1
|
Sheng L, Li J, Rao S, Yang Z, Huang Y. Cyclin-Dependent Kinase 5 Regulatory Subunit Associated Protein 3: Potential Functions and Implications for Development and Disease. Front Oncol 2021; 11:760429. [PMID: 34722315 PMCID: PMC8551632 DOI: 10.3389/fonc.2021.760429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) regulatory subunit associated protein 3 (CDK5RAP3, also named as C53 or LZAP) was initially identified as a binding protein of CDK5 activator p35. To date, CDK5RAP3 has been reported to interact with a range of proteins involved in cellular events ranging from cell cycle, apoptosis, and invasion to UFMylation modification and endoplasmic reticulum stress. Owing to its crucial roles in cellular processes, CDK5RAP3 is demonstrated to be not only an active participant in embryonic and mammalian tissue development, but also a key regulator in the onset and progress of human cancers such as head and neck squamous cell carcinoma, gastric cancer, hepatocellular cancer, lung cancer, kidney cancer and breast cancer. Notwithstanding, the detailed function of CDK5RAP3 and its mechanism remain poorly defined. Here, we briefly described a history of the discovery of CDK5RAP3, and systematically overviewed its gene structural and distribution features. We also focused on the known functions of this protein and its implications for embryogenesis and tissue development, as well as diseases especially carcinoma. This review may facilitate to understand the molecular and functional basis of CDK5RAP3 and its association with development and disease, and provide a reasonable idea for novel therapeutic opportunities targeting CDK5RAP3.
Collapse
Affiliation(s)
- Linna Sheng
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China.,Graduate College of Nanchang University, Nanchang, China
| | - Jiaxuan Li
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Shengfang Rao
- Department of Nuclear Medicine, Nanchang University Hospital, Nanchang, China
| | - Zhijun Yang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, Wang C, Jacob F, Wu K, Traglia M, Tam TW, Jamieson K, Lu SY, Ming GL, Li Y, Yao J, Weiss LA, Dixon JR, Judge LM, Conklin BR, Song H, Gan L, Shen Y. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat Genet 2019; 51:1252-1262. [PMID: 31367015 PMCID: PMC6677164 DOI: 10.1038/s41588-019-0472-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform an integrative analysis of chromatin interactions, open chromatin regions and transcriptomes using promoter capture Hi-C, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing, respectively, in four functionally distinct neural cell types: induced pluripotent stem cell (iPSC)-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus-like neurons and primary astrocytes. We identify hundreds of thousands of long-range cis-interactions between promoters and distal promoter-interacting regions, enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several promoter-interacting regions by using clustered regularly interspaced short palindromic repeats (CRISPR) techniques in human excitatory neurons, demonstrating that CDK5RAP3, STRAP and DRD2 are transcriptionally regulated by physically linked enhancers.
Collapse
Affiliation(s)
- Michael Song
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Lenka Maliskova
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Bingkun Li
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
| | - Fadi Jacob
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth Wu
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA, USA
| | - Michela Traglia
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Tsz Wai Tam
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Kirsty Jamieson
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Si-Yao Lu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jun Yao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Lauren A Weiss
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Luke M Judge
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Lin JX, Xie XS, Weng XF, Qiu SL, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM, Zheng CH. Overexpression of IC53d promotes the proliferation of gastric cancer cells by activating the AKT/GSK3β/cyclin D1 signaling pathway. Oncol Rep 2019; 41:2739-2752. [PMID: 30864700 PMCID: PMC6448126 DOI: 10.3892/or.2019.7042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclin‑dependent kinase 5 regulatory subunit‑associated protein 3 (CDK5RAP3 or C53) is involved in the development of various types of tumor, and alternative splicing of C53 results in numerous transcription variants that encode different isoforms. The present study aimed to clone human C53 isoform d (IC53d) and explore its role in the proliferation of gastric cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of IC53d in 80 primary gastric adenocarcinoma tissues and adjacent normal tissues. In addition, the association between IC53d and clinicopathological parameters was determined. Gastric cancer cell lines stably overexpressing IC53d were established to observe its effects on cell proliferation, invasion and migration, and on in vivo tumorigenicity, and the mechanism of action was explored. The results of the presen study demonstrated that IC53d was upregulated in gastric cancer tissues and was associated with tumor T‑stage. Furthermore, overexpression of IC53d promoted the proliferation, colony formation and G1/S phase transition of gastric cancer cells, leading to enhancement of tumorigenesis in vitro and in vivo. Overexpression of IC53d also promoted phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β), which increased the expression of cyclin D1. In addition, high cyclin D1 expression was associated with a significantly worse prognosis for patients compared with in patients with low cyclin D1 expression. These results indicated that IC53d may promote the phosphorylation of AKT and GSK3β, which in turn may increase cyclin D1 expression, enhancing G1/S phase transition, accelerating cell cycle progression, promoting the proliferation of gastric cancer cells, and inducing a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
4
|
Gonçalves AK, Giraldo PC, Machado PRL, Farias KJS, Costa APF, Freitas JCDOC, Eleutério J, Witkin SS. Human Papillomavirus Vaccine-Induced Cytokine Messenger RNA Expression in Vaccinated Women. Viral Immunol 2015; 28:339-42. [DOI: 10.1089/vim.2015.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ana Katherine Gonçalves
- Department of Gynecology and Obstetrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo César Giraldo
- Department of Gynecology and Obstetrics, State University of Campinas, Campinas, Brazil
| | - Paula Renata Lima Machado
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Paula Ferreira Costa
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - José Eleutério
- Department of Gynecology and Obstetrics, Federal University of Ceará, Fortaleza, Brazil
| | - Steven S. Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York
| |
Collapse
|
5
|
Mak GWY, Chan MML, Leong VYL, Lee JMF, Yau TO, Ng IOL, Ching YP. Overexpression of a novel activator of PAK4, the CDK5 kinase-associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res 2011; 71:2949-58. [PMID: 21385901 DOI: 10.1158/0008-5472.can-10-4046] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CDK5 kinase regulatory subunit-associated protein 3 (CDK5RAP3 or C53/LZAP) regulates apoptosis induced by genotoxic stress. Although CDK5RAP3 has been implicated in cancer progression, its exact role in carcinogenesis is not well established. In this article, we report that CDK5RAP3 has an important prometastatic function in hepatocarcinogenesis. An examination of human hepatocellular carcinoma (HCC) samples revealed at least twofold overexpression of CDK5RAP3 transcripts in 58% (39/67) of HCC specimens when compared with corresponding nontumorous livers. CDK5RAP3 overexpression was associated with more aggressive biological behavior. In HCC cell lines, stable overexpression of CDK5RAP3 promoted, and small interfering RNA-mediated knockdown inhibited, tumorigenic activity and metastatic potential. We found that overexpression of CDK5RAP3 and p21-activated protein kinase 4 (PAK4) correlated in human HCCs, and that CDK5RAP3 was a novel binding partner of PAK4, and this binding enhanced PAK4 activity. siRNA-mediated knockdown of PAK4 in CDK5RAP3-expressing HCC cells reversed the enhanced cell invasiveness mediated by CDK5RAP3 overexpression, implying that PAK4 is essential for CDK5RAP3 function. Taken together, our findings reveal that CDK5RAP3 is widely overexpressed in HCC and that overexpression of CDK5RAP3 promotes HCC metastasis through PAK4 activation.
Collapse
Affiliation(s)
- Grace Wing-Yan Mak
- Departments of Anatomy and Pathology, Li Ka Shing Faculty of Medicine, and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 2007; 124:856-67. [DOI: 10.1016/j.mod.2007.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|