1
|
Lahouty M, Fadaee M, Aghaei R, Alizadeh F, Jafari A, Sharifi Y. Gut microbiome and colorectal cancer: From pathogenesis to treatment. Pathol Res Pract 2025; 271:156034. [PMID: 40412026 DOI: 10.1016/j.prp.2025.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Colorectal cancer (CRC) continues to rank among the most prevalent cancers worldwide. A growing body of research indicates that the microbiome significantly influences the onset, development, and progression of CRC, in addition to affecting the efficacy of various systemic therapies. The composition of the microbiome, shaped by factors such as bacterial strains, geography, ethnicity, gender, and dietary habits, provides essential information for CRC screening, early diagnosis, and the prediction of treatment responses. Modulating the microbiome presents a highly promising medical strategy for improving individual health. This review aims to present a thorough overview of recent research concerning the interplay between host microbiota and CRC, along with its implications for screening and the immune response against tumors in the context of cancer treatment.
Collapse
Affiliation(s)
- Masoud Lahouty
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.
| | - Reza Aghaei
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Fatemeh Alizadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirmohammad Jafari
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Ghatani K, Prasad Sha S, Thapa S, Chakraborty P, Sarkar S. Bifidobacterial Genome Editing for Potential Probiotic Development. GENOME EDITING IN BACTERIA (PART 1) 2024:62-87. [DOI: 10.2174/9789815165678124010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Genome editing is a promising tool in the era of modern biotechnology that
can alter the DNA of many organisms. It is now extensively used in various industries
to obtain the well-desired and enhanced characteristics to improve the yield and
nutritional quality of products. The positive health attributes of Bifidobacteria, such as
prevention of diarrhoea, reduction of ulcerative colitis, prevention of necrotizing
enterocolitis, etc., have shown promising reports in many clinical trials. The potential
use of Bifidobacteria as starter or adjunct cultures has become popular. Currently,
Bifidobacterium bifidum, B. adolescentis, B. breve, B. infantis, B. longum, and B. lactis
find a significant role in the development of probiotic fermented dairy products.
However, Bifidobacteria, one of the first colonizers of the human GI tract and an
indicator of the health status of an individual, has opened new avenues for research
and, thereby, its application. Besides this, the GRAS/QPS (Generally Regarded as
Safe/Qualified Presumption of Safety) status of Bifidobacteria makes it safe for use.
They belong to the subgroup (which are the fermentative types that are primarily found
in the natural cavities of humans and animals) of Actinomycetes. B. lactis has been used
industrially in fermented foods, such as yogurt, cheese, beverages, sausages, infant
formulas, and cereals. In the present book chapter, the authors tried to explore the
origin, health attributes, and various genetic engineering tools for genome editing of
Bifidobacteria for the development of starter culture for dairy and non-dairy industrial
applications as well as probiotics.
Collapse
Affiliation(s)
- Kriti Ghatani
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Shankar Prasad Sha
- Department of Botany, Food Microbiology Lab, Kurseong College, University of North Bengal,
Dow Hill Road, Kurseong, Darjeeling 7342003, West Bengal, India
| | - Subarna Thapa
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Priya Chakraborty
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Sagnik Sarkar
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| |
Collapse
|
3
|
Sundararaman A, Halami PM. Metabolic Engineering of Bifidobacterium sp. Using Genome Editing Techniques. GENOME EDITING IN BACTERIA (PART 1) 2024:88-105. [DOI: 10.2174/9789815165678124010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The gut microbiome is significant in maintaining human health by
facilitating absorption and digestion in the intestine. Probiotics have diverse and
significant applications in the health sector, so probiotic strains require an
understanding of the genome-level organizations. Probiotics elucidate various
functional parameters that control their metabolic functions. Gut dysbiosis leads to
inflammatory bowel disease and other neurological disorders. The application of
probiotic bacteria to modulate the gut microbiota prevents diseases and has gained
large interest. In a recent decade, the development of modern tools in molecular
biology has led to the discovery of genome engineering. Synthetic biology approaches
provide information about diverse biosynthetic pathways and also facilitate novel
metabolic engineering approaches for probiotic strain improvement. The techniques
enable engineering probiotics with the desired functionalities to benefit human health.
This chapter describes the recent advances in probiotic strain improvement for
diagnostic and therapeutic applications via CRISPR-Cas tools. Also, the application of
probiotics, current challenges, and future perspectives in disease treatment are
discussed.
Collapse
Affiliation(s)
- Aravind Sundararaman
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological
Research Institute, Mysuru-570020, India
| | - Prakash M. Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological
Research Institute, Mysuru-570020, India
| |
Collapse
|
4
|
Wankhede NL, Kale MB, Bawankule AK, Taksande BG, Umekar MJ, Upaganlawar AB. Bacteriotherapy in colorectal cancer. COLORECTAL CANCER 2024:307-328. [DOI: 10.1016/b978-0-443-13870-6.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Norouzi S, Daneshyar M, Farhoomand P, Tukmechi A, Tellez-Isaiasc G. In vitro evaluation of probiotic properties and selenium bioaccumulation of lactic acid bacteria isolated from poultry gastrointestinal, as an organic selenium source. Res Vet Sci 2023; 162:104934. [PMID: 37421824 DOI: 10.1016/j.rvsc.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The purpose of this study was to examine the probiotic characteristics and selenium (Se) bioaccumulation potential of five Lactobacillus strains in vitro. Lactobacillus acidophilus, L. delbrueckii subsp. lactis, L. reuteri, L. gallinarum, and L. animalis were among the strains employed. As significant aspects of probiotics, identification, and evaluation of their survival potential in the gastrointestinal system were undertaken. Although all experimental Lactobacillus strains bioaccumulated Se (IV) concentrations in media culture, three Lactobacillus strains (L. animalis, L. gallinarum, and L. acidophilus) bioaccumulated the highest Se concentrations (23.08, 8.62, and 8.51 mg/g, respectively) after culture in the presence of 1.5 mg/ml sodium selenite. By disc diffusion, all isolates were evaluated for antibiotic susceptibility against six antibiotics, including ciprofloxacin, ampicillin, methicillin, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole. Many of the isolates tested positive for resistance to some of the antibiotics utilized. The L. reuteri and L. gallinarum were found to be resistant to about 50% of the antibiotics that were tested. In terms of acid tolerance, L. animalis showed significant resistance at acidic pH by 1.72 log unit reduction whereas L. delbrueckii and L. galliinarum showed significant sensitivity at acidic pH (P > 0.05). Bile tolerance was addressed as an important aspect of the safety assessment for probiotics. There were variances in acid and bile tolerance among species, although all of them tolerated stress conditions to an acceptable degree. Upon comparing the various species, it was observed that L. gallinarum exhibited a significant decline in growth, as evidenced by a decrease of 1.39 log units in cell viability. On the other hand, L. acidophilus and L. animalis demonstrated remarkable bile tolerance, with 0.09 and 0.23 log unit reduction respectively (P < 0.05). These results suggest that L. animalis, L. gallinarum, and L. acidophilus, can be good candidates to evaluate them in vivo in further investigations due to their tolerance to acid, and bile, antibiotic resistance, and strong ability to bioaccumulate Se in chickens.
Collapse
Affiliation(s)
- Shokoufeh Norouzi
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran.
| | - Parviz Farhoomand
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Amir Tukmechi
- Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | | |
Collapse
|
6
|
Wang C, Shen Y, Ma Y. Bifidobacterium infantis-Mediated Herpes Simplex Virus-TK/Ganciclovir Treatment Inhibits Cancer Metastasis in Mouse Model. Int J Mol Sci 2023; 24:11721. [PMID: 37511481 PMCID: PMC10380465 DOI: 10.3390/ijms241411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Nikolaieva N, Sevcikova A, Omelka R, Martiniakova M, Mego M, Ciernikova S. Gut Microbiota-MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 2022; 11:microorganisms11010107. [PMID: 36677399 PMCID: PMC9867529 DOI: 10.3390/microorganisms11010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pre-clinical models and clinical studies highlight the significant impact of the host-microbiota relationship on cancer development and treatment, supporting the emerging trend for a microbiota-based approach in clinical oncology. Importantly, the presence of polymorphic microbes is considered one of the hallmarks of cancer. The epigenetic regulation of gene expression by microRNAs affects crucial biological processes, including proliferation, differentiation, metabolism, and cell death. Recent evidence has documented the existence of bidirectional gut microbiota-microRNA interactions that play a critical role in intestinal homeostasis. Importantly, alterations in microRNA-modulated gene expression are known to be associated with inflammatory responses and dysbiosis in gastrointestinal disorders. In this review, we summarize the current findings about miRNA expression in the intestine and focus on specific gut microbiota-miRNA interactions linked to intestinal homeostasis, the immune system, and cancer development. We discuss the potential clinical utility of fecal miRNA profiling as a diagnostic and prognostic tool in colorectal cancer, and demonstrate how the emerging trend of gut microbiota modulation, together with the use of personalized microRNA therapeutics, might bring improvements in outcomes for patients with gastrointestinal cancer in the era of precision medicine.
Collapse
Affiliation(s)
- Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Michal Mego
- National Cancer Institute and Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-02-3229519
| |
Collapse
|
8
|
Bi Z, Cui E, Yao Y, Chang X, Wang X, Zhang Y, Xu GX, Zhuang H, Hua ZC. Recombinant Bifidobacterium longum Carrying Endostatin Protein Alleviates Dextran Sodium Sulfate-Induced Colitis and Colon Cancer in Rats. Front Microbiol 2022; 13:927277. [PMID: 35847065 PMCID: PMC9280188 DOI: 10.3389/fmicb.2022.927277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bifidobacterium has been widely administrated orally as probiotics to prevent pathogen colonization and modulate the gut microbiome balance. Endostatin is an endogenous inhibitor of angiogenesis and has been shown to inhibit tumor growth, invasion, and metastasis. At present, the combination of endostatin and chemotherapeutic drugs has been regarded as a promising antitumor treatment strategy. In this study, we selected a safe strain of Bifidobacterium longum as a delivery system to transport endostatin to the gastrointestinal tract and explored their combined effect on inflammatory bowel disease (IBD) and colitis-associated cancer. The results indicated that B. longum-Endo relieved dextran sulfate sodium-induced body weight loss, diarrhea, colon shortening, and epithelium damage. Long-term oral administration of B. longum-Endo significantly decreased tumor formation rate, tumor number, and tumor size. Moreover, the effect of B. longum-Endo on gut microbiota dysbiosis was also confirmed by 16S rRNA sequencing analysis. The levels of potentially beneficial bacteria, such as Lactobacillus, Bifidobacterium, Allobaculum, and Parabateroides, were increased in the B. longum-Endo group compared to the model and B. longum groups. Meanwhile, levels of potentially pathogenic bacteria including Desulfovibrio, Helicobacter, and Enterorhabdus were decreased. Taken together, these results suggested that oral administration of recombinant B. longum-Endo strain may be a promising therapeutic strategy for IBD and colitis-associated cancer.
Collapse
Affiliation(s)
- Zhiqian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Enqing Cui
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuhui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Gen-Xing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Gen-Xing Xu,
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- Hongqin Zhuang,
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
- Jiangsu Target Pharma Laboratories Inc., Changzhou, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Zi-Chun Hua,
| |
Collapse
|
9
|
Mueller AL, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, Khorshidi N, Kunnumakkara AB, Shakibaei M. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment. Biomedicines 2022; 10:biomedicines10040832. [PMID: 35453581 PMCID: PMC9026499 DOI: 10.3390/biomedicines10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide, with a higher rate of distant metastases than other malignancies and with regular occurrence of drug resistance. Therefore, scientists are forced to further develop novel and innovative therapeutic treatment strategies, whereby it has been discovered microorganisms, albeit linked to CRC pathogenesis, are able to act as highly selective CRC treatment agents. Consequently, researchers are increasingly focusing on bacteriotherapy as a novel therapeutic strategy with less or no side effects compared to standard cancer treatment methods. With multiple successful trials making use of various bacteria-associated mechanisms, bacteriotherapy in cancer treatment is on its way to become a promising tool in CRC targeting therapy. In this study, we describe the anti-cancer effects of bacterial therapy focusing on the treatment of CRC as well as diverse modulatory mechanisms and techniques that bacteriotherapy offers such as bacterial-related biotherapeutics including peptides, toxins, bacteriocins or the use of bacterial carriers and underlying molecular processes to target colorectal tumors.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Niusha Fahimi
- Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| | - Tahere Ghotbi
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Sara Hashemi
- Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran;
| | - Sadaf Sadri
- Department of Microbiology, University of Mazandaran, Babolsar 4741613534, Iran;
| | - Negar Khorshidi
- Department of Medicinal Chemistry, Medical Sciences Branch, Islamic Azad University, Tehran 1913674711, Iran;
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, India;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-98-2180-72624
| |
Collapse
|
10
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Fighting Cancer with Bacteria and Their Toxins. Int J Mol Sci 2021; 22:ijms222312980. [PMID: 34884780 PMCID: PMC8657867 DOI: 10.3390/ijms222312980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is one of the most important global health problems that continues to demand new treatment strategies. Many bacteria that cause persistent infections play a role in carcinogenesis. However, since bacteria are well studied in terms of molecular mechanisms, they have been proposed as an interesting solution to treat cancer. In this review, we present the use of bacteria, and particularly bacterial toxins, in cancer therapy, highlighting the advantages and limitations of bacterial toxins. Proteomics, as one of the omics disciplines, is essential for the study of bacterial toxins. Advances in proteomics have contributed to better characterization of bacterial toxins, but also to the development of anticancer drugs based on bacterial toxins. In addition, we highlight the current state of knowledge in the rapidly developing field of bacterial extracellular vesicles, with a focus on their recent application as immunotherapeutic agents.
Collapse
|
12
|
Del Río Castillo AE, De León-Rodriguez A, Terrones M, Barba de la Rosa AP. Multi-walled carbon nanotubes enhance the genetic transformation of Bifidobacterium longum. CARBON 2021; 184:902-909. [DOI: 10.1016/j.carbon.2021.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
14
|
Nikolaeva L. Properties of Bifidobacteria and Their Use for Scientific and Practical Purposes. BIOTEKHNOLOGIYA 2021; 37:3-10. [DOI: 10.21519/0234-2758-2021-37-3-3-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bifidobacteria occupy a special place among various representatives of normal human microbiota. A wide range of probiotic preparations has been obtained based on cultivated strains of various bifidobacteria of the intestinal microbiota. A number of scientific publications noted the immunomodulatory, anticarcinogenic, and antiviral properties of bifidobacteria in vitro and in vivo. Recently, progress has been made in the research and application of this group of microorganisms in genetic engineering. It was established that vaccines against viral and bacterial infections and antitumor substances can be developed on the basis of various strains of bifidobacteria. Bifidobacteria can also be used as adjuvants for other vaccines, as well as delivery systems for biologically active substances to tumors. The prospects for the use of bifidobacteria for the development of recombinant vaccines are discussed.
bifidobacteria, medical and biological properties, recombinant vaccines, drug delivery, adjuvants, plasmids
This work was funded by the Epidemiology and Microbiology National Research Center.
The authors are grateful to V. V. Kuprianov for valuable comments on the text of the review.
Collapse
Affiliation(s)
- L.I. Nikolaeva
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
15
|
Min JJ, Thi-Quynh Duong M, Ramar T, You SH, Kang SR. Theranostic Approaches Using Live Bacteria. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Zou Y, Chen T. Engineered Akkermansia muciniphila: A promising agent against diseases (Review). Exp Ther Med 2020; 20:285. [PMID: 33209129 PMCID: PMC7668130 DOI: 10.3892/etm.2020.9415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
Achieving a harmonious gut microbial ecosystem has been hypothesized to be a successful method for alleviating metabolic disorders. The administration of probiotics, such as Lactobacillus and Bifidobacteria, is a known traditional and safe pathway to regulate human commensal microbes. With advancements in genetic sequencing and genetic editing tools, more bacteria are able to function as engineered probiotics with multiple therapeutic properties. As one of the next-generation probiotic candidates, Akkermansia muciniphila (A. muciniphila) has been discovered to enhance the gut barrier function and moderate inflammatory responses, exhibit improved effects with pasteurization and display beneficial probiotic effects in individuals with obesity, type 2 diabetes, atherosclerosis and autism-related gastrointestinal disturbances. In view of this knowledge, the present review aimed to summarize the effects of A. muciniphila in the treatment of metabolic disorders and to discuss several mature recombination systems for the genetic modification of A. muciniphila. From gaining an enhanced understanding of its genetic background, ingested A. muciniphila is expected to be used in various applications, including as a diagnostic tool, and in the site-specific delivery of therapeutic drugs.
Collapse
Affiliation(s)
- Yixuan Zou
- Institute of Translational Medicine, National Engineering Research Center for Bioengineering Drugs and Technologies, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Tingtao Chen
- Institute of Translational Medicine, National Engineering Research Center for Bioengineering Drugs and Technologies, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
17
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019; 51:1-15. [PMID: 31827064 PMCID: PMC6906302 DOI: 10.1038/s12276-019-0297-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer therapeutics, such as targeted therapy and immunotherapy, have raised the hope for cures for many cancer types. However, there are still ongoing challenges to the pursuit of novel therapeutic approaches, including high toxicity to normal tissue and cells, difficulties in treating deep tumor tissue, and the possibility of drug resistance in tumor cells. The use of live tumor-targeting bacteria provides a unique therapeutic option that meets these challenges. Compared with most other therapeutics, tumor-targeting bacteria have versatile capabilities for suppressing cancer. Bacteria preferentially accumulate and proliferate within tumors, where they can initiate antitumor immune responses. Bacteria can be further programmed via simple genetic manipulation or sophisticated synthetic bioengineering to produce and deliver anticancer agents based on clinical needs. Therapeutic approaches using live tumor-targeting bacteria can be applied either as a monotherapy or in combination with other anticancer therapies to achieve better clinical outcomes. In this review, we introduce and summarize the potential benefits and challenges of this anticancer approach. We further discuss how live bacteria interact with tumor microenvironments to induce tumor regression. We also provide examples of different methods for engineering bacteria to improve efficacy and safety. Finally, we introduce past and ongoing clinical trials involving tumor-targeting bacteria. Live tumor-targeting bacteria can selectively induce cancer regression and, with the help of genetic engineering, be made safe and effective vehicles for delivering drugs to tumor cells. In a review article, Jung-Joon Min and colleagues from Chonnam National University Medical School in Hwasun, South Korea, discuss the clinical history of using natural or engineered bacterial strains to suppress cancer growth. Because bacteria such as Salmonella and Listeria preferentially home in on tumors or their surrounding microenvironments, researchers have harnessed these microbial agents to attack cancer cells without causing collateral damage to normal tissues. Bioengineers have also armed bacteria with stronger tumor-sensing and more targeted drug delivery capabilities, and improved control of off-target toxicities. An increasing number of therapeutic bacterial strains are now entering clinical testing, promising to enhance the efficacy of more conventional anticancer treatments.
Collapse
|
19
|
Lin Y, Ren Y, Zhang Y, Zhou J, Zhou F, Zhao Q, Xu G, Hua Z. Protective role of nano-selenium-enriched Bifidobacterium longum in delaying the onset of streptozotocin-induced diabetes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181156. [PMID: 30662733 PMCID: PMC6304152 DOI: 10.1098/rsos.181156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/08/2018] [Indexed: 05/25/2023]
Abstract
Bifidobacterium longum (B. longum) could accumulate Selenium (Se) and nano-Se in the form of Se-B. longum and Nano-Se-B. longum, respectively. In this study, the effect of Nano-Se-B. longum in diabetic mice was evaluated. Physiological and metabolic parameters such as blood glucose, body weight, serum insulin level, intraperitoneal glucose tolerance test (IPGTT), food intake, water consumption and urine output were evaluated. The expression of insulin signalling pathway-related proteins was evaluated by western blotting. Haematoxylin and eosin (H&E) was used for histological examination of the liver, pancreas and kidney sections. Creatinine levels in serum (SCr) and blood urea nitrogen (BUN) were measured. Nano-Se-B. longum was the best in terms of delaying the onset of diabetes. Nano-Se-B. longum decreased blood glucose and body weight compared with those noted for the model group. IPGTT, food intake, water consumption and urine output significantly increased and serum insulin levels significantly decreased in the model group compared with those in all the Nano-Se-B. longum-treated mice. Histological results showed that the Nano-Se-B. longum-treated mice were better than the model group mice in terms of pathological changes. The expression of insulin signalling pathway-related proteins was upregulated in the Nano-Se-B. longum-treated groups. A significant increase in SCr and BUN levels was noted in the model group. This study for the first time reported the dose-dependent preventive effect of Nano-Se-B. longum on the onset of diabetes and renal damage. The mechanism may be related to changes in insulin signalling.
Collapse
Affiliation(s)
- Yan Lin
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
- School of Nursing, Xinxiang Medical University, Xinxiang 453000, Henan, People's Republic of China
| | - Yongzhe Ren
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yan Zhang
- Nanjing Industrial Innovation Center for Pharmaceutical Biotechnology, Nanjing Genrecom Laboratories, Ltd., Nanjing 210031, Jiangsu, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University, Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| | - Junjie Zhou
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Feng Zhou
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Quan Zhao
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Genxing Xu
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
- Nanjing Industrial Innovation Center for Pharmaceutical Biotechnology, Nanjing Genrecom Laboratories, Ltd., Nanjing 210031, Jiangsu, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University, Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| | - Zichun Hua
- School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University, Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
- Shenzhen Research Institute, Nanjing University, Shenzhen 518057, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer 2018; 13:9. [PMID: 29568324 PMCID: PMC5856380 DOI: 10.1186/s13027-018-0180-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
In recent decades, bacteria’s therapeutic role has aroused attention in medicinal and pharmaceutical research. While bacteria are considered among the primary agents for causing cancer, recent research has shown intriguing results suggesting that bacteria can be effective agents for cancer treatment – they are the perfect vessels for targeted cancer therapy. Several bacterial strains/species have been discovered to possess inherent oncolytic potentials to invade and colonize solid tumors in vivo. The therapeutic strategy of using bacteria for treating cancer is considered to be effective; however, the severe side effects encountered during the treatment resulted in the abandonment of the therapy. State-of-the-art genetic engineering has been recently applied to bacteria therapy and resulted in a greater efficacy with minimum side effects. In addition, the anti-cancer potential of tumor-targeting bacteria through oral administration circumvents the use of the intravenous route and the associated adverse effects. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria in cancer treatment.
Collapse
Affiliation(s)
- Shiyu Song
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China
| | - Miza S Vuai
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China.,2Department of Natural Science, State University of Zanzibar (SUZA), P.O Box 146, Zanzibar, Tanzania
| | - Mintao Zhong
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China
| |
Collapse
|
21
|
Wang C, Ma Y, Hu Q, Xie T, Wu J, Zeng F, Song F. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. BMC Cancer 2016; 16:545. [PMID: 27464624 PMCID: PMC4964087 DOI: 10.1186/s12885-016-2608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/25/2016] [Indexed: 01/10/2023] Open
Abstract
Background Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Methods Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. Results The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. Conclusions BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim without inducing necroptosis and autophagy. Furthermore, BF-rTK + GCV showed to repress the inflammation of tumor through downregulating TNF-α expression. Survival analysis results of multiple cancer models confirmed that BF-rTK + GCV system has a wide field of application in solid tumor gene therapy.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China.
| | - Qiongwen Hu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Tingting Xie
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Jiayan Wu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fan Zeng
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fangzhou Song
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| |
Collapse
|
22
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
23
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
24
|
A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria. PLoS One 2015; 10:e0128802. [PMID: 26086721 PMCID: PMC4472781 DOI: 10.1371/journal.pone.0128802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.
Collapse
|
25
|
Wei C, Xun AY, Wei XX, Yao J, Wang JY, Shi RY, Yang GH, Li YX, Xu ZL, Lai MG, Zhang R, Wang LS, Zeng WS. Bifidobacteria Expressing Tumstatin Protein for Antitumor Therapy in Tumor-Bearing Mice. Technol Cancer Res Treat 2015; 15:498-508. [PMID: 25969440 DOI: 10.1177/1533034615581977] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/20/2013] [Indexed: 11/15/2022] Open
Abstract
Tumstatin (Tum) is a powerful angiostatin that inhibits proliferation and induces apoptosis of tumorous vascular endothelial cells. A nonpathogenic and anaerobic bacterium, Bifidobacterium longum (BL), selectively localizes to and proliferates in the hypoxia location within solid tumor. The aims of this study were to develop a novel delivery system for Tum using engineered Bifidobacterium and to investigate the inhibitory effect of Tum on tumor in mice. A vector that enabled the expression of Tum under the control of the pBBADs promoter of BL was constructed and transformed into BL NCC2705 by electroporation. The mouse colon carcinoma cells CT26 (1 × 10(7)/mL) were subcutaneously inserted in the left armpit of BALB/c mice. The tumor-bearing mice were treated with Tum-transformed BL, and green fluorescent protein (GFP)-transformed BL was used as a negative control. The microvessel density (MVD) in the transplanted tumor was determined, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling was used to detect apoptosis of vascular endothelial cells in transplanted tumor. The in vitro expression of Tum was examined in BL after l-arabinose induction. Bifidobacterium longum with pBBAD-Tum (BL-Tum) showed significant antitumor effect in tumor-bearing mice. The weight, volume, growth, and MVD, as well as the percentage of apoptotic vascular endothelial cells of transplanted tumors in the tumor-bearing mice treated with Tum-transformed BL were all significantly lower than those in the GFP negative control group. Intragastric administration, injection in tumor and vena caudalis injection of Tum-transformed BL exerted marked antitumor effects in tumor-bearing mice. This is the first demonstration of the utilization of Tum-transformed BL as a specific gene delivery system for treating tumor.
Collapse
Affiliation(s)
- C Wei
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - A Y Xun
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - X X Wei
- Department of Infectious Diseases, Xinxiang Medical College, Xinxiang, Guangdong Province, China
| | - J Yao
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - J Y Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - R Y Shi
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - G H Yang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Y X Li
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Z L Xu
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - M G Lai
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - R Zhang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - L-S Wang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - W S Zeng
- Department of Cell Biology, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Byrne WL, Murphy CT, Cronin M, Wirth T, Tangney M. Bacterial-mediated DNA delivery to tumour associated phagocytic cells. J Control Release 2014; 196:384-93. [PMID: 25466954 DOI: 10.1016/j.jconrel.2014.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 12/29/2022]
Abstract
Phagocytic cells including macrophages, dendritic cells and neutrophils are now recognised as playing a negative role in many disease settings including cancer. In particular, macrophages are known to play a pathophysiological role in multiple diseases and present a valid and ubiquitous therapeutic target. The technology to target these phagocytic cells in situ, both selectively and efficiently, is required in order to translate novel therapeutic modalities into clinical reality. We present a novel delivery strategy using non-pathogenic bacteria to effect gene delivery specifically to tumour-associated phagocytic cells. Non-invasive bacteria lack the ability to actively enter host cells, except for phagocytic cells. We exploit this natural property to effect 'passive transfection' of tumour-associated phagocytic cells following direct administration of transgene-loaded bacteria to tumour regions. Using an in vitro-differentiated human monocyte cell line and two in vivo mouse models (an ovarian cancer ascites and a solid colon tumour model) proof of delivery is demonstrated with bacteria carrying reporter constructs. The results confirm that the delivery strategy is specific for phagocytic cells and that the bacterial vector itself recruits more phagocytic cells to the tumour. While proof of delivery to phagocytic cells is demonstrated in vivo for solid and ascites tumour models, this strategy may be applied to other settings, including non-cancer related disease.
Collapse
Affiliation(s)
- W L Byrne
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - C T Murphy
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - M Cronin
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - T Wirth
- Aurealis Pharma, Microkatu 1, FI-70211 Kuopio, Finland
| | - M Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
27
|
Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Pawar V, Crull K, Komor U, Kasnitz N, Frahm M, Kocijancic D, Westphal K, Leschner S, Wolf K, Loessner H, Rohde M, Häussler S, Weiss S. Murine solid tumours as a novel model to study bacterial biofilm formation in vivo. J Intern Med 2014; 276:130-9. [PMID: 24724621 DOI: 10.1111/joim.12258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria of many species are able to invade and colonize solid tumours in mice. We have focused on Salmonella enterica serovar Typhimurium. Detailed analysis revealed that such tumour-invading Salmonella form biofilms, thus providing a versatile in vivo test system for studying bacterial phenotypes and host-pathogen interactions. It appears that biofilm formation by S. typhimurium is induced as a defence against the immune system of the host, and in particular against neutrophils. Further, we extended our work to the clinically more relevant biofilm infection by Pseudomonas aeruginosa. The induction of P. aeruginosa biofilms in neoplastic tissue appears to be elicited as a reaction against the immune system. Reconstitution experiments reveal that T cells are responsible for biofilm induction. Isogenic mutants that are no longer able to form biofilms can be used for comparison studies to determine antimicrobial resistance, especially therapeutic efficacy against P. aeruginosa located in biofilms.
Collapse
Affiliation(s)
- V Pawar
- Department of Molecular Immunology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang HJ, Qian WQ, Chen R, Sun ZQ, Song JD, Sheng L. New therapeutic schedule for prostatic cancer-3 cells with ET-1 RNAi and Endostar. Asian Pac J Cancer Prev 2014; 15:10079-10083. [PMID: 25556429 DOI: 10.7314/apjcp.2014.15.23.10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. MATERIALS AND METHODS The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. RESULTS ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. CONCLUSIONS Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.
Collapse
Affiliation(s)
- Hao-Jie Zhang
- Department of Urology Surgery, Huadong Hospital Affiliated To Fudan University, Shanghai, China E-mail :
| | | | | | | | | | | |
Collapse
|
30
|
Guglielmetti S, Mayo B, Álvarez-Martín P. Mobilome and genetic modification of bifidobacteria. Benef Microbes 2013; 4:143-66. [PMID: 23271067 DOI: 10.3920/bm2012.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.
Collapse
Affiliation(s)
- S Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Sezione di Microbiologia Industriale, Università degli studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | |
Collapse
|
31
|
Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Appl Microbiol Biotechnol 2013; 97:5189-99. [PMID: 23644748 DOI: 10.1007/s00253-013-4926-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023]
|
32
|
Alvarez-Martín P, Zycka-Krzesińska J, Bardowski J, Mayo B. Sequence analysis of plasmid pSP02 from Bifidobacterium longum M62 and construction of pSP02-derived cloning vectors. Plasmid 2012; 69:119-26. [PMID: 23228478 DOI: 10.1016/j.plasmid.2012.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/22/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022]
Abstract
Replicons from bifidobacteria species are required for the construction of general- and special-purpose vectors that would allow the undertaking of molecular studies of these bacteria. In this work, pSP02, a cryptic plasmid from Bifidobacterium longum M62, was cloned, sequenced and characterized. pSP02 was found to consist of 4896bp with four ORFs coding for proteins over 50 amino acids long. Among the deduced protein sequences only a replicase (RepA) and a mobilization-like protein (MobA) showed known functional domains. Similar to previously described bifidobacterial plasmids, the organization of the putative ori region of pSP02 resembles that of the theta-replicating plasmids of Gram-positives. In spite of this, hybridization experiments detected single stranded (ss)-DNA as an intermediate product in the pSP02 replication, demonstrating it follows the rolling-circle (RC) replication mode. The ori region of pSP02 was used to construct a series of first generation cloning vectors able to replicate in many bifidobacterial species. Real time quantitative PCR established the copy number of pSP02 and its derived vectors to be around 12 copies per chromosome equivalent. pSP02-derivatives showed full segregational and structural stability even in the absence of antibiotic selection.
Collapse
Affiliation(s)
- Pablo Alvarez-Martín
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias-IPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
33
|
Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012; 78:5035-42. [PMID: 22582076 DOI: 10.1128/aem.00551-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria are an important group of the human intestinal microbiota that have been shown to exert a number of beneficial probiotic effects on the health status of their host. Due to these effects, bifidobacteria have attracted strong interest in health care and food industries for probiotic applications and several species are listed as so-called "generally recognized as safe" (GRAS) microorganisms. Moreover, recent studies have pointed out their potential as an alternative or supplementary strategy in tumor therapy or as live vaccines. In order to study the mechanisms by which these organisms exert their beneficial effects and to generate recombinant strains that can be used as drug delivery vectors or live vaccines, appropriate molecular tools are indispensable. This review provides an overview of the currently available methods and tools to generate recombinant strains of bifidobacteria. The currently used protocols for transformation of bifidobacteria, as well as replicons, selection markers, and determinants of expression, will be summarized. We will further discuss promoters, terminators, and localization signals that have been used for successful generation of expression vectors.
Collapse
|
34
|
Fukiya S, Hirayama Y, Sakanaka M, Kano Y, Yokota A. Technological advances in bifidobacterial molecular genetics: application to functional genomics and medical treatments. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2012; 31:15-25. [PMID: 24936345 PMCID: PMC4034290 DOI: 10.12938/bmfh.31.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Bifidobacteria are well known as beneficial intestinal bacteria that exert
health-promoting effects in humans. In addition to physiological and immunological
investigations, molecular genetic technologies have been developed and have recently
started to be applied to clarify the molecular bases of
host-Bifidobacterium interactions. These technologies include
transformation technologies and Escherichia coli-Bifidobacterium shuttle
vectors that enable heterologous gene expression. In this context, a plasmid artificial
modification method that protects the introduced plasmid from the restriction system in
host bifidobacteria has recently been developed to increase transformation efficiency. On
the other hand, targeted gene inactivation systems, which are vital for functional
genomics, seemed far from being practically applicable in bifidobacteria. However,
remarkable progress in this technology has recently been achieved, enabling functional
genomics in bifidobacteria. Integrated use of these molecular genetic technologies with
omics-based analyses will surely boost characterization of the molecular basis underlying
beneficial effects of bifidobacteria. Applications of recombinant bifidobacteria to
medical treatments have also progressed.
Collapse
Affiliation(s)
- Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yosuke Hirayama
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Mikiyasu Sakanaka
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yasunobu Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
35
|
Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A. J Biosci Bioeng 2012; 113:442-4. [PMID: 22218059 DOI: 10.1016/j.jbiosc.2011.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 11/22/2022]
Abstract
The frequency of the ribosome-binding site (RBS) and spacer length between binding site and initiation codon were analyzed using informatics, and compared the activities of various synthetic RBSs and spacers in Bifidobacterium longum 105-A. As the result, AAGGAG and a 5 nt spacer length produced the most efficient protein expression.
Collapse
|
36
|
Yin Y, Kou L, Wang JJ, Xu GX. Therapeutic efficacy of Bifidobacterium longum-mediated human interleukin-2 with endostatin or TRAIL in transplanted tumors in mice. Exp Ther Med 2011; 3:481-486. [PMID: 22969915 DOI: 10.3892/etm.2011.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/28/2011] [Indexed: 11/06/2022] Open
Abstract
Interleukin-2 (IL-2), as an important cytokine in immune response, has been demonstrated to have therapeutic activity in several cancer models. In our previous study, we showed that the pBV22210 vector containing a chloramphenicol resistance gene and the cryptic plasmid, pMB1, from the Bifidobacterium longum (B. longum) strain could stably replicate and did not significantly affect the biological characteristics of B. longum. In this study, B. longum was transfected by electroporation with pBV22210 containing IL-2 (B. longum-pBV22210-IL-2), its growth curve was determined, and its inhibitory effect on tumor xenografts in mice was examined. The results showed that B. longum-pBV22210-IL-2 reduced the tumor size and prolonged the survival time of H22 tumor-bearing mice. In addition, when cyclophosphamide (CTX), B. longum-pBV22210-endostatin, or B. longum-pBV22210-TRAIL was combined with B. longum-pBV22210-IL-2, the antitumor effect was significantly enhanced. The survival times of the mice in the combination groups of B. longum-pBV22210-endostatin or B. longum-pBV22210-TRAIL were longer than those of the mice in the B. longum-pBV22210-IL-2 alone group. However, when CTX was added, the survival times of the mice showed no statistically significant difference compared with those of the mice in the dextrose-saline solution group. These results suggest that B. longum-pBV22210-IL-2 has potent antitumor effects that could be enhanced when combined with chemotherapeutic drugs or other antitumor genes.
Collapse
Affiliation(s)
- Yan Yin
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences
| | | | | | | |
Collapse
|
37
|
Controlled gene expression in bifidobacteria by use of a bile-responsive element. Appl Environ Microbiol 2011; 78:581-5. [PMID: 22081575 DOI: 10.1128/aem.06611-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The promoter activity of the upstream region of the bile-inducible gene betA from Bifidobacterium longum subsp. longum NCC2705 was characterized. DNA fragments were cloned into the reporter vector pMDYAbfB, and the arabinofuranosidase activity was determined under different in vitro conditions. A segment of 469 bp was found to be the smallest operational unit that retains bile inducibility. The reporter activity was strongly affected by the presence of ox gall, cholate, and conjugated cholate, but not by other bile salts and cell-surface-acting compounds. Remarkably, this bile-inducible system was also active in other bifidobacteria containing betA homologs.
Collapse
|
38
|
Baban CK, Cronin M, O'Hanlon D, O'Sullivan GC, Tangney M. Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 2011; 1:385-94. [PMID: 21468205 DOI: 10.4161/bbug.1.6.13146] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 12/13/2022] Open
Abstract
Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.
Collapse
Affiliation(s)
- Chwanrow K Baban
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
39
|
Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 2011; 149:4-18. [PMID: 21320731 DOI: 10.1016/j.ijfoodmicro.2011.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
Abstract
Members of the genus Bifidobacterium were first described over a century ago and were quickly associated with a healthy intestinal tract due to their numerical dominance in breast-fed babies as compared to bottle-fed infants. Health benefits elicited by bifidobacteria to its host, as supported by clinical trials, have led to their wide application as probiotic components of health-promoting foods, especially in fermented dairy products. However, the relative paucity of genetic tools available for bifidobacteria has impeded development of a comprehensive molecular understanding of this genus. In this review we present a summary of current knowledge on bifidobacterial metabolism, classification, physiology and genetics and outline the currently available methods for genetically accessing and manipulating the genus.
Collapse
Affiliation(s)
- Michelle Cronin
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jnr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
40
|
Abstract
Several bacterial species have inherent ability to colonize solid tumors in vivo. However, their natural anti-tumor activity can be enhanced by genetic engineering that enables these bacteria express or transfer therapeutic molecules into target cells. In this review, we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on blocking tumor angiogenesis. Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on anti-angiogenesis. Bacteria-mediated anti-angiogenesis therapy for cancer, however, is an attractive approach given that solid tumors are often characterized by increased vascularization. Here, we discuss four different approaches for using modified bacteria as anti-cancer therapeutics--bactofection, DNA vaccination, alternative gene therapy and transkingdom RNA interference--with a specific focus on angiogenesis suppression. Critical areas and future directions for this field are also outlined.
Collapse
|
41
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
42
|
Fu G, Yin Y, Hu B, Xu G. Bifidobacteriumas a Delivery System of Functional Genes for Cancer Gene Therapy. EMERGING CANCER THERAPY 2010:99-117. [DOI: 10.1002/9780470626528.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Leschner S, Weiss S. Salmonella—allies in the fight against cancer. J Mol Med (Berl) 2010; 88:763-73. [PMID: 20526574 DOI: 10.1007/s00109-010-0636-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/06/2010] [Accepted: 05/14/2010] [Indexed: 01/30/2023]
|
44
|
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5α (E. coli DH5α) specifically replicates in solid tumors and metastases in live animals. E. coli DH5α does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high ‘tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5α results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5α did not cause any detectable toxicity to any organs, suggesting that E. coli DH5α-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors.
Collapse
|
45
|
Li C, Chen X, Kou L, Hu B, Zhu LP, Fan YR, Wu ZW, Wang JJ, Xu GX. Selenium-Bifidobacterium longum as a delivery system of endostatin for inhibition of pathogenic bacteria and selective regression of solid tumor. Exp Ther Med 2010; 1:129-135. [PMID: 23136605 DOI: 10.3892/etm_00000022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/08/2009] [Indexed: 11/05/2022] Open
Abstract
Bifidobacterium longum (B. longum) as a delivery system for endostatin was shown to have definite antitumor effects. Moreover, it was found that the enrichment of selenium was able to enhance the immunity of mice. In order to further evaluate the safety and efficacy of B. longum carrying pBV22210-endostatin (B. longum-En) enriched with selenium (Se-B. longum-En), we determined the biochemical characteristics of Se-B. longum-En. We then investigated its effect on macrophage activity, as well as its inhibitory effect on the multiplication of pathogenic bacteria in vitro and the antitumor effects on murine hepatic (H22) tumor-bearing mice. The results showed that Se-B. longum-En exhibited similar biochemical characteristics to that of wild-type B. longum, i.e., Se-B. longum-En strongly enhanced macrophage phagocytosis in rats and inhibited the growth of pathogenic bacteria. In addition, Se-B. longum-En showed a definite inhibitory effect of tumor growth when H22 tumor-bearing mice were fed through oral or tail vein delivery. These results suggested that Se-B. longum is able to retain the advantages of wild-type B. longum and be used as a novel gene delivery system for liver cancer gene therapy.
Collapse
Affiliation(s)
- Chen Li
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Microbial-based therapy of cancer: current progress and future prospects. Bioeng Bugs 2009; 1:178-90. [PMID: 21326924 DOI: 10.4161/bbug.1.3.10903] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/02/2009] [Indexed: 12/12/2022] Open
Abstract
The use of bacteria in the regression of certain forms of cancer has been recognized for more than a century. Much effort, therefore, has been spent over the years in developing wild-type or modified bacterial strains to treat cancer. However, their use at the dose required for therapeutic efficacy has always been associated with toxicity problems and other deleterious effects. Recently, the old idea of using bacteria in the treatment of cancer has attracted considerable interest and new genetically engineered attenuated strains as well as microbial compounds that might have specific anticancer activity without side effects are being evaluated for their ability to act as new anticancer agents. This involves the use of attenuated bacterial strains and expressing foreign genes that encode the ability to convert non-toxic prodrugs to cytotoxic drugs. Novel strategies also include the use of bacterial products such as proteins, enzymes, immunotoxins and secondary metabolites, which specifically target cancer cells and cause tumor regression through growth inhibition, cell cycle arrest or apoptosis induction. In this review we describe the current knowledge and discuss the future directions regarding the use of bacteria or their products, in cancer therapy.
Collapse
Affiliation(s)
- Nuno Bernardes
- Institute for Biotechnology and Bioengineering (IBB), Center for Biological and Chemical Engineering, Instituto Superior Tecnico, Lisbon, Portugal
| | | | | | | |
Collapse
|
47
|
Zhu LP, Yin Y, Xing J, Li C, Kou L, Hu B, Wu ZW, Wang JJ, Xu GX. Therapeutic efficacy of Bifidobacterium longum-mediated human granulocyte colony-stimulating factor and/or endostatin combined with cyclophosphamide in mouse-transplanted tumors. Cancer Sci 2009; 100:1986-90. [PMID: 19678823 PMCID: PMC11158145 DOI: 10.1111/j.1349-7006.2009.01275.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Granulocyte colony-stimulating factor (GCSF) is frequently used as an adjunctive agent in tumor chemotherapy. Bifidobacterium longums (B. longum) attracted researchers' interests due to its enhancement of immunity and selective location in solid tumors. B. longum-pBV22210-endostatin (Endo) was proved to have a definite inhibitive effect on tumor growth in our previous study. In the present study, we evaluated the effects of B. longum-pBV22210-GCSF and/or B. longum-pBV22210-Endo combined with cyclophosphamide (CTX) on H22 and S180 tumor-bearing mice. Based on our previous work, the plasmid pBV22210-GCSF was constructed and transformed by electroporation into B. longum. The B. longum-pBV22210-GCSF and/or B. longum-pBV22210-Endo combined with CTX were applied to treat H22 and S180 tumor-bearing mice. A leukocyte count was carried out and the tumor inhibition rate was calculated after treatment. In our study, CTX combined with B. longum-pBV22210-GCSF significantly raised the leukocyte level of tumor-bearing mice, while combined with B. longum-pBV22210-GCSF alone or B. longum-pBV22210-Endo alone combinations with CTX inhibited tumor growth by over 65%. The results showed that B. longum-pBV22210-GCSF had an effective antagonistic effect on bone marrow inhibited by CTX and could inhibit tumor growth when it was combined with B. longum-pBV22210-Endo and CTX. Our results provide an enhanced understanding of B. longum and GCSF as well as their potential as an adjunctive approach in cancer gene therapy.
Collapse
Affiliation(s)
- Li-Ping Zhu
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Research Center for Gene Pharmaceutical Engineering and Technology, Suzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cao S, Cripps A, Wei MQ. New strategies for cancer gene therapy: progress and opportunities. Clin Exp Pharmacol Physiol 2009; 37:108-14. [PMID: 19671071 DOI: 10.1111/j.1440-1681.2009.05268.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. To date, cancer persists as one of the most devastating diseases worldwide. Problems such as metastasis and tumour resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of existing clinical treatments. 2. To address these problems, cancer gene therapy has been developing over the past two decades, specifically designed to deliver therapeutic genes to treat cancers using vector systems. So far, a number of genes and delivery vehicles have been evaluated and significant progress has been made with several gene therapy modalities in clinical trials. However, the lack of an ideal gene delivery system remains a major obstacle for the successful translation of regimen to the clinic. 3. Recent understanding of hypoxic and necrotic regions within solid tumours and rapid development of recombinant DNA technology have reignited the idea of using anaerobic bacteria as novel gene delivery systems. These bacterial vectors have unique advantages over other delivery systems and are likely to become the vector of choice for cancer gene therapy in the near future. 4. Meanwhile, complicated tumour pathophysiology and associated metastasis make it hard to rely on a single therapeutic modality for complete tumour eradication. Therefore, the combination of cancer gene therapy with other conventional treatments has become paramount. 5. The present review introduces important cancer gene therapy strategies and major vector systems that have been studied so far with an emphasis on bacteria-mediated cancer gene therapy. In addition, exemplary combined therapies are briefly reviewed.
Collapse
Affiliation(s)
- Siyu Cao
- Griffith Institute for Health and Medical Research, School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | | | | |
Collapse
|
49
|
Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW, Wang JJ, Xu GX. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther 2009; 16:655-663. [PMID: 19229287 DOI: 10.1038/cgt.2009.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 11/19/2008] [Accepted: 01/03/2009] [Indexed: 02/07/2023]
Abstract
In our previous study, we have shown that vector pBV22210 containing a chloramphenicol resistance and a cryptic plasmid pMB1 from Bifidobacterium longum strain could stably replicate and did not significantly affect the biological characteristics of B. longum. In this study, B. longum was transfected by electroporation with pBV22210 encoding the extracellular domain of TRAIL (B. longum-pBV22210-TRAIL) and its carbohydrate fermentation and growth curve were determined, and its location and inhibitory effect on tumor xenografts in mice were also examined. The results further proved that gene transfection did not change the main biochemical characteristics of B. longum. The results also showed that B. longum-pBV22210-TRAIL resulted in selective location in tumors and exhibited a definite antitumor effect on S180 osteosarcoma. In addition, when a low dosage of Adriamycin (5 mg kg(-1)) or B. longum-pBV22210-endostatin was combined, the antitumor effect was significantly enhanced. The successful inhibition of S180 tumor growth suggested a stable vector in B. longum for transporting anticancer genes combined with low-dose chemotherapeutic drugs or other target genes is a promising approach in cancer gene therapy.
Collapse
Affiliation(s)
- B Hu
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Application of bacterial targeted tumour therapy has a long history. However, the side effects such as toxin has limited their further research and clinical use. With the discovery of probiotics, and advance in science and technology, probiotics has become an alternative anticancer therapy with few side effects. Recently, various researches have prompted the development of gene therapy protocols that use probiotics as gene delivery vehicles. As the main place for colonizing, gastrointestinal tract has a close relationship with probiotics. Therefore, it has provided new point and opportunities for treatment of gastrointestinal cancers with probiotics. In this review, we discuss probiotics and its use in treatment of gastrointestinal cancers.
Collapse
|