with radiation compared with either agent alone. The results indicate that the combination of AdbCD-D314A/5-FC molecular chemotherapy with radiation therapy significantly enhanced cytotoxicity of pancreatic cancer cells in vitro and increased therapeutic efficacy against human pancreatic tumor xenografts.
Collapse
Affiliation(s)
- Lyudmila N Kaliberova
- Department of Radiation Oncology, University of Alabama at Birmingham, 1530 3rd Avenue South, WTI 674, Birmingham, AL 35294-6832, USA
| | | | | | | | | | | |
Collapse
|
26
|
Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM. Molecular targeted therapies for pancreatic cancer. Am J Surg 2008; 196:430-41. [PMID: 18718222 DOI: 10.1016/j.amjsurg.2008.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pancreatic cancer cells express different mutations that increase the aggressiveness and confer resistance to conventional chemotherapy and radiotherapy. Molecules that selectively bind and inhibit these mutations are effective in other solid tumors and are now emerging as a complementary therapy in pancreatic cancer. The objective of this review is to describe the effect of drugs that inhibit specific mutations present in pancreatic cancer with special emphasis on clinical trials. DATA SOURCES We reviewed the English-language literature (MedLine) addressing the role of drugs that target mutations present in pancreatic cancer. Both preclinical and clinical studies were included. CONCLUSIONS Preclinical evidence supports the combination of conventional approved therapies plus drugs that block epidermal growth factor receptor and vascular growth endothelial factor or induce apoptosis. However, most of the current clinical evidence is limited to small phase I trials evaluating the toxicity and safety of these regimens. The results of additional randomized trials that are still undergoing will clarify the role of these drugs in pancreatic cancer.
Collapse
|
27
|
The Targeted Oncolytic Poxvirus JX-594 Demonstrates Antitumoral, Antivascular, and Anti-HBV Activities in Patients With Hepatocellular Carcinoma. Mol Ther 2008; 16:1637-42. [DOI: 10.1038/mt.2008.143] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
ONYX-411, a conditionally replicative oncolytic adenovirus, induces cell death in anaplastic thyroid carcinoma cell lines and suppresses the growth of xenograft tumors in nude mice. Cancer Gene Ther 2008; 15:750-7. [PMID: 18583996 DOI: 10.1038/cgt.2008.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer variant, accounting for 1-2% of all cases, but 33% of deaths, and exhibiting an average life expectancy of 5 months. ATC is largely unresponsive to radioactive iodine, chemotherapy, external beam radiation or surgery, underscoring the need for new and effective therapies. We evaluated the therapeutic potential of an oncolytic adenovirus, ONYX-411, that replicates selectively in and kills cells with dysfunction of the retinoblastoma (RB) pathway. In the present study, we report that ONYX-411 is able to induce cell death in eight human anaplastic carcinoma cell lines in vitro. The cytopathic effect of the virus is specific to cells with RB dysfunction, which appears to be frequent in ATC. We confirmed the expression of the coxsackie adenovirus receptor, CAR, in all ATC cell lines, demonstrating the potentially universal application of this oncolytic viral therapy to ATC. In addition, the growth of xenograft tumors induced in athymic mice with the ARO and DRO cell lines was significantly reduced by ONYX-411 treatment. These results indicate that ONYX-411 can be a potential therapeutic agent for the treatment of ATC, rendering this class of conditionally replicating adenoviruses an attractive candidate for clinical trials.
Collapse
|
29
|
Novel cancer antiangiotherapy using the VEGF promoter-targeted artificial zinc-finger protein and oncolytic adenovirus. Mol Ther 2008; 16:1033-40. [PMID: 18398429 DOI: 10.1038/mt.2008.63] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inhibition of tumor angiogenesis through modulation of vascular endothelial growth factor (VEGF) and its signaling pathway has been clinically validated as a viable therapeutic modality in the treatment of cancer. The use of artificial transcription factors based on Cys2-His2 zinc-finger proteins (ZFPs) targeting the VEGF promoter offers a novel strategy for modulating VEGF levels in tumors. In order to demonstrate the utility of VEGF-targeted ZFPs as therapeutic agents, we generated adenoviruses (Ads) expressing VEGF promoter-targeted transcriptional repressor ZFP, F435-KOX. A replication-incompetent Ad expressing F435-KO X, namely, Ad-DeltaE1-KOX, significantly reduced VEGF expression and functionally led to inhibition of angiogenesis. In vivo, an oncolytic Ad expressing F435-KOX, namely, Ad-DeltaB7-KOX, elicited a pronounced antitumor effect against a human glioblastoma xenograft model, U87MG. Further, consistent with its expected mechanism of action, Ad-DeltaB7-KOX was shown to greatly reduce the level of VEGF and vessel density in tumor tissue and increase terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells in tumors. Survival rates were also significantly increased in Ad-DeltaB7-KOX-treated mice. Taken together, the findings from this study identify F435-KOX as a novel and potent ZFP transcription factor that can inhibit VEGF-A-mediated angiogenesis and offer a novel therapeutic modality in the treatment of cancer.
Collapse
|
30
|
Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition. Gene Ther 2008; 15:635-51. [DOI: 10.1038/gt.2008.3] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ, Yun CO. VEGF-specific Short Hairpin RNA–expressing Oncolytic Adenovirus Elicits Potent Inhibition of Angiogenesis and Tumor Growth. Mol Ther 2007; 15:295-302. [PMID: 17235307 DOI: 10.1038/sj.mt.6300023] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA interference is being developed to treat cancer. Although highly target specific, its use has been limited by its short duration of expression. To overcome this shortcoming, we constructed an oncolytic adenovirus (Ad)-based short hairpin RNA (shRNA) expression system (Ad-DeltaB7-shVEGF) against vascular endothelial growth factor (VEGF), a key mediator in angiogenesis. To demonstrate the VEGF-specific nature of this Ad-based shRNA, replication-incompetent Ad expressing VEGF-specific shRNA (Ad-DeltaE1-shVEGF) was also generated. Ad-DeltaE1-shVEGF was highly effective in reducing VEGF expression, and elicited an antiangiogenic effect in vitro and in vivo. Similarly, Ad-DeltaB7-shVEGF exhibited potent antiangiogenic effects in the matrigel plug assay. Moreover, Ad-DeltaB7-shVEGF demonstrated a greater antitumor effect and enhanced survival compared to the cognate control oncolytic Ad, Ad-DeltaB7. Ad-DeltaB7-shVEGF induced significant reduction in tumor vasculature, verifying the antiangiogenic mechanism. Furthermore, both the duration and magnitude of gene silencing by Ad-DeltaB7-shVEGF was greater than Ad-DeltaE1-shVEGF. These results suggest that the combined effects of oncolytic viral therapy and cancer cell-specific expression of VEGF-targeted shRNA elicits greater antitumor effect than an oncolytic Ad alone.
Collapse
Affiliation(s)
- Ji Young Yoo
- Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Treatment options for pancreatic cancer have limited success and it is therefore an appropriate target for the development of new strategies, including gene therapy. Gene therapy approaches include inhibition of activated oncogenes (KRAS, LSM1) with antisense and RNA interference strategies, replacement of inactivated tumour suppressor genes (TP53, CDKN2A, CDKN1A), targeting of cell signalling pathways, gene-directed prodrug-activation therapies and the use of replication-competent oncolytic viruses. Angiogenesis and apoptosis have also been targeted for gene therapy. Clinical trials of gene therapy have shown only moderate anti-tumour effects. As there are many genetic abnormalities in pancreatic cancer, strategies combining different targets or indeed different modalities of treatment, may be more successful. Identification of new targets and improvements in delivery and targeting may further improve the efficacy of gene therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Madhumita Bhattacharyya
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London.
| | | |
Collapse
|