1
|
Louis E, Fu L, Shi YB, Sachs LM. Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development. Endocrinology 2024; 165:bqae137. [PMID: 39397558 PMCID: PMC11497603 DOI: 10.1210/endocr/bqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.
Collapse
Affiliation(s)
- Emeric Louis
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Laurent M Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
| |
Collapse
|
2
|
Tanizaki Y, Bao L, Shi YB. Steroid-receptor coactivator complexes in thyroid hormone-regulation of Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:483-502. [PMID: 37717995 PMCID: PMC11274430 DOI: 10.1016/bs.vh.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
3
|
Miao Y, Mei Q, Fu C, Liao M, Liu Y, Xu X, Li X, Zhao S, Xiang T. Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs. BMC Genomics 2021; 22:294. [PMID: 33888058 PMCID: PMC8063444 DOI: 10.1186/s12864-021-07570-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. Results A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. Conclusions Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2 genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07570-w.
Collapse
Affiliation(s)
- Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Jingchu University of Technology, Jingmen, 448000, China
| | - Quanshun Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Agriculture and Rural Affairs Administration of Jingmen City, Jingmen, 448000, China
| | - Yan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
4
|
Tanizaki Y, Bao L, Shi B, Shi YB. A Role of Endogenous Histone Acetyltransferase Steroid Hormone Receptor Coactivator 3 in Thyroid Hormone Signaling During Xenopus Intestinal Metamorphosis. Thyroid 2021; 31:692-702. [PMID: 33076783 PMCID: PMC8195878 DOI: 10.1089/thy.2020.0410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) plays an important role in regulating vertebrate developmental, cellular, and metabolic processes via T3 receptor (TR). Liganded TR recruit coactivator complexes that include steroid receptor coactivators (SRC1, SRC2 or SRC3), which are histone acetyltransferases, to T3-responsive promoters. The functions of endogenous coactivators during T3-dependent mammalian adult organ development remain largely unclear, in part, due to the difficulty to access and manipulate late-stage embryos and neonates. We use Xenopus metamorphosis as a model for postembryonic development in vertebrates. This process is controlled by T3, involves drastic changes in every organ/tissue, and can be easily manipulated. We have previously found that SRC3 was upregulated in the intestine during amphibian metamorphosis. Methods: To determine the function of endogenous SRC3 during intestinal remodeling, we have generated Xenopus tropicalis animals lacking a functional SRC3 gene and analyzed the resulting phenotype. Results: Although removing SRC3 had no apparent effect on external development and animal gross morphology, the SRC3 (-/-) tadpoles displayed a reduction in the acetylation of histone H4 in the intestine compared with that in wild-type animals. Further, the expression of TR target genes was also reduced in SRC3 (-/-) tadpoles during intestinal remodeling. Importantly, SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells. Conclusion: Our results, thus, demonstrate that SRC3 is a critical component of the TR-signaling pathway in vivo during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods Mol Biol 2019; 1874:507-524. [PMID: 30353533 DOI: 10.1007/978-1-4939-8831-0_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anuran Xenopus laevis has been studied for decades as a model for vertebrate cell and developmental biology. More recently, the highly related species Xenopus tropicalis has offered the opportunity to carry out genetic studies due to its diploid genome as compared to the pseudo-tetraploid Xenopus laevis. Amphibians undergo a biphasic development: embryogenesis to produce a free-living tadpoles and subsequent metamorphosis to transform the tadpole to a frog. This second phase mimics the so-called postembryonic development in mammals when many organs/tissues mature into their adult form in the presence of high levels of plasma thyroid hormone (T3). The total dependence of amphibian metamorphosis on T3 offers a unique opportunity to study postembryonic development in vertebrates, especially with the recent development gene editing technologies that function in amphibians. Here, we first review the basic molecular understanding of the regulation of Xenopus metamorphosis by T3 and T3 receptors (TRs), and then describe a detailed method to use CRISPR to knock out the TR-coactivator SRC3 (steroid receptor coactivator 3), a histone acetyltransferase, in order to study its involvement in gene regulation by T3 in vivo and Xenopus development.
Collapse
|
6
|
Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 2017; 7:6414. [PMID: 28743885 PMCID: PMC5527017 DOI: 10.1038/s41598-017-06679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (T3) affects development and metabolism in vertebrates. We have been studying intestinal remodeling during T3-dependent Xenopus metamorphosis as a model for organ maturation and formation of adult organ-specific stem cells during vertebrate postembryonic development, a period characterized by high levels of plasma T3. T3 is believed to affect development by regulating target gene transcription through T3 receptors (TRs). While many T3 response genes have been identified in different animal species, few have been shown to be direct target genes in vivo, especially during development. Here we generated a set of genomic microarray chips covering about 8000 bp flanking the predicted transcription start sites in Xenopus tropicalis for genome wide identification of TR binding sites. By using the intestine of premetamorphic tadpoles treated with or without T3 and for chromatin immunoprecipitation assays with these chips, we determined the genome-wide binding of TR in the control and T3-treated tadpole intestine. We further validated TR binding in vivo and analyzed the regulation of selected genes. We thus identified 278 candidate direct TR target genes. We further provided evidence that these genes are regulated by T3 and likely involved in the T3-induced formation of adult intestinal stem cells during metamorphosis.
Collapse
|
7
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Yu J, Fu Y, Shi Z. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:321-336. [PMID: 27620185 DOI: 10.1007/s10695-016-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
10
|
Abstract
Thyroid hormone (T3) affects adult metabolism and postembryonic development in vertebrates. T3 functions mainly via binding to its receptors (TRs) to regulate gene expression. There are 2 TR genes, TRα and TRβ, with TRα more ubiquitously expressed. During development, TRα expression appears earlier than T3 synthesis and secretion into the plasma. This and the ability of TRs to regulate gene expression both in the presence and absence of T3 have indicated a role for unliganded TR during vertebrate development. On the other hand, it has been difficult to study the role of unliganded TR during development in mammals because of the difficulty to manipulate the uterus-enclosed, late-stage embryos. Here we use amphibian development as a model to address this question. We have designed transcriptional activator-like effector nucleases (TALENs) to mutate the TRα gene in Xenopus tropicalis. We show that knockdown of TRα enhances tadpole growth in premetamorphic tadpoles, in part because of increased growth hormone gene expression. More importantly, the knockdown also accelerates animal development, with the knockdown animals initiating metamorphosis at a younger age and with a smaller body size. On the other hand, such tadpoles are resistant to exogenous T3 treatment and have delayed natural metamorphosis. Thus, our studies not only have directly demonstrated a critical role of endogenous TRα in mediating the metamorphic effect of T3 but also revealed novel functions of unliganded TRα during postembryonic development, that is, regulating both tadpole growth rate and the timing of metamorphosis.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
11
|
Sun G, Fu L, Shi YB. Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell Biosci 2014; 4:73. [PMID: 25937894 PMCID: PMC4417507 DOI: 10.1186/2045-3701-4-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modifications of histones are emerging as key factors in gene regulation by diverse transcription factors. Their roles during vertebrate development and pathogenesis are less clear. The causative effect of thyroid hormone (T3) on amphibian metamorphosis and the ability to manipulate this process for molecular and genetic studies have led to the demonstration that T3 receptor (TR) is necessary and sufficient for Xenopus metamorphosis, a process that resembles the postembryonic development (around birth) in mammals. Importantly, analyses during metamorphosis have provided some of the first in vivo evidence for the involvement of histone modifications in gene regulation by TR during vertebrate development. Furthermore, expression and functional studies suggest that various histone modifying epigenetic enzymes likely participate in multiple steps during the formation of adult intestinal stem cells during metamorphosis. The similarity between intestinal remodeling and the maturation of the mammalian intestine around birth when T3 levels are high suggests conserved roles for the epigenetic enzymes in mammalian adult intestinal stem cell development and/or proliferation.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| |
Collapse
|
12
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Shi YB. Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Curr Top Dev Biol 2013; 105:275-97. [PMID: 23962846 DOI: 10.1016/b978-0-12-396968-2.00010-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
14
|
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci 2012; 2:42. [PMID: 23256597 PMCID: PMC3562205 DOI: 10.1186/2045-3701-2-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
15
|
Grimaldi A, Buisine N, Miller T, Shi YB, Sachs LM. Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies. Biochim Biophys Acta Gen Subj 2012; 1830:3882-92. [PMID: 22565053 DOI: 10.1016/j.bbagen.2012.04.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. However, the in vivo mechanism of TR action remains poorly explored. SCOPE OF REVIEW Frog metamorphosis is controlled by TH and mimics the postembryonic period in mammals when high levels of TH are also required. We review here some of the findings on the developmental functions of TH and TR and the associated mechanisms obtained from this model system. MAJOR CONCLUSION A dual function model for TR in Anuran development was proposed over a decade ago. That is, unliganded TR recruits corepressors to TH response genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes. Subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model. Specifically, it has been shown that unliganded TR recruits histone deacetylase containing corepressor complexes during larval stages to control metamorphic timing, while liganded TR recruits multiple histone modifying and chromatin remodeling coactivator complexes during metamorphosis. These complexes can alter chromatin structure via nucleosome position alterations or eviction and histone modifications to contribute to the recruitment of transcriptional machinery and gene activation. GENERAL SIGNIFICANCE The molecular mechanisms of TR action in vivo as revealed from studies on amphibian metamorphosis are very likely applicable to mammalian development as well. These findings provide a new perspective for understanding the diverse effects of TH in normal physiology and diseases caused by TH dysfunction. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Alexis Grimaldi
- Muséum National d'Histoire Naturelle, Dépt. Régulation Développement et Diversité Moléculaire, UMR7221 CNRS, Evolution des Régulations Endocriniennes, Section on thyroid hormone receptor function and mechanism of action, 57 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
16
|
Matsuura K, Fujimoto K, Fu L, Shi YB. Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development. Endocrinology 2012; 153:961-72. [PMID: 22147009 PMCID: PMC3275393 DOI: 10.1210/en.2011-1736] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T(3)) plays an important role in regulating multiple cellular and metabolic processes, including cell proliferation, cell death, and energy metabolism, in vertebrates. Dysregulation of T(3) signaling results in developmental abnormalities, metabolic defects, and even cancer. We used T(3)-dependent Xenopus metamorphosis as a model to study how T(3) regulates transcription during vertebrate development. T(3) exerts its metamorphic effects through T(3) receptors (TR). TR recruits, in a T(3)-dependent manner, cofactor complexes that can carry out chromatin remodeling/histone modifications. Whether and how histone modifications change upon gene regulation by TR during vertebrate development is largely unknown. Here we analyzed histone modifications at T(3) target genes during intestinal metamorphosis, a process that involves essentially total apoptotic degeneration of the simple larval epithelium and de novo development of the adult epithelial stem cells, followed by their proliferation and differentiation into the complex adult epithelium. We demonstrated for the first time in vivo during vertebrate development that TR induces the removal of core histones at the promoter region and the recruitment of RNA polymerase. Furthermore, a number of histone activation and repression marks have been defined based on correlations with mRNA levels in cell cultures. Most but not all correlate with gene expression induced by liganded TR during development, suggesting that tissue and developmental context influences the roles of histone modifications in gene regulation. Our findings provide important mechanistic insights on how chromatin remodeling affects developmental gene regulation in vivo.
Collapse
Affiliation(s)
- Kazuo Matsuura
- National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Laboratory of Gene Regulation and Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
17
|
Matsuda H, Shi YB. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development. Stem Cells 2010; 28:2073-83. [PMID: 20872846 PMCID: PMC3423327 DOI: 10.1002/stem.529] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organ-specific adult stem cells are critical for the homeostasis of adult organs and organ repair and regeneration. Unfortunately, it has been difficult to investigate the origins of these stem cells and the mechanisms of their development, especially in mammals. Intestinal remodeling during frog metamorphosis offers a unique opportunity for such studies. During the transition from an herbivorous tadpole to a carnivorous frog, the intestine is completely remodeled as the larval epithelial cells undergo apoptotic degeneration and are replaced by adult epithelial cells developed de novo. The entire metamorphic process is under the control of thyroid hormone, making it possible to control the development of the adult intestinal stem cells. Here, we show that the thyroid hormone receptor-coactivator protein arginine methyltransferase 1 (PRMT1) is upregulated in a small number of larval epithelial cells and that these cells dedifferentiate to become the adult stem cells. More importantly, transgenic overexpression of PRMT1 leads to increased adult stem cells in the intestine, and conversely, knocking down the expression of endogenous PRMT1 reduces the adult stem cell population. In addition, PRMT1 expression pattern during zebrafish and mouse development suggests that PRMT1 may play an evolutionally conserved role in the development of adult intestinal stem cells throughout vertebrates. These findings are not only important for the understanding of organ-specific adult stem cell development but also have important implications in regenerative medicine of the digestive tract.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, PCRM, NICHD, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
18
|
Campinho MA, Galay-Burgos M, Sweeney GE, Power DM. Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea bream (Sparus aurata, Linnaeus). Gen Comp Endocrinol 2010; 165:181-94. [PMID: 19549532 DOI: 10.1016/j.ygcen.2009.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/13/2022]
Abstract
To test the hypothesis that THs play an important role in the larval to juvenile transition in the marine teleost model, sea bream (Sparus auratus), key elements of the thyroid axis were analysed during development. Specific RT-PCR and Taqman quantitative RT-PCR were established and used to measure sea bream iodothyronine deiodinases and thyroid hormone receptor (TR) genes, respectively. Expression of deiodinases genes (D1 and D2) which encode enzymes producing T3, TRs and T4 levels start to increase at 20-30 days post-hatch (dph; beginning of metamorphosis), peak at about 45 dph (climax) and decline to early larval levels after 90-100 dph (end of metamorphosis) when fish are fully formed juveniles. The profile of these different TH elements during sea bream development is strikingly similar to that observed during the TH driven metamorphosis of flatfish and suggests that THs play an analogous role in the larval to juvenile transition in this species and probably also in other pelagic teleosts. However, the effect of T3 treatment on deiodinases and TR transcript abundance in sea bream is not as clear cut as in larval flatfish and tadpoles indicating divergence in the responsiveness of TH axis elements and highlighting the need for further studies of this axis during development of fish.
Collapse
Affiliation(s)
- Marco António Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
19
|
Shi YB. Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid 2009; 19:987-99. [PMID: 19678741 PMCID: PMC2833175 DOI: 10.1089/thy.2009.0041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. Transcription studies have shown that TR activates or represses TH-inducible genes by recruiting coactivators or corepressors in the presence or absence of TH, respectively. However, the developmental roles of these TR cofactors remain largely unexplored. Frog metamorphosis is totally dependent on TH and mimics the postembryonic period in mammalian development during which TH levels are also high. We have previously proposed a dual function model for TR in the development of the anuran Xenopus laevis. That is, unliganded TR recruits corepressors to TH-inducible genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes and subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphosis. Over the years, we and others have used molecular and genetic approaches to demonstrate the importance of the dual functions of TR in Xenopus laevis. In particular, unliganded TR has been shown to recruit histone deacetylase-containing corepressor complexes in premetamorphic tadpoles to control metamorphic timing. In contrast, metamorphosis requires TH-bound TR to recruit coactivator complexes containing histone acetyltransferases and methyltransferases to activate transcription. Furthermore, the concentrations of coactivators appear to regulate the rate of metamorphic progression. Studies in mammals also suggest that the dual function model for TR is conserved across vertebrates.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
20
|
Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol 2008; 29:745-57. [PMID: 19047371 DOI: 10.1128/mcb.00827-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) acts as a transcription coactivator for nuclear receptors through histone H4 R3 methylation. The in vivo function of PRMT1 is largely unknown. Here we investigated the role of PRMT1 in thyroid hormone (T3) receptor (TR)-mediated transcription in vivo during vertebrate development. By using intestinal remodeling during T3-dependent Xenopus laevis metamorphosis for in vivo molecular analysis, we first showed that PRMT1 expression was upregulated during metamorphosis when both TR and T3 were present. We then demonstrated a role for PRMT1 in TR-mediated transcription by showing that PRMT1 enhanced transcriptional activation by liganded TR in the frog oocyte transcription system and was recruited to the T3 response element (TRE) of the target promoter in the oocyte, as well as to endogenous TREs during frog metamorphosis. Surprisingly, we found that PRMT1 was only transiently recruited to the TREs in the target during metamorphosis and observed no PRMT1 recruitment to TREs at the climax of intestinal remodeling when both PRMT1 and T3 were at peak levels. Mechanistically, we showed that overexpression of PRMT1 enhanced TR binding to TREs both in the frog oocyte model system and during metamorphosis. More importantly, transgenic overexpression of PRMT1 enhanced gene activation in vivo and accelerated both natural and T3-induced metamorphosis. These results thus indicate that PRMT1 functions transiently as a coactivator in TR-mediated transcription by enhancing TR-TRE binding and further suggest that PRMT1 has tissue-specific roles in regulating the rate of metamorphosis.
Collapse
|
21
|
Wang X, Matsuda H, Shi YB. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology 2008; 149:5610-8. [PMID: 18635662 PMCID: PMC2584584 DOI: 10.1210/en.2008-0751] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amphibian metamorphosis serves as an excellent model to study T3 function during postembryonic development in vertebrate due to its total dependence on T3. Earlier molecular studies in the model species Xenopus laevis have led to a number of important in vivo findings on the function and mechanisms of T3 receptor (TR) action during vertebrate development. However, the lack of genomic sequence information, its tetraploid genome, and lengthy developmental cycle hinder further analyses on TR functions. In this regard, the highly related species, Xenopus tropicalis, is much more advantageous. Toward developing X. tropicalis for genome-wide and genetic studies of TR function, we analyzed the expression profiles of TRs and their heterodimerization partners, retinoid X receptors (RXRs) or 9-cis retinoic acid receptors. We show that their expression correlates with transformations in different organs and that TR/RXR heterodimers are capable of repressing and activating gene expression in vivo in the absence and presence of T3, respectively. We further demonstrate that TRs are bound to endogenous target genes in X. tropicalis tadpoles. Our results thus support a role of TRs in mediating the metamorphic effects of T3 in X. tropicalis. More importantly, the similarities in the expression and function between X. tropicalis and X. laevis TRs and RXRs as demonstrated by our study also pave the way to take advantages of existing morphological, molecular, and cellular knowledge of X. laevis development and the genetic and sequence superiority of X. tropicalis to dissect the molecular pathways governing tissue/organ-specific transformations during vertebrate postembryonic development.
Collapse
Affiliation(s)
- Xuedong Wang
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol 2008; 288:71-8. [PMID: 18400374 DOI: 10.1016/j.mce.2008.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/28/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022]
Abstract
During amphibian metamorphosis the small intestine is remodeled from larval to adult form, analogous to the mammalian intestine. The larval epithelium mostly undergoes apoptosis, while a small number of stem cells appear, actively proliferate, and differentiate into the adult epithelium possessing a cell-renewal system. Because amphibian intestinal remodeling is completely controlled by thyroid hormone (T3) through T3 receptors (TRs), it serves as an excellent model for studying the molecular mechanism of the mammalian intestinal development. TRs bind T3 response elements in target genes and have dual functions by interacting with coactivators or corepressors in a T3-dependent manner. A number of T3 response genes have been isolated from the Xenopus laevis intestine. They include signaling molecules, matrix metalloproteinases, and transcription factors. Functional studies have been carried out on many such genes in vitro and in vivo by using transgenic and culture technologies. Here we will review recent findings from such studies with a special emphasis on the adult intestinal stem cells, and discuss the evolutionarily conserved roles of T3 in the epithelial cell-renewal in the vertebrate intestine.
Collapse
|
23
|
Matsuda H, Paul BD, Choi CY, Shi YB. Contrasting Effects of Two Alternative Splicing Forms of Coactivator-Associated Arginine Methyltransferase 1 on Thyroid Hormone Receptor-Mediated Transcription in Xenopus laevis. Mol Endocrinol 2007; 21:1082-94. [PMID: 17312273 DOI: 10.1210/me.2006-0448] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by the recruitment of corepressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. Among them is coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3. We are interested in investigating the role of CARM1 in TR-mediated gene expression in vivo during postembryonic development by using T3-dependent frog metamorphosis as a model. We first cloned the Xenopus laevis CARM1 and obtained two alternative splicing forms, CARM1a and CARM1b. Both isoforms are expressed throughout metamorphosis, supporting a role for these isoforms during the process. To investigate whether Xenopus CARM1s participate in gene regulation by TRs, transcriptional analysis was conducted in Xenopus oocyte, where the effects of cofactors can be studied in the context of chromatin in vivo. Surprisingly, overexpression of CARM1b had little effect on TR-mediated transcription, whereas CARM1a enhanced gene activation by liganded TR. Chromatin immunoprecipitation assays showed that both endogenous CARM1a and overexpressed CARM1a and b were recruited to the promoter by liganded TR. However, the binding of liganded TR to the target promoter was reduced when CARM1b was overexpressed, accompanied by a slight reduction in histone methylation at the promoter. These results suggest that CARM1 may play a role in TR-mediated transcriptional regulation during frog development and that its function is regulated by alternative splicing.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
24
|
Paul BD, Buchholz DR, Fu L, Shi YB. SRC-p300 Coactivator Complex Is Required for Thyroid Hormone-induced Amphibian Metamorphosis. J Biol Chem 2007; 282:7472-81. [PMID: 17218308 DOI: 10.1074/jbc.m607589200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of these coactivators during post-embryonic development. Metamorphosis is totally dependent on the thyroid hormone, and TR mediates a vast majority, if not all, of the developmental effects of the hormone. We have previously shown that TR recruits the coactivator SRC3 (steroid receptor coactivator-3) and that coactivator recruitment is essential for metamorphosis. To determine whether SRCs are indeed required, we have analyzed the in vivo role of the histone acetyltransferase p300/CREB-binding protein (CBP), which was reported to be a component of the SRC.coactivator complexes. Chromatin immunoprecipitation revealed that p300 is recruited to T3-responsive promoters, implicating a role of p300 in TR function. Further, transgenic tadpoles overexpressing a dominant negative form of p300, F-dnp300, containing only the SRC-interacting domain, displayed arrested or delayed metamorphosis. Molecular analyses of the transgenic F-dnp300 animals showed that F-dnp300 was recruited by TR (displacing endogenous p300) and inhibited the expression of T3-responsive genes. Our results thus suggest that p300 and/or its related CBP is an essential component of the TR-signaling pathway in vivo and support the notion that p300/CBP and SRC proteins are part of the same coactivator complex in vivo during post-embryonic development.
Collapse
Affiliation(s)
- Bindu D Paul
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
25
|
Kawakami Y, Shin DH, Kitano T, Adachi S, Yamauchi K, Ohta H. Transactivation activity of thyroid hormone receptors in fish (Conger myriaster) in response to thyroid hormones. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:503-9. [PMID: 16820313 DOI: 10.1016/j.cbpb.2006.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/25/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
We previously isolated cDNAs encoding conger eel (Conger myriaster) thyroid hormone (TH) receptors (TRs). In the present study, we investigated the transactivation activities of conger eel TRs treated with THs (3,3',5-triiodo-l-thyronine [T3], l-thyroxine [T4], and 3,3',5'-triiodo-l-thyronine [rT3]), or ligands and activators of other nuclear receptors. Following transient transfection into the Japanese eel (Anguilla japonica) hepatocyte cell line Hepa-E1, the conger eel TRs (cTRs) showed TH-dependent activation of transcription from a TH-responsive promoter. However, no transactivation activity of any of the four cTRs was observed with ligands or activators of other nuclear receptors. Although T3 activation for cTRs is stronger than other THs (T3>T4>rT3), the transactivation sensitivity was different from the activity of cTRs with THs, respectively. Therefore, we conclude that cTRs can act in concert with THs in fish metamorphosis.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Department of Fisheries, Graduate School of Agriculture, Kinki University, Nara 631-8505, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Buchholz DR, Paul BD, Fu L, Shi YB. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 2006; 145:1-19. [PMID: 16266705 DOI: 10.1016/j.ygcen.2005.07.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/23/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The current review focuses on the molecular mechanisms and developmental roles of thyroid hormone receptors (TRs) in gene regulation and metamorphosis in Xenopus laevis and discusses implications for TR function in vertebrate development and diversity. Questions addressed are: (1) what are the molecular mechanisms of gene regulation by TR, (2) what are the developmental roles of TR in mediating the thyroid hormone (TH) signal, (3) what are the roles of the different TR isoforms, and (4) how do changes in these molecular and developmental mechanisms affect evolution? Even though detailed knowledge of molecular mechanisms of TR-mediated gene regulation is available from in vitro studies, relatively little is known about how TR functions in development in vivo. Studies on TR function during frog metamorphosis are leading the way toward bridging the gap between in vitro and in vivo studies. In particular, a dual function model for the role of TR in metamorphosis has been proposed and investigated. In this model, TRs repress genes allowing tadpole growth in the absence of TH during premetamorphosis and activate genes important for metamorphosis when TH is present. Despite the lack of metamorphosis in most other vertebrates, TR has important functions in development across vertebrates. The underlying molecular mechanisms of TR in gene regulation are conserved through evolution, so other mechanisms involving TH-target genes and TH tissue-sensitivity and dependence underlie differences in role of TR across vertebrates. Continued analysis of molecular and developmental roles of TR in X. laevis will provide the basis for understanding how TR functions in gene regulation in vivo across vertebrates and how TR is involved in the generation of evolutionary diversity.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD/NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | | | | | |
Collapse
|
27
|
Paul BD, Fu L, Buchholz DR, Shi YB. Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol 2005; 25:5712-24. [PMID: 15964825 PMCID: PMC1156993 DOI: 10.1128/mcb.25.13.5712-5724.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/19/2004] [Accepted: 03/25/2005] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of co-repressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.
Collapse
Affiliation(s)
- Bindu Diana Paul
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
28
|
Paul BD, Buchholz DR, Fu L, Shi YB. Tissue- and Gene-specific Recruitment of Steroid Receptor Coactivator-3 by Thyroid Hormone Receptor during Development. J Biol Chem 2005; 280:27165-72. [PMID: 15901728 DOI: 10.1074/jbc.m503999200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development.
Collapse
Affiliation(s)
- Bindu D Paul
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Tan JH, Quek SI, Chan WK. Cloning, Genomic Organization, and Expression Analysis of Zebrafish Nuclear Receptor Coactivator, TIF2. Zebrafish 2005; 2:33-46. [DOI: 10.1089/zeb.2005.2.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jee-Hian Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sue-Ing Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Woon-Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
30
|
Peng GH, Ahmad O, Ahmad F, Liu J, Chen S. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 2005; 14:747-64. [PMID: 15689355 DOI: 10.1093/hmg/ddi070] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nr2e3 is an orphan nuclear receptor expressed specifically by retinal photoreceptor cells. Mutations in Nr2e3 result in syndromes characterized by excess blue cones and loss of rods: enhanced S-cone syndrome (ESCS) in humans and rd7 in mice. Using yeast two-hybrid screens with Nr2e3 as bait, the cone-rod homeobox protein Crx was identified as an interacting partner of Nr2e3. Immunoprecipitation assays confirmed this Nr2e3-Crx interaction and identified the DNA-binding domain of each protein as the interaction motif. Immunohistochemistry demonstrated that Crx and Nr2e3 are co-expressed by rod photoreceptors and their precursors. Chromatin immunoprecipitation assays on mouse retina demonstrated that Nr2e3 and Crx co-occupy the promoter/enhancer region of several rod and cone genes in the rod photoreceptor cells. The promoter/enhancer occupancy of Nr2e3 is Crx-dependent, suggesting that Nr2e3 is associated with photoreceptor gene targets by interacting with Crx. Transient transfection assays in HEK293 cells demonstrated that Nr2e3 enhances rhodopsin, but represses S- or M-cone opsin transcription when interacting with Crx. Quantitative real-time RT-PCR analysis on postnatal day 28 (P28) retina of the rd7 mouse, which lacks Nr2e3 protein, revealed an up-regulation of cone genes, but down-regulation of rod genes. Several mutant forms of human Nr2e3 identified from ESCS patients showed defects in interacting with Crx and/or in transcriptional regulatory function. Altogether, our findings suggest that Nr2e3 is a dual-function transcriptional regulator that acts in concert with Crx to promote and maintain the function of rod photoreceptors.
Collapse
Affiliation(s)
- Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|