1
|
Hattori Y, Yamashita J, Sakaida C, Kawano K, Yonemochi E. Evaluation of antitumor effect of zoledronic acid entrapped in folate-linked liposome for targeting to tumor-associated macrophages. J Liposome Res 2014; 25:131-40. [DOI: 10.3109/08982104.2014.954128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Yu CF, Hong JH, Chiang CS. The roles of macrophages and nitric oxide in interleukin-3-enhanced HSV-Sr39tk-mediated prodrug therapy. PLoS One 2013; 8:e56508. [PMID: 23441198 PMCID: PMC3575414 DOI: 10.1371/journal.pone.0056508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/10/2013] [Indexed: 11/24/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV-sr39tk/GCV) system is a well-established prodrug system used in cancer gene therapy. However, this system is currently not effective enough to eradicate malignant tumors completely. This study aimed to evaluate whether co-expression of interleukin-3 (IL-3) could enhance the anti-tumor activity of HSV-sr39tk/GCV prodrug gene therapy using a murine TRAMP-C1 prostate tumor model. In vitro results demonstrated that HSV-sr39tk-transfected cells exhibited enhanced sensitivity to the GCV prodrug, which was not affected by co-expression of the mIL-3 gene. However, in vivo studies showed that co-expression of the mIL-3 gene significantly increased the HSV-sr39tk/GCV-induced tumor growth delay and even cured the tumor. The TRAMP-C1-specific immune response of spleen lymphocytes from mice bearing HSV-sr39tk- and IL-3-expressing TRAMP-C1 tumors was measured by ELISA. Results showed that IL-3-activated IL-4-dominant lymphocytes became IFN-γ- dominant lymphocytes after combined HSV-sr39tk/GCV therapy. The efficacy of combined therapies on tumor regression was reduced when macrophages populations were depleted by carrageenan or NO production was inhibited by administration of the iNOS inhibitor, L-NAME. These results suggest that utilizing a bicistronic vector to express HSV-sr39tk and the IL-3 gene induced an enhanced macrophage- or NO-dependent anti-tumor effect.
Collapse
Affiliation(s)
- Ching-Fang Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ji-Hong Hong
- Department of Radiation Oncology, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Qu L, Wang Y, Gong L, Zhu J, Gong R, Si J. Suicide gene therapy for hepatocellular carcinoma cells by survivin promoter-driven expression of the herpes simplex virus thymidine kinase gene. Oncol Rep 2013; 29:1435-40. [PMID: 23354806 PMCID: PMC4440221 DOI: 10.3892/or.2013.2248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/20/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the selective killing effect of the herpes simplex virus-thymidine kinase/ganciclovir (TK/GCV) suicide gene system controlled by the survivin promoter on hepatocellular carcinoma (HCC) cells in vitro. Recombinant plasmid vectors driven by the survivin promoter were constructed. HepG2 HCC and LO2 normal human liver cells were transfected with the recombinant plasmids, green fluorescent protein (GFP)/pSURV, TK/pSURV and TAT-TK/pSURV. GFP expression was detected by fluoroscopy and flow cytometry (FCM). TK gene expression was detected using RT-PCR and western blot analysis. The selective killing effects after GCV application were evaluated by tetrazolium assay, FCM and western blot analysis. Statistical analysis was performed by ANOVA. After transfection with GFP/pSURV, TK/pSURV and TAT-TK/pSURV for 48 h, GFP expression was observed in the HepG2 cells, but not in the L02 cells and TK gene expression was evidently detected by RT-PCR and western blot analysis in the HepG2 cells. Three stably transfected cell lines (HepG2/pSURV, HepG2/TK/pSURV and HepG2/TAT-TK/pSURV) were successfully established. Compared with the HepG2/TK/pSURV group, a significant ‘bystander effect’ was observed in the HepG2/TAT-TK/pSURV group with the incorporation of unmodifed HepG2 cells at different ratios. Following transfection with TK/pSURV and TAT-TK/pSURV, the growth of HepG2 cells in the presence of GCV was markedly inhibited. This finding was further corroborated by FCM and immunoblot analysis revealed the repressed expression of proliferating cell nuclear antigen (PCNA). Our results showed that the plasmid vectors carrying the TK and TAT-TK fusion protein gene driven by the survivin promoter were successfully constructed and their specific expression in HepG2 cells provided the basis for the targeted gene therapy of HCC.
Collapse
Affiliation(s)
- Lili Qu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | | | | | | | | | | |
Collapse
|
4
|
Marukawa Y, Nakamoto Y, Kakinoki K, Tsuchiyama T, Iida N, Kagaya T, Sakai Y, Naito M, Mukaida N, Kaneko S. Membrane-bound form of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy in a model of hepatocellular carcinoma. Cancer Gene Ther 2012; 19:312-319. [PMID: 22402625 DOI: 10.1038/cgt.2012.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/05/2011] [Accepted: 01/26/2012] [Indexed: 12/16/2022]
Abstract
Suicide gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system combined with monocyte chemoattractant protein-1 (MCP-1) provides significant antitumor efficacy. The current study was designed to evaluate the antitumor immunity of a newly developed membrane-bound form of MCP-1 (mMCP-1) in an immunocompetent mouse model of hepatocellular carcinoma (HCC). A recombinant adenovirus vector (rAd) harboring the human MCP-1 gene and the membrane-spanning domain of the CX3CL1 gene was used. Large amounts of MCP-1 protein were expressed and accumulated on the tumor cell surface. The growth of subcutaneous tumors was markedly suppressed when tumors were treated with mMCP-1, as compared with soluble MCP-1, in combination with the HSV-tk/GCV system (P<0.01). The numbers of Mac-1-, CD4- and CD8a-positive cells were significantly higher in tumor tissues (P<0.05), and tumor necrosis factor (TNF) mRNA expression levels with mMCP-1 were almost five-fold higher than those with soluble MCP-1. These results indicate that the delivery of the mMCP-1 gene greatly enhanced antitumor effects following the apoptotic stimuli by promoting the recruitment and activation of macrophages and T lymphocytes, suggesting a novel strategy of immune-based gene therapy in the treatment of patients with HCC.
Collapse
Affiliation(s)
- Y Marukawa
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kawada K, Hasegawa S, Murakami T, Itatani Y, Hosogi H, Sonoshita M, Kitamura T, Fujishita T, Iwamoto M, Matsumoto T, Matsusue R, Hida K, Akiyama G, Okoshi K, Yamada M, Kawamura J, Taketo MM, Sakai Y. Molecular mechanisms of liver metastasis. Int J Clin Oncol 2011; 16:464-72. [PMID: 21847533 DOI: 10.1007/s10147-011-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is the second most common cancer, and is the third leading cause of cancer-related death in Japan. The majority of these deaths is attributable to liver metastasis. Recent studies have provided increasing evidence that the chemokine-chemokine receptor system is a potential mechanism of tumor metastasis via multiple complementary actions: (a) by promoting cancer cell migration, invasion, survival and angiogenesis; and (b) by recruiting distal stromal cells (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor invasion and metastasis. Here, we discuss recent preclinical and clinical data supporting the view that chemokine pathways are potential therapeutic targets for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In this review, we introduce the changing public perception of vaccines and immunotherapy in cancer treatments. We discuss the roles that different immunosuppressive cells play in the tumor microenvironment. Tumor associated macrophages (TAMs) and M1 and M2 macrophage phenotypes are discussed in depth. Additionally, the role that myeloid derived suppressor cells (MDSC) and T regulatory cells (Tregs) play in the tumor microenvironment is addressed. Highlighted are examples of therapies used against each suppressive cell type, which vary from the hypothetical to the ineffective; the inefficient to the successful. A variety of treatments have been tried to combat this fundamental problem, indeed the cause that allows cancerous mutated cells to survive, multiply and overtake the body. Efficient methods to disable each particular suppressive type of cell have been introduced; this review summarizes the discussion with a table to guide future development. We see gene therapy as the most innovative and flexible method to lead the charge to specifically modifying the tumor microenvironment.
Collapse
Affiliation(s)
- Elizabeth A. Vasievich
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Voisin P, Bouchaud V, Merle M, Diolez P, Duffy L, Flint K, Franconi JM, Bouzier-Sore AK. Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations. FRONTIERS IN NEUROENERGETICS 2010; 2:131. [PMID: 21031160 PMCID: PMC2965014 DOI: 10.3389/fnene.2010.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/14/2010] [Indexed: 01/22/2023]
Abstract
Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, the tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth. However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1 h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the microglial metabolism.
Collapse
Affiliation(s)
- Pierre Voisin
- RMSB Center, Centre National de la Recherche Scientifique/Université Victor Segalen Bordeaux 2 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Touchefeu Y, Harrington KJ, Galmiche JP, Vassaux G. Review article: gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharmacol Ther 2010; 32:953-68. [PMID: 20937041 DOI: 10.1111/j.1365-2036.2010.04424.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gene therapy consists of the introduction of genetic material into cells for a therapeutic purpose. A wide range of gene therapy vectors have been developed and used for applications in gastrointestinal oncology. AIM To review recent developments and published clinical trials concerning the application of gene therapy in the treatment of liver, colon and pancreatic cancers. METHODS Search of the literature published in English using the PubMed database. RESULTS A large variety of therapeutic genes are under investigation, such as tumour suppressor, suicide, antiangiogenesis, inflammatory cytokine and micro-RNA genes. Recent progress concerns new vectors, such as oncolytic viruses, and the synergy between viral gene therapy, chemotherapy and radiation therapy. As evidence of these basic developments, recently published phase I and II clinical trials, using both single agents and combination strategies, in adjuvant or advanced disease settings, have shown encouraging results and good safety records. CONCLUSIONS Cancer gene therapy is not yet indicated in clinical practice. However, basic and clinical advances have been reported and gene therapy is a promising, new therapeutic approach for the treatment of gastrointestinal tumours.
Collapse
Affiliation(s)
- Y Touchefeu
- Institut des Maladies de l'Appareil Digestif, INSERM U, University Hospital, Nantes, France.
| | | | | | | |
Collapse
|
9
|
Maharshak N, Hart G, Ron E, Zelman E, Sagiv A, Arber N, Brazowski E, Margalit R, Elinav E, Shachar I. CCL2 (pM levels) as a therapeutic agent in Inflammatory Bowel Disease models in mice. Inflamm Bowel Dis 2010; 16:1496-504. [PMID: 20222120 DOI: 10.1002/ibd.21254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chemokines regulate the pathways that restrict homing of specific subsets of immune cells, and thereby fine tune the immune response at specific lymphoid and peripheral tissues. CCL2 is a chemokine that induces migration of monocytes, memory T cells, and dendritic cells. Previously, we demonstrated that pM levels of CCL2 dramatically inhibit migration of T cells. The aim was to test whether subphysiological doses of CCL2 can ameliorate murine colitis and inflammation-induced colorectal cancer. METHODS TNBS (2,4,6 trinitrobenzene sulfonic acid) colitis and dextran sodium sulfate (DSS) colitis were induced in Balb/c and C57BL/6 mice, respectively. Mice were treated daily with intraperitoneal CCL2 injections. Disease activity was assessed clinically, histologically, and by measuring inflammatory cytokine levels. In addition, an inflammatory cancer model was induced by azoxymethane-DSS (AOM-DSS) in Balb/c mice. Mice were treated daily with CCL2 for 11 weeks and then assessed for number of tumors in the colons. RESULTS Daily administration of CCL2 (60-120 ng) significantly decreased the development of TNBS- and DSS-induced colitis. In a DSS-AOM model, CCL2-treated mice developed significantly fewer tumors (P < 0.005) at 11 weeks. Chronic inflammation in the CCL2-treated mice was significantly less pronounced as compared to phosphate-buffered saline-treated mice. CONCLUSIONS Administration of pM levels of CCL2 significantly inhibits migration of T cells in amelioration of TNBS and DSS colitis and inhibits development of colorectal cancer in an AOM-DSS colitis model in mice. Thus, pM levels of CCL2 may be clinically beneficial as an antiinflammatory agent in IBD.
Collapse
Affiliation(s)
- N Maharshak
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
YE L, ZHANG GY, LIU T, CHEN XM, YI H, XIAO ZQ, LENG AM, PENG J. Construction of Combination Gene Vector Expressing VEGF-siRNA and Fusion Suicide Gene yCDglyTK and Its Application*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lee SW, Lee YL, Lee YJ, Park SY, Kim IS, Choi TH, Ha JH, Ahn BC, Lee J. Enhanced antitumor effects by combination gene therapy using MDR1 gene shRNA and HSV1-tk in a xenograft mouse model. Cancer Lett 2010; 291:83-9. [DOI: 10.1016/j.canlet.2009.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 12/24/2022]
|
12
|
Bouzier-Sore AK, Ribot E, Bouchaud V, Miraux S, Duguet E, Mornet S, Clofent-Sanchez G, Franconi JM, Voisin P. Nanoparticle phagocytosis and cellular stress: involvement in cellular imaging and in gene therapy against glioma. NMR IN BIOMEDICINE 2010; 23:88-96. [PMID: 19795366 DOI: 10.1002/nbm.1434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In gene therapy against glioma, targeting tumoral tissue is not an easy task. We used the tumor infiltrating property of microglia in this study. These cells are well adapted to this therapy since they can phagocyte nanoparticles and allow their visualization by MRI. Indeed, while many studies have used transfected microglia containing a suicide gene and other internalized nanoparticles to visualize microglia, none have combined both approaches during gene therapy. Microglia cells were transfected with the TK-GFP gene under the control of the HSP(70) promoter. First, the possible cellular stress induced by nanoparticle internalization was checked to avoid a non-specific activation of the suicide gene. Then, MR images were obtained on tubes containing microglia loaded with superparamagnetic nanoparticles (VUSPIO) to characterize their MR properties, as well as their potential to track cells in vivo. VUSPIO were efficiently internalized by microglia, were found non-toxic and their internalization did not induce any cellular stress. VUSPIO relaxivity r(2) was 224 mM(-1).s(-1). Such results could generate a very high contrast between loaded and unloaded cells on T(2)-weighted images. The intracellular presence of VUSPIO does not prevent suicide gene activity, since TK is expressed in vitro and functional in vivo. It allows MRI detection of gene modified macrophages during cell therapy strategies.
Collapse
|
13
|
Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, Hirano H, Arita K, Matsuyama T. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother 2009; 58:1577-86. [PMID: 19238383 PMCID: PMC11030051 DOI: 10.1007/s00262-009-0667-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/20/2009] [Indexed: 01/09/2023]
Abstract
Tumor-associated macrophages (TAMs) are frequently found in glioblastomas and a high degree of macrophage infiltration is associated with a poor prognosis for glioblastoma patients. However, it is unclear whether TAMs in glioblastomas promote tumor growth. In this study, we found that folate receptor beta (FR beta) was expressed on macrophages in human glioblastomas and a rat C6 glioma implanted subcutaneously in nude mice. To target FR beta-expressing TAMs, we produced a recombinant immunotoxin consisting of immunoglobulin heavy and light chain Fv portions of an anti-mouse FR beta monoclonal antibody and Pseudomonas exotoxin A. Injection of the immunotoxin into C6 glioma xenografts in nude mice significantly depleted TAMs and reduced tumor growth. The immunotoxin targeting FR beta-expressing macrophages will provide a therapeutic tool for human glioblastomas.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Masashi Tanaka
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Yasuhiro Tsuneyoshi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Baohui Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Sara A. Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Kazuhisa Hasui
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Hirofumi Hirano
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takami Matsuyama
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| |
Collapse
|
14
|
Hu H, Sun L, Guo C, Liu Q, Zhou Z, Peng L, Pan J, Yu L, Lou J, Yang Z, Zhao P, Ran Y. Tumor cell-microenvironment interaction models coupled with clinical validation reveal CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin Cancer Res 2009; 15:5485-93. [PMID: 19706805 DOI: 10.1158/1078-0432.ccr-08-2491] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aimed to identify novel biological markers for the prediction of colorectal cancer liver metastasis. EXPERIMENTAL DESIGN We established two models that mimicked the interactions between colorectal tumor cells and the liver microenvironment. From these models we established subcell lines that had an enhanced ability to metastasize to the liver. Genes that related to hepatic metastasis were screened by microarray. The candidate markers were tested by immunohistochemistry, and their predictive accuracy was assessed by the cross-validation method and an independent test set. RESULTS Highly metastatic colon cancer cell sublines SW1116p21 and SW1116v3 were established from the tumor cell-microenvironment interaction models. Seven of the up-regulated genes in the sublines were selected as candidate markers for predicting metastatic potential. A total of 245 colorectal cancer samples were divided into a training set containing 117 cases and a test set containing 128 cases. In the training set, immunohistochemical analysis showed CCL2 and SNCG expression was higher in the hepatic metastasis group than in the nonmetastasis group, and was correlated with poor survival. Logistic regression analysis revealed that CCL2 and SNCG levels in primary tumors, serum carcinoembryonic antigen level, and lymph node metastasis status were the only significant (P < 0.05) parameters for detecting liver metastasis. In leave-one-out-cross-validation, the two markers, when combined with clinicopathologic features, resulted in 90.5% sensitivity and 90.7% specificity for hepatic metastasis detection. In an independent test set, the combination achieved 87.5% sensitivity and 82% specificity for predicting the future hepatic metastasis of colorectal cancer. CONCLUSION Our results suggest that these models are able to mimic the interactions between colorectal cancer cells and the liver microenvironment, and may represent a promising strategy to identify metastasis-related genes. CCL2 and SNCG, combined with clinicopathologic features, may be used as accurate predictors of liver metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Hai Hu
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zheng FQ, Xu Y, Yang RJ, Wu B, Tan XH, Qin YD, Zhang QW. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models. Acta Pharmacol Sin 2009; 30:617-27. [PMID: 19363518 DOI: 10.1038/aps.2009.33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. METHODS To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. RESULTS We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. CONCLUSION The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma.
Collapse
|
16
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
17
|
Decreased expression of monocyte chemoattractant protein-1 predicts poor prognosis following curative resection of colorectal cancer. Dis Colon Rectum 2008; 51:1800-5. [PMID: 18633677 DOI: 10.1007/s10350-008-9380-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/12/2008] [Accepted: 02/24/2008] [Indexed: 02/08/2023]
Abstract
PURPOSE The significance of monocyte chemoattractant protein-1 in colorectal cancer is not well understood. The aim of this study was to investigate the significance of monocyte chemoattractant protein-1 expression in colorectal cancer patients undergoing potentially curative surgery. METHODS We studied 101 colorectal cancer patients who underwent potentially curative surgery. The concentration of monocyte chemoattractant protein-1 in the tumor and normal mucosa were measured. The expression of monocyte chemoattractant protein-1 was also evaluated immunohistochemically. RESULTS The tissue concentration of monocyte chemoattractant protein-1 in the tumor was significantly higher than that in the normal mucosa. The decreased monocyte chemoattractant protein-1 cancer/normal ratio was associated with lymph node involvement and could predict poor prognosis. On univariate analysis, the decreased monocyte chemoattractant protein-1 ratio, carcinoembryonic antigen levels, and serosal invasion were the significant factors for poor prognosis. Multivariate analysis showed that monocyte chemoattractant protein-1 ratio was the only independent risk factor predictive of a poor prognosis. Immunohistochemically, monocyte chemoattractant protein-1 was expressed in the cytoplasm. CONCLUSION The decreased monocyte chemoattractant protein-1 ratio was an independent factor predicting poor prognosis in patients undergoing potentially curative surgery. Monocyte chemoattractant protein-1 deficiency may present a new therapeutic approach for colorectal cancer.
Collapse
|
18
|
Tsuchiyama T, Nakamoto Y, Sakai Y, Mukaida N, Kaneko S. Optimal amount of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy against hepatocellular carcinoma by M1 macrophage activation. Cancer Sci 2008; 99:2075-2082. [PMID: 19016769 PMCID: PMC11158831 DOI: 10.1111/j.1349-7006.2008.00951.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/18/2008] [Accepted: 06/27/2008] [Indexed: 12/01/2022] Open
Abstract
Suicide gene therapy combined with chemokines provides significant antitumor efficacy. Coexpression of suicide gene and monocyte chemoattractant protein-1 (MCP-1) increases antitumor effects in murine models of hepatocellular carcinoma (HCC) and colon cancer. However, it is unclear whether the doses administered achieved the maximum antitumor effects. We evaluated antitumor effects of various amounts of recombinant adenovirus vector (rAd) expressing MCP-1 in the presence of a suicide gene in a murine model of HCC. HCC cells were transplanted subcutaneously into BALB/c nude mice, and transduced with a fixed amount of Ad-tk harboring the suicide gene, HSV-tk, and various doses of Ad-MCP1 harboring MCP-1 (ratios of 1:1, 0.1:1, and 0.01:1 relative to Ad-tk). Growth of primary tumors was suppressed when treated with Ad-tk plus Ad-MCP1 (1:1 and 1:0.1) as compared with Ad-tk alone. The antitumor effects against tumor rechallenge tended to be high in the Ad-tk plus Ad-MCP1 group (1:0.1). The effects were dependent on production of Th1 type-cytokines. Delivery of an optimal amount of rAd expressing MCP-1 enhanced the antitumor effects of suicide gene therapy against HCC by M1 macrophage activation, suggesting that this is a plausible form of cancer gene therapy to prevent HCC progression and recurrence.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Chemokine CCL2/genetics
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Genes, Transgenic, Suicide/genetics
- Genetic Therapy/methods
- Genetic Vectors
- Humans
- Immunohistochemistry
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/therapy
- Macrophage Activation/genetics
- Macrophages, Peritoneal/immunology
- Male
- Mice
- Mice, Nude
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Tomoya Tsuchiyama
- Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
19
|
Lifang Y, Min T, Midan A, Ya C. HSV-tk/GCV gene therapy mediated by EBV-LMP1 for EBV-associated cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:42. [PMID: 18811956 PMCID: PMC2562992 DOI: 10.1186/1756-9966-27-42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/23/2008] [Indexed: 11/23/2022]
Abstract
Background To investigate the feasibility of gene therapy in treating Epstein-Barr virus (EBV)-associated cancer by employing the suicide gene, herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV), which uses the signaling pathway through the HIV-long terminal repeat (LTR) gene which is expressed from a nuclear factor-κB (NF-κB)-binding motif-containing promoter that is regulated by EBV-latent membrane protein 1 (LMP1) via NF-κB. Methods First, we constructed the plasmid pVLTR-tk, which was regulated by EBV-LMP1 via NF-κB, and then investigated the cytotoxic effect of the pVLTR-tk/GCV on cancer cells, using MTT assays, clonogenic assays, flow cytometry, and animal experiments. Results The activation of TK was increased after transfection of the pVLTR-tk into the EBV-LMP1 positive cells. After GCV treatment, the clonogenicity and survival of the cells substantially declined, and a bystander effect was also observed. The LMP1 positive cells exhibited remarkable apoptosis following pVLTR-tk/GCV treatment, and the pVLTR-tk/GCV restrained tumor growth in vivo for EBV-LMP1 positive cancers. Conclusion The pVLTR-tk/GCV suicide gene system may be used as a new gene targeting strategy for EBV-associated cancer.
Collapse
Affiliation(s)
- Yang Lifang
- Molecular Biology Research Center, Cancer Research Institute, XiangYa School of Medicine, Central South University, ChangSha, Hunan, 410078, PR China.
| | | | | | | |
Collapse
|
20
|
Park SY, Lee W, Lee J, Kim IS. Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Lett 2007; 261:205-14. [PMID: 18096314 DOI: 10.1016/j.canlet.2007.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 12/22/2022]
Abstract
The current study was designed to evaluate the anti-tumor effects of MDR1 shRNA in combination with herpes simplex virus-thymidine kinase/ganciclovir (HSV-tk/GCV) suicide gene therapy system. Introduction of an MDR1-targeted small hairpin RNA (shMDR) markedly enhanced the intracellular accumulation of and increased sensitivity to drugs transported by P-glycoprotein. Functional TK-eGFP fusion protein expression was confirmed by Western blot analysis and ganciclovir uptake assay. Compared with GCV or doxorubicin alone, the combination of anti-cancer drug chemotherapy with GCV administration displays additive cytotoxicity in shMDR1-TK-eGFP expressing cells. These results for the first time suggest the potential of combination gene therapy using suicide gene therapy and RNAi-based gene therapy in vitro.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Kyungju 780-714, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Tang L, Hu HD, Hu P, Lan YH, Peng ML, Chen M, Ren H. Gene therapy with CX3CL1/Fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Ther 2007; 14:1226-34. [PMID: 17597794 DOI: 10.1038/sj.gt.3302959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CX3CL1/Fractalkine(FK), a chemokine existing in both secreted and membrane anchored form, was reported to induce suppressive activities in tumor models. Here, we demonstrate for the first time the antitumor effects of FK in murine hepatocellular carcinoma (HCC) by constructing a FK eukaryotic expression vector (pIRES-FK) and transferring it into such tumor cells. Tumor rejection experiments were performed by injecting FK gene-modified murine HCC cell line (MM45T.Li) into immunocompetent mice, which significantly inhibited tumorigenicity or growth of MM45T.Li-FK cells. Immunohistochemistry examination and fluorescence-activated cell sorting analyses revealed both CD4+ and CD8+ T cells infiltration within the tumor together with a marked increase of these cells in the peripheral blood. Splenic lymphocyte from mice treated with MM45T.Li-FK were effective in the induction of tumor-specific cytotoxic T cells. We also observed an increased production of IL-2 and IFN-gamma in MM45T.Li-FK tumor tissue. Our results suggest that transfer of the FK gene into tumor cells could elicit a specific antitumor immunity capable of inhibiting tumor growth which lead to increased survival of tumor-bearing hosts. FK should be considered as a chemokine suitable for cancer immunoprevention or gene therapy.
Collapse
Affiliation(s)
- L Tang
- Institute of Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Neves AA, Brindle KM. Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta Rev Cancer 2006; 1766:242-61. [PMID: 17140737 DOI: 10.1016/j.bbcan.2006.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 01/09/2023]
Abstract
Tumor responses to therapy in the clinic are still evaluated primarily from non-invasive imaging measurements of reductions in tumor size. This approach, however, lacks sensitivity and can only give a delayed indication of a positive response to treatment. Major advances in our understanding of the molecular mechanisms responsible for cancer, combined with new targeted clinical imaging technologies designed to detect the molecular correlates of disease progression and response to treatment, are set to revolutionize our approach to the detection and treatment of the disease. We describe here the imaging technologies available to image tumor cell proliferation and migration, metabolism, receptor and gene expression, apoptosis and tumor angiogenesis and vascular function, and show how measurements of these parameters can be used to give early indications of positive responses to treatment or to detect drug resistance and/or disease recurrence. Special emphasis has been placed on those applications that are already used in the clinic and those that are likely to translate into clinical application in the near future or whose use in preclinical studies is likely to facilitate translation of new treatments into the clinic.
Collapse
Affiliation(s)
- André A Neves
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | |
Collapse
|