1
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
2
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers (Basel) 2021; 13:1685. [PMID: 33918490 PMCID: PMC8038208 DOI: 10.3390/cancers13071685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| |
Collapse
|
3
|
A novel UTMD system facilitating nucleic acid delivery into MDA-MB-231 cells. Biosci Rep 2021; 40:221955. [PMID: 31990029 PMCID: PMC7029150 DOI: 10.1042/bsr20192573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 01/13/2023] Open
Abstract
Gene therapy is emerging as a promising method for the treatment of various diseases. The safe and efficient delivery of therapeutic nucleic acids is a gene therapy prerequisite. Ultrasound, particularly in combination with microbubbles composed of biocompatible materials such as lipid, PLGA and chitosan, is a novel non-viral tool for gene transportation. Under ultrasound irradiation, microbubbles explode and generate pores in the cell membrane. Hence, genes can enter cells more easily. In order to transfect nucleic acids into MDA-MB-231 cells in a low-cost and non-viral manner for further breast cancer gene therapy studies, we explored ultrasound targeted microbubble destruction (UTMD) technology and evaluated the efficiency and safety of the delivery of plasmid encoding enhanced green fluorescent protein (pEGFP) and a microRNA-34a (miR-34a) mimic by UTMD. Sonovitro ultrasonic apparatus was employed to generate ultrasonic field, which was developed by our group. Ultrasonic parameters, including acoustic intensity (AI), exposure time (ET) and duty cycle (DC), were optimized at 0.6 W/cm2 AI, 20 s ET and 20% DC, the cell viability was not obviously impaired. Under these conditions, the UTMD-mediated transfection efficiency of pEGFP was greater than 40%. In addition to plasmid DNA, an miR-34a mimic was also successfully introduced into the cytoplasm by UTMD and found to inhibit proliferation, induce apoptosis of MDA-MB-231 cells and regulate downstream molecules. The present study indicates that further in vivo UTMD-mediated gene therapy studies are warranted.
Collapse
|
4
|
Bhoopathi P, Pradhan AK, Maji S, Das SK, Emdad L, Fisher PB. Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers (Basel) 2021; 13:cancers13040857. [PMID: 33670594 PMCID: PMC7922065 DOI: 10.3390/cancers13040857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary An optimum cancer therapeutic virus should embody unique properties, including an ability to: Selectively procreate and kill tumor but not normal cells; produce a secreted therapeutic molecule (with broad-acting anti-cancer effects on primary and distant metastatic cells because of potent “bystander” activity); and monitor therapy non-invasively by imaging primary and distant metastatic cancers. We previously created a broad-spectrum, cancer-selective and replication competent therapeutic adenovirus that embodies two of these properties, i.e., specifically reproduces in cancer cells and produces a therapeutic cytokine, MDA-7/IL-24, a “cancer terminator virus” (CTV). We now expand on this concept and demonstrate the feasibility of producing a tripartite CTV (TCTV) selectively expressing three genes from three distinct promoters that replicate in the cancer cells while producing MDA-7/IL-24 and an imaging gene (i.e., luciferase). This novel first-in-class tripartite “theranostic” TCTV expands the utility of therapeutic viruses to non-invasively image and selectively destroy primary tumors and metastases. Abstract Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent “bystander” anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV “theranostic” adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This “theranostic” virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- Correspondence: (P.B.); (P.B.F.)
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Santanu Maji
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (P.B.); (P.B.F.)
| |
Collapse
|
5
|
Interleukin (IL)-24: Reconfiguring the Tumor Microenvironment for Eliciting Antitumor Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:99-110. [PMID: 33559858 DOI: 10.1007/978-3-030-55617-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interleukin (IL)-24 is a member of the IL-10 family of cytokines. Due to its unique ability to function as both a tumor suppressor and cytokine, IL-24-based cancer therapy has been developed for treating a broad spectrum of human cancers. Majority of the studies reported to date have focused on establishing IL-24 as a cancer therapeutic by primarily focusing on tumor cell killing. However, the ability of IL-24 treatment on modulating the tumor microenvironment and immune response is underinvestigated. In this article, we summarize the biological and functional properties of IL-24 and the benefits of applying IL-24-based therapy for cancer.
Collapse
|
6
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
7
|
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, Archer MC, Zacksenhaus E, Ben-David Y. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 2016; 6:36943-54. [PMID: 26460950 PMCID: PMC4741907 DOI: 10.18632/oncotarget.6046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.
Collapse
Affiliation(s)
- You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guodong Liu
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lei Xia
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiao Xiao
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Michael C Archer
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
8
|
Ma Q, Deng X, Jin B, Zhang Y, Luo D, Song H, Wang P, Zhang C, Li X, Shi Y, Liu Y, Chen Z, Wang Z, Jiang H. A novel human interleukin-24 peptide created by computer-guided design contributes to suppression of proliferation in esophageal squamous cell carcinoma Eca-109 cells. Oncol Rep 2014; 33:193-200. [PMID: 25371158 DOI: 10.3892/or.2014.3589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/17/2014] [Indexed: 11/06/2022] Open
Abstract
Based on the three-dimensional modeling structure of human interleukin-24 (hIL-24) and its most likely active position predicted by solvent accessibility and apparent electrostatic properties, a novel hIL-24 peptide M1 was created by computer-guided molecular design. The cytotoxicity and cell selectivity of M1 were examined in three human carcinoma cell lines and one normal human embryo lung fibroblast cell line (HEL). MTT assay showed that M1 induced growth arrest in two IL-20 receptor complex-positive cancer cell lines (the esophageal squamous cell carcinoma cell line Eca-109 and the melanoma cell line A375), and antibodies against IL-24 or IL-20 receptor complexes significantly neutralized the inhibitory activity. Moreover, M1 had almost no cytotoxicity on the lung cancer A549 cell line, which lacks a full complement of the IL-20 receptor complexes, or on HEL cells that express the IL-20 receptor complexes. These findings demonstrate that M1 could act as an excellent candidate for the induction of growth arrest on receptor complex-positive cancer cells. In summary, the M1 peptide may represent a novel anticancer agent for esophageal squamous cell carcinoma therapy due to its cancer cell selectivity and its relatively low cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Qunfeng Ma
- Department of Thoracic Surgery, Affiliated Hospital of the Academy of Military Medical Sciences, Fengtai, Beijing 100071, P.R. China
| | - Xuefeng Deng
- Department of Thoracic Surgery, Affiliated Hospital of the Academy of Military Medical Sciences, Fengtai, Beijing 100071, P.R. China
| | - Bangming Jin
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Yao Zhang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Dan Luo
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Heyu Song
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Pengkun Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Chi Zhang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Xue Li
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Yinan Shi
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Yan Liu
- College of Life Science, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Zhinan Chen
- Cell Engineering Research Center, The Fourth Military Medical University, Xicheng, Xi'an, Shaanxi 710032, P.R. China
| | - Ziling Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| | - Hong Jiang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044, P.R. China
| |
Collapse
|
9
|
Ma G, Kawamura K, Shan Y, Okamoto S, Li Q, Namba M, Shingyoji M, Tada Y, Tatsumi K, Hiroshima K, Shimada H, Tagawa M. Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma. Cancer Gene Ther 2014; 21:31-7. [PMID: 24434574 DOI: 10.1038/cgt.2013.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
We examined the combinatory antitumor effects of adenoviruses expressing human mda-7/IL-24 gene (Ad-mda-7) and chemotherapeutic agents on nine kinds of human esophageal carcinoma cells. All the carcinoma cells expressed the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) receptor complexes, IL-20R2 and either IL-20R1 or IL-22R1, and were susceptible to Ad-mda-7, whereas fibroblasts were positive only for IL-20R2 gene and resistant to Ad-mda-7-mediated cytotoxicity. Sensitivity of these esophageal carcinoma cells to Ad-mda-7 was however lower than that to Ad expressing the wild-type p53 gene. We thereby investigated a possible combination of Ad-mda-7 and anticancer agents and found that Ad-mda-7 with 5-fluorouracil (5-FU), cisplatin, mitomycin C or etoposide produced greater cytotoxic effects than those by Ad-mda-7 or the agent alone. Half-maximal inhibitory concentration values of the agents in respective cells were decreased by the combination with Ad-mda-7. Cell cycle analyses showed that Ad-mda-7 and 5-FU increased G2/M-phase and S-phase populations, respectively, and the combination augmented sub-G1 populations. Ad-mda-7-treated cells showed cleavages of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but the cleavage levels were not different from those of the combination-treated cells. Ad-mda-7 treatments upregulated Akt phosphorylation but suppressed IκB-α levels, whereas 5-FU treatments induced phosphorylation of p53 and extracellular signal-regulated protein kinases 1 and 2. Molecular changes caused by the combination were similar to those by Ad-mda-7 treatments, but the Ad-mda-7-mediated upregulation of Akt phosphorylation decreased with the combination. These data collectively suggest that Ad-mda-7 induced apoptosis despite Akt activation and that the combinatory antitumor effects with 5-FU were produced partly by downregulating the Ad-mda-7-induced Akt activation.
Collapse
Affiliation(s)
- G Ma
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - K Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Y Shan
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Okamoto
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Q Li
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Y Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - H Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - M Tagawa
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Bhutia SK, Das SK, Azab B, Menezes ME, Dent P, Wang XY, Sarkar D, Fisher PB. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. Int J Cancer 2013; 133:2726-36. [PMID: 23720015 DOI: 10.1002/ijc.28289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent "bystander" activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen Y, Xie Y, Chan T, Sami A, Ahmed S, Liu Q, Xiang J. Adjuvant effect of HER-2/neu-specific adenoviral vector stimulating CD8⁺ T and natural killer cell responses on anti-HER-2/neu antibody therapy for well-established breast tumors in HER-2/neu transgenic mice. Cancer Gene Ther 2011; 18:489-99. [PMID: 21566669 PMCID: PMC7091910 DOI: 10.1038/cgt.2011.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/22/2010] [Accepted: 02/17/2011] [Indexed: 12/21/2022]
Abstract
Approximately one third of patients with advanced human epidermal growth factor receptor 2 (HER-2)/neu-positive breast cancer respond to trastuzumab monotherapy, a humanized anti-HER-2/neu antibody. However, de novo and acquired antibody resistance is one of the major limitations of trastuzumab therapy warranting the search for other therapeutic strategies. One of the most remarkable features of adenovirus (AdV)-based vaccine is its ability to induce exceptionally high and sustained frequencies of transgene product-specific CD8(+) T-cell responses. In this study, we constructed two recombinant AdVs (AdV(OVA) and AdV(HER-2)) expressing ovalbumin (OVA) and HER-2/neu, and assessed AdV-induced antigen-specific cellular immune responses and preventive/therapeutic antitumor immunity. We demonstrate that AdV(OVA) stimulates efficient OVA-specific CD8(+) cytotoxic T lymphocyte (CTL) and natural killer responses, leading to preventive long-term immunity against OVA-expressing BL6-10ova melanoma in wild-type C56BL/6 mice. We further demonstrate that AdV(HER-2) stimulates HER-2/neu-specific CD8(+) CTL responses, leading to a significant reduction in breast carcinogenesis in transgenic FVBneuN mice (P<0.05), but has little therapeutic effect on pre-existing Tg1-1 tumor even at early stage (15 mm(3)). In contrast, the anti-HER-2/neu antibody therapy is capable of completely inhibiting Tg1-1 tumor growth at early stage, but fails to eradicate well-established Tg1-1 breast tumor (100 mm(3)). Interestingly, a combinatorial immunotherapy of anti-HER-2/neu antibody with AdV(HER-2) vaccine was capable of curing 4 of 10 studied mice bearing well-established Tg1-1 breast tumors and significantly delaying in death of the remaining six tumor-bearing mice (P<0.05). Taken together, our results suggest an adjuvant effect of AdV(HER-2) on anti-HER-2/neu antibody therapy for well-established breast tumor in transgenic FVBneuN mice, and this combinatorial immunotherapy of trastuzumab with AdV(HER-2) vaccine may be used as a new therapeutic strategy for treatment of advanced HER-2/neu-positive breast cancer.
Collapse
Affiliation(s)
- Y Chen
- Research Division, Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan Canada
| | - Y Xie
- Research Division, Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan Canada
| | - T Chan
- Research Division, Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan Canada
| | - A Sami
- Department of Oncology, Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - S Ahmed
- Department of Oncology, Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - Q Liu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - J Xiang
- Research Division, Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan Canada
- Department of Oncology, Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| |
Collapse
|
12
|
Argiris K, Panethymitaki C, Tavassoli M. Naturally occurring, tumor-specific, therapeutic proteins. Exp Biol Med (Maywood) 2011; 236:524-36. [PMID: 21521711 DOI: 10.1258/ebm.2011.011004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.
Collapse
|
13
|
Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA, Yacoub A, Rahmani M, Emdad L, Dmitriev IP, Wang XY, Sarkar D, Grant S, Dent P, Curiel DT, Fisher PB. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2011; 21:381-91. [PMID: 20926331 DOI: 10.1016/j.cytogfr.2010.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
Collapse
Affiliation(s)
- Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Deng WG, Kwon J, Ekmekcioglu S, Poindexter NJ, Grimm EA. IL-24 gene transfer sensitizes melanoma cells to erlotinib through modulation of the Apaf-1 and Akt signaling pathways. Melanoma Res 2011; 21:44-56. [PMID: 20216471 PMCID: PMC2945428 DOI: 10.1097/cmr.0b013e3283382155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-24 (IL-24) is a novel tumor suppressor/cytokine gene expressed in normal human melanocytes but for which expression is nearly undetectable in metastatic melanoma. Overexpression of the IL-24 protein has been shown to inhibit tumor cell proliferation and induce apoptosis in many melanoma cell lines, and is now considered a tumor suppressor. Erlotinib, a small-molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has been widely studied for the treatment of human lung cancer and other solid tumors, but the erlotinib-targeted therapy has not been tested in melanoma. The objective of this study is to investigate the potency of erlotinib in suppressing the growth of human melanoma cells and whether IL-24 could enhance the antitumor activity of erlotinib. In cell viability and apoptosis assays, treatment with erlotinib dependently inhibited the growth of different melanoma cell lines and when combined with adenoviral vector-mediated IL-24 gene therapy, a significant increase in cell growth inhibition and apoptosis induction resulted (P<0.05). Immunoblot assay showed that the combination treatment of erlotinib and IL-24 considerably increased the cleavage of caspase-3 and caspase-9 and the expression of Apaf-1 protein in melanoma cells, inducing activation of the Apaf-1-dependent apoptotic pathways. Moreover, this combination treatment markedly inhibited phosphorylation of the EGFR, phosphatidylinositol-3 kinase, and Akt proteins, inactivating the Akt-dependent cell survival signaling pathway. These results show that a combination of IL-24-mediated molecular therapy and EGFR inhibitors such as erlotinib may be a promising treatment strategy for human melanoma and will serve as a basis for guiding the combination treatment designs in future preclinical and clinical trials.
Collapse
Affiliation(s)
- Wu-Guo Deng
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - John Kwon
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Suhendan Ekmekcioglu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Nancy J. Poindexter
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Elizabeth A. Grimm
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
15
|
Patani N, Douglas-Jones A, Mansel R, Jiang W, Mokbel K. Tumour suppressor function of MDA-7/IL-24 in human breast cancer. Cancer Cell Int 2010; 10:29. [PMID: 20735832 PMCID: PMC2936285 DOI: 10.1186/1475-2867-10-29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022] Open
Abstract
Introduction Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome. Methods The human BC cell line MDA MB-231 was used to evaluate the in-vitro impact of recombinant human (rh)-MDA-7 on cell growth and motility, using a growth assay, wounding assay and electric cell impedance sensing (ECIS). Localisation of MDA-7 in mammary tissues was assessed with standard immuno-histochemical methodology. BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, MDA-7 transcript levels were determined using real-time quantitative PCR. Transcript levels were analyzed against tumour size, grade, oestrogen receptor (ER) status, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Exposure to rh-MDA-7 significantly reduced wound closure rates for human BC cells in-vitro. The ECIS model demonstrated a significantly reduced motility and migration following rh-MDA-7 treatment (p = 0.024). Exposure to rh-MDA-7 was only found to exert a marginal effect on growth. Immuno-histochemical staining of human breast tissues revealed substantially greater MDA-7 positivity in normal compared to cancer cells. Significantly lower MDA-7 transcript levels were identified in those predicted to have a poorer prognosis by the NPI (p = 0.049) and those with node positive tumours. Significantly lower expression was also noted in tumours from patients who died of BC compared to those who remained disease free (p = 0.035). Low levels of MDA-7 were significantly correlated with a shorter disease free survival (mean = 121.7 vs. 140.4 months, p = 0.0287) on Kaplan-Meier survival analysis. Conclusion MDA-7 significantly inhibits the motility and migration of human BC cells in-vitro. MDA-7 expression is substantially reduced in malignant breast tissue and low transcript levels are significantly associated with unfavourable pathological parameters, including nodal positivity; and adverse clinical outcomes including poor prognosis and shorter disease free survival. MDA-7 offers utility as a prognostic marker and potential for future therapeutic strategies.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, The London Breast Institute, The Princess Grace Hospital, 42-52 Nottingham Place, W1U-5NY, London, UK.
| | | | | | | | | |
Collapse
|
16
|
Noteborn MHM. Proteins selectively killing tumor cells. Eur J Pharmacol 2009; 625:165-73. [PMID: 19836376 DOI: 10.1016/j.ejphar.2009.06.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/04/2023]
Abstract
All human cells have a genetic program that upon activation will cause cell death, named apoptosis. Cancer cells can grow due to unbalances in proliferation, cell cycle regulation and their apoptosis machinery: genomic mutations resulting in non-functional pro-apoptosis proteins or over-expression of anti-apoptosis proteins form the basis of tumor formation. Surprisingly, lessons learned from viruses show that cancer cannot be regarded simply as the opposite of apoptosis. For instance, adenovirus can only transform cells when both its anti- and pro-apoptotic proteins are produced. Oncolytic viruses are known to replicate selectively in tumor cells resulting in cell death. Proteins derived from viruses, i.e. chicken anemia virus (CAV)-derived apoptosis-inducing protein (apoptin), adenovirus early region 4 open reading frame (E4orf4) and parvovirus-H1 derived non-structural protein 1 (NS1), the human alpha-lactalbumin made lethal to tumor cells (HAMLET), which is present in human milk or the human cytokines melanoma differentiation-associated gene-7 (mda-7) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have all the ability to induce tumor-selective apoptosis. The tumor-selective apoptosis-inducing proteins seem to interact with transforming survival processes, which can become redirected by these proteins into cell death. Transformation-related processes have been identified, which seem to be crucial for the tumor-selectively killing activity of these proteins. For instance, the transformation-related protein phosphatase 2A (PP2A) plays a role in the induction of tumor-selective apoptosis. The proteins mda-7, TRAIL and HAMLET are already successfully tested in first clinical trials. Proteins harboring tumor-selective apoptosis characteristics represent, therefore, a therapeutic potential and a tool for unraveling tumor-related processes. Fundamental molecular and (pre)clinical therapeutic studies of the various tumor-selective apoptosis-inducing proteins apoptin, E4orf4, HAMLET, mda-7, NS1, TRAIL and related proteins will be discussed.
Collapse
Affiliation(s)
- Mathieu H M Noteborn
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
17
|
Gupta P, Emdad L, Lebedeva IV, Sarkar D, Dent P, Curiel DT, Settleman J, Fisher PB. Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 2008; 215:827-36. [PMID: 18270968 DOI: 10.1002/jcp.21369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, displays cancer-specific apoptosis-inducing properties when delivered by a replication-incompetent adenovirus (Ad.mda-7) or as a GST-tagged recombinant protein (GST-MDA-7). Previous studies demonstrated that an adenovirus expressing M4, a truncated version of MDA-7/IL-24 containing amino acid residues 104-206, also induced similar cancer-specific apoptosis. We generated recombinant GST-M4 proteins and examined the potency of GST-MDA-7 and GST-M4 on a panel of epidermal growth factor receptor (EGFR) wild type and mutant non-small cell lung carcinoma (NSCLC) cells either as a single agent or in combination with a reversible EGFR inhibitor, Tarceva. The combination of either GST-MDA-7 or GST-M4 ( approximately 0.1 microM) and Tarceva (10 microM), at sub-optimal apoptosis-inducing concentrations synergistically enhanced growth inhibition and apoptosis induction over that observed with either agent alone. The combination treatment also augmented inhibition of EGFR signaling, analyzed by phosphorylation of EGFR and its downstream effectors AKT and ERK1/2, over that with single-agent therapy. Tarceva enhanced GST-MDA-7 and GST-M4 toxicity in cells expressing mutated EGFR proteins that are resistant to the inhibitory effects of Tarceva. In total, these data suggest that combined treatment of NSCLC cells with an EGFR inhibitor can augment the efficacy of GST-MDA-7 and GST-M4 and that the EGFR inhibitor Tarceva may mediate this combinatorial effect by inhibiting multiple tyrosine kinases in addition to the EGFR. This approach highlights a potential new combinatorial strategy, which may prove beneficial for NSCLC patients with acquired resistance to EGFR inhibitors.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 2008; 48:143-69. [PMID: 17848136 DOI: 10.1146/annurev.pharmtox.48.121806.154910] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian virus-derived protein apoptin induces p53-independent apoptosis in a tumor-specific way. Apoptin acts as a multimeric complex and forms superstructures upon binding to DNA. In tumor cells, apoptin is phosphorylated and mainly nuclear, whereas in normal cells it is unphosphorylated, cytoplasmic, and becomes readily neutralized. Interestingly, apoptin phosphorylation, nuclear translocation, and apoptosis can transiently be induced in normal cells by cotransfecting SV40 large T oncogene, indicating that apoptin recognizes early stages of oncogenic transformation. In cancer cells, apoptin appears to recognize survival signals, which it is able to redirect into cell death impulses. Apoptin targets include DEDAF, Nur77, Nmi, Hippi, and the potential drug target APC1. Apoptin-transgenic mice and animal tumor models have revealed apoptin as a safe and efficient antitumor agent, resulting in significant tumor regression. Future antitumor therapies could use apoptin either as a therapeutic bullet or as an early sensor of druggable tumor-specific processes.
Collapse
Affiliation(s)
- Claude Backendorf
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shanker M, Gopalan B, Patel S, Bocangel D, Chada S, Ramesh R. Vitamin E succinate in combination with mda-7 results in enhanced human ovarian tumor cell killing through modulation of extrinsic and intrinsic apoptotic pathways. Cancer Lett 2007; 254:217-26. [PMID: 17449172 DOI: 10.1016/j.canlet.2007.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Adenovirus-mediated mda-7 (Ad-mda7) gene transfer has been shown to induce apoptosis in various human cancer cells while sparing normal cells. Vitamin E succinate (VES) is also known to exhibit antitumor activity against a number of human cancer cell lines. We hypothesized that a combination of the two agents would produce an enhanced antitumor effect in MDAH2774 human ovarian cancer cells. Treatment of MDAH2774 cells with Ad-mda7 plus VES resulted in enhanced antitumor activity that involved the activation of two apoptotic pathways. Activation of the extrinsic pathway was demonstrated by increased cell-surface Fas expression and cleavage of Bid and caspase-8. Activation of the intrinsic pathway was demonstrated by disruption of mitochondrial potential; and activation of downstream capase-9 and caspase-3 via cytochrome C release. In contrast, the combination of Ad-mda7 plus VES did not show any antitumor activity against normal fibroblasts, indicating selective tumor cell killing. Our in vitro results provide a basis for further preclinical testing of Ad-mda7 plus VES as a potential cancer treatment strategy.
Collapse
Affiliation(s)
- Manish Shanker
- Department of Thoracic and Cardiovascular Surgery/Unit 445, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|