1
|
Neveling K, Mantere T, Vermeulen S, Oorsprong M, van Beek R, Kater-Baats E, Pauper M, van der Zande G, Smeets D, Weghuis DO, Stevens-Kroef MJPL, Hoischen A. Next-generation cytogenetics: Comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am J Hum Genet 2021; 108:1423-1435. [PMID: 34237281 DOI: 10.1016/j.ajhg.2021.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Somatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM). Samples from 52 individuals with a clinical diagnosis of a hematological malignancy, divided into simple (<5 aberrations, n = 36) and complex (≥5 aberrations, n = 16) cases, were processed for OGM, reaching on average: 283-fold genome coverage. OGM called a total of 918 high-confidence SVs per sample, of which, on average, 13 were rare and >100 kb. In addition, on average, 73 CNVs were called per sample, of which six were >5 Mb. For the 36 simple cases, all clinically reported aberrations were detected, including deletions, insertions, inversions, aneuploidies, and translocations. For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susan Vermeulen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Michiel Oorsprong
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Ellen Kater-Baats
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Marc Pauper
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Guillaume van der Zande
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Dominique Smeets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Daniel Olde Weghuis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | | | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6532 GA Nijmegen, the Netherlands.
| |
Collapse
|
2
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
3
|
Szuhai K, Tanke HJ. COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc 2007; 1:264-75. [PMID: 17406243 DOI: 10.1038/nprot.2006.41] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Combined binary ratio labeling (COBRA) is designed to increase the multiplicity of fluorescence in situ hybridization (FISH)--i.e., the number of targets that can be distinguished simultaneously. In principle, chemical (ULS), enzymatic (nick translation or random priming) or PCR-based labeling procedures of probes can be used. The method was originally designed to label chromosome-painting probes, but has also been used for probe sets specific for subtelomeric regions. COBRA imaging requires a digital fluorescence microscope equipped for sequential excitation and recording of color images. Staining of all 24 human chromosomes is accomplished with only four fluorochromes, compared with five for methods based on combinatorial labeling. The COBRA procedure takes approximately 6 h laboratory work, 2-3 d incubation and a few hours imaging. The method is routinely applied in research (cultured cells from human or mouse origin) or to support clinical diagnosis, such as postnatal and perinatal genetic testing and in solid tumors.
Collapse
Affiliation(s)
- Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600 (zone S1-P), 2300 RC Leiden, The Netherlands
| | | |
Collapse
|
4
|
Raap AK, Tanke HJ. COmbined Binary RAtio fluorescence in situ hybridiziation (COBRA-FISH): development and applications. Cytogenet Genome Res 2006; 114:222-6. [PMID: 16954657 DOI: 10.1159/000094204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022] Open
Abstract
The ability to probe for the location of DNA sequences in morphologically preserved chromosomes and nuclei by fluorescence in situ hybridization (FISH) provided for cytogenetics a quantum leap forward in resolution and ease of detection of chromosomal aberrations. COBRA-FISH, an acronym for COmbined Binary RAtio-FISH is a multicolor FISH methodology, which enables recognition of all human chromosome arms on the basis of color, thus greatly facilitating cytogenetic analysis. It also permits gene and viral integration site mapping in the context of chromosome arm painting. Here we review the principle, practice and applications of COBRA-FISH.
Collapse
Affiliation(s)
- A K Raap
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
5
|
Müller S, Wienberg J. Multicolor chromosome bar codes. Cytogenet Genome Res 2006; 114:245-9. [PMID: 16954661 DOI: 10.1159/000094208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/03/2006] [Indexed: 01/02/2023] Open
Abstract
Chromosome bar codes are multicolor banding patterns produced by fluorescence in situ hybridization (FISH) with differentially labeled and pooled sub-regional DNA probes. These molecular cytogenetic tools facilitate chromosome identification and the delineation of both inter- and intra-chromosomal rearrangements. We present an overview of the various conceptual approaches which can be largely divided into two classes: Simple bar codes designed for chromosome identification and complex bar codes for high resolution aberration screening of entire karyotypes. We address the issue of color redundancy and how to overcome this limitation by complementation of bar codes with whole chromosome painting probes.
Collapse
Affiliation(s)
- S Müller
- Institute for Anthropology and Human Genetics, Department of Biology II, Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
6
|
Zahn S, Ehrbrecht A, Bosse K, Kalscheuer V, Propping P, Schwanitz G, Albrecht B, Engels H. Further delineation of the phenotype maps for partial trisomy 16q24 and Jacobsen syndrome by a subtle familial translocation t(11;16)(q24.2;q24.1). Am J Med Genet A 2006; 139:19-24. [PMID: 16222663 DOI: 10.1002/ajmg.a.30995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on two cases of distal monosomy 11q and partial trisomy 16q due to a familial subtle translocation detected by FISH subtelomere screening. Exact breakpoint analyses by FISH with panels of BAC probes demonstrated a 9.3-9.5 megabase partial monosomy of 11q24.2-qter and a 4.9-5.4 megabase partial trisomy of 16q24.1-qter. The index patient displayed craniofacial dysmorphisms, mild mental retardation and postnatal growth retardation, muscular hypotonia, mild periventricular leukodystrophy, patent ductus arteriosus, thrombocytopenia, recurrent infections, inguinal hernia, cryptorchidism, pes equinovarus, and hearing deficiencies. In his mother's cousin who bears the identical unbalanced translocation, mild mental retardation, patent ductus arteriosus, hypogammaglobulinemia, recurrent infections, unilateral kidney hypoplasia, pes equinovarus, and hearing deficiencies were reported. Since only four descriptions of cryptic or subtle partial trisomies 16q have been published to date, our patients contribute greatly to the delineation of the phenotype of this genomic imbalance. In contrast to this, terminal deletions of the long arm of chromosome 11 cause a haploinsufficiency disorder (Jacobsen syndrome) in which karyotype-phenotype correlations are already being established. Here, our findings contribute to the refinement of a phenotype map for several Jacobsen syndrome features including abnormal brain imaging, renal malformations, thrombocytopenia/pancytopenia, inguinal hernia, testicular ectopy, pes equinovarus, and hearing deficiency.
Collapse
Affiliation(s)
- Susanne Zahn
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McNamara G, Difilippantonio MJ, Ried T. Microscopy and image analysis. CURRENT PROTOCOLS IN HUMAN GENETICS 2005; Chapter 4:Unit 4.4. [PMID: 18428379 PMCID: PMC4772429 DOI: 10.1002/0471142905.hg0404s46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). Computerized image-analysis systems currently used in clinical cytogenetics are also discussed.
Collapse
Affiliation(s)
- George McNamara
- Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
8
|
Abstract
In this chapter, we focus on the genetic basis of mental retardation (MR), specifically the use of subtelomeric probes to provide new diagnoses in idiopathic MR. We discuss both the background to the clinical demand for diagnoses and the technological advances that culminated in the development of subtelomeric testing strategies. We explain the theory behind these strategies and briefly outline the protocols involved, giving the advantages, limitations, and pitfalls of the analyses. Finally, we give an overview of the MR subtelomeric studies to date and how subtelomeric testing has become a widely used tool in clinical diagnostic laboratories, particularly in the diagnosis of unexplained MR, but also in other fields of clinical medicine. The conclusion addresses the overall impact that subtelomeric testing has had on the diagnosis of MR, the implications for patients and their families, and future research avenues for exploring the genetic causes of MR and improving our overall understanding of neurocognitive development.
Collapse
Affiliation(s)
- Samantha J L Knight
- The Wellcome Trust Centre for Human Genetics, Churchill Hospital, Headington, Oxford, Oxfordshire OX3 7BN, United Kingdom
| | | |
Collapse
|
9
|
Rooms L, Reyniers E, Kooy RF. Subtelomeric rearrangements in the mentally retarded: A comparison of detection methods. Hum Mutat 2005; 25:513-24. [PMID: 15880643 DOI: 10.1002/humu.20185] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
In recent years, subtelomeric rearrangements, e.g., chromosome deletions or duplications too small to be detected by conventional cytogenetic analysis, have emerged as a significant cause of both idiopathic and familial mental retardation. As mental retardation is a common disorder, many patients need to be tested on a routine basis. In this review, we will discuss the different methods that have been applied in laboratories worldwide, including multiprobe fluorescence in situ hybridization (FISH), multiallelic marker analysis, multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), quantitative real-time PCR, comparative genomic hybridization (CGH), and multicolor FISH, including spectral karyotyping (SKY), subtelomeric combined binary ratio labeling FISH (S-COBRA FISH), multiplex FISH telomere integrity assay (M-TEL), telomeric multiplex FISH (TM-FISH), and primed in situ labeling (PRINS).
Collapse
Affiliation(s)
- Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
10
|
Mao R, Pevsner J. The use of genomic microarrays to study chromosomal abnormalities in mental retardation. ACTA ACUST UNITED AC 2005; 11:279-85. [PMID: 16240409 DOI: 10.1002/mrdd.20082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mental retardation affects 2 to 3% of the US population. It is defined by broad criteria, including significantly subaverage intelligence, onset by age 18, and impaired function in a group of adaptive skills. A myriad of genetic and environmental causes have been described, but for approximately half of individuals diagnosed with mental retardation the molecular basis remains unknown. Genomic microarrays, also called array comparative genomic hybridization (array CGH), represent one of several novel technologies that allow the detection of chromosomal abnormalities, such as microdeletions and microduplications, in a rapid, high throughput fashion from genomic DNA samples. In one early application of this technology, genomic microarrays have been used to characterize the extent of chromosomal changes in a group of patients diagnosed with one particular type of disorder that causes mental retardation, such as deletion 1p36 syndrome. In another application, DNA samples from individuals with idiopathic mental retardation have been assayed to scan the entire genome in attempts to identify chromosomal changes. Genomic microarrays offer both a genome-wide perspective of chromosomal aberrations as well as higher resolution (to the level of approximately one megabase) compared to alternative available technologies.
Collapse
Affiliation(s)
- Rong Mao
- Program in Biochemistry, Molecular, and Cellular Biology, Johns Hopkins School of Medicine, and Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
11
|
von Bubnoff D, Kreiss-Nachtsheim M, Novak N, Engels E, Engels H, Behrend C, Propping P, de la Salle H, Bieber T. Primary immunodeficiency in combination with transverse upper limb defect and anal atresia in a 34-year-old patient with Jacobsen syndrome. Am J Med Genet A 2004; 126A:293-8. [PMID: 15054845 DOI: 10.1002/ajmg.a.20592] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a 34-year-old male patient with Jacobsen syndrome associated with a broad spectrum of anomalies and an increased susceptibility to infections. Features commonly seen in Jacobsen syndrome were short stature, mental retardation, congenital heart disease, cryptorchidism, strabismus, distal hypospadia glandis, and mild thrombocytopenia. Chromosome analysis disclosed a mosaic 46,XY,del(11)(q24.1)/46,XY karyotype with a very low percentage of normal cells. In addition, transverse upper limb defect, imperforate anus, and hearing impairment were noted. Cellular anomalies include functional impairment and deficiency of T-helper cells, and a low serum immunoglobulin M (IgM)-level. The presence of a transverse limb defect and primary immunodeficiency has not been reported previously in Jacobsen syndrome.
Collapse
|