1
|
Sivakumaar K, Griffin J, Schofield E, Catto JWF, Jubber I. Gene of the month: the uroplakins. J Clin Pathol 2024; 77:291-296. [PMID: 38418202 DOI: 10.1136/jcp-2024-209388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Uroplakins are a family of membrane-spanning proteins highly specific to the urothelium. There are four uroplakin proteins in humans. These are encoded by the following UPK genes: UPK1A, UPK1B, UPK2 and UPK3 Uroplakin proteins span the apical membrane of umbrella cells of the urothelium, where they associate into urothelial plaques. This provides a barrier function to prevent passage of urine across the urothelium in the renal pelvis, ureters, and bladder. Uroplakins are also involved in developmental processes such as nephrogenesis. The specific localisation of uroplakins within the urothelium means that they are often expressed in primary and metastatic urothelial cell carcinoma and may be used as an immunohistochemical marker of urothelial malignancy.
Collapse
Affiliation(s)
- Krithicck Sivakumaar
- Magdalene College, University of Cambridge, Cambridge, UK
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Jon Griffin
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ella Schofield
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James W F Catto
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ibrahim Jubber
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
2
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Liaw A, Cunha GR, Shen J, Cao M, Liu G, Sinclair A, Baskin L. Development of the human bladder and ureterovesical junction. Differentiation 2018; 103:66-73. [PMID: 30236462 DOI: 10.1016/j.diff.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022]
Abstract
The urinary bladder collects urine from the kidneys and stores it until the appropriate moment for voiding. The trigone and ureterovesical junctions are key to bladder function, by allowing one-way passage of urine into the bladder without obstruction. Embryological development of these structures has been studied in multiple animal models as well as humans. In this report we review the existing literature on bladder development and cellular signalling with particular focus on bladder development in humans. The bladder and ureterovesical junction form primarily during the fourth to eighth weeks of gestation, and arise from the primitive urogenital sinus following subdivision of the cloaca. The bladder develops through mesenchymal-epithelial interactions between the endoderm of the urogenital sinus and mesodermal mesenchyme. Key signalling factors in bladder development include shh, TGF-β, Bmp4, and Fgfr2. A concentration gradient of shh is particularly important in development of bladder musculature, which is vital to bladder function. The ureterovesical junction forms from the interaction between the Wolffian duct and the bladder. The ureteric bud arises from the Wolffian duct and is incorporated into the developing bladder at the trigone. It was previously thought that the trigonal musculature developed primarily from the Wolffian duct, but it has been shown to develop primarily from bladder mesenchyme. Following emergence of the ureters from the Wolffian ducts, extensive epithelial remodelling brings the ureters to their final trigonal positions via vitamin A-induced apoptosis. Perturbation of this process is implicated in clinical obstruction or urine reflux. Congenital malformations include ureteric duplication and bladder exstrophy.
Collapse
Affiliation(s)
- Aron Liaw
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Ge Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States.
| |
Collapse
|
4
|
Abstract
Technologies such as next-generation sequencing and chromosomal microarray have advanced the understanding of the molecular pathogenesis of a variety of renal disorders. Genetic findings are increasingly used to inform the clinical management of many nephropathies, enabling targeted disease surveillance, choice of therapy, and family counselling. Genetic analysis has excellent diagnostic utility in paediatric nephrology, as illustrated by sequencing studies of patients with congenital anomalies of the kidney and urinary tract and steroid-resistant nephrotic syndrome. Although additional investigation is needed, pilot studies suggest that genetic testing can also provide similar diagnostic insight among adult patients. Reaching a genetic diagnosis first involves choosing the appropriate testing modality, as guided by the clinical presentation of the patient and the number of potential genes associated with the suspected nephropathy. Genome-wide sequencing increases diagnostic sensitivity relative to targeted panels, but holds the challenges of identifying causal variants in the vast amount of data generated and interpreting secondary findings. In order to realize the promise of genomic medicine for kidney disease, many technical, logistical, and ethical questions that accompany the implementation of genetic testing in nephrology must be addressed. The creation of evidence-based guidelines for the utilization and implementation of genetic testing in nephrology will help to translate genetic knowledge into improved clinical outcomes for patients with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| |
Collapse
|
5
|
Nino F, Ilari M, Noviello C, Santoro L, Rätsch IM, Martino A, Cobellis G. Genetics of Vesicoureteral Reflux. Curr Genomics 2016; 17:70-9. [PMID: 27013925 PMCID: PMC4780477 DOI: 10.2174/1389202916666151014223507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Vesicoureteral reflux (VUR) is the retrograde passage of urine from the bladder to the upper urinary tract. It is the most common congenital urological anomaly affecting 1-2% of children and 30-40% of patients with urinary tract infections. VUR is a major risk factor for pyelonephritic scarring and chronic renal failure in children. It is the result of a shortened intravesical ureter with an enlarged or malpositioned ureteric orifice. An ectopic embryonal ureteric budding development is implicated in the pathogenesis of VUR, which is a complex genetic developmental disorder. Many genes are involved in the ureteric budding formation and subsequently in the urinary tract and kidney development. Previous studies demonstrate an heterogeneous genetic pattern of VUR. In fact no single major locus or gene for primary VUR has been identified. It is likely that different forms of VUR with different genetic determinantes are present. Moreover genetic studies of syndromes with associated VUR have revealed several possible candidate genes involved in the pathogenesis of VUR and related urinary tract malformations. Mutations in genes essential for urinary tract morphogenesis are linked to numerous congenital syndromes, and in most of those VUR is a feature. The Authors provide an overview of the developmental processes leading to the VUR. The different genes and signaling pathways controlling the embryonal urinary tract development are analyzed. A better understanding of VUR genetic bases could improve the management of this condition in children.
Collapse
Affiliation(s)
- F Nino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - M Ilari
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - C Noviello
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - L Santoro
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - I M Rätsch
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - A Martino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - G Cobellis
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| |
Collapse
|
6
|
Abstract
Although the diagnosis of vesicoureteral reflux and of reflux nephropathy is a well-established and shared procedure, its treatment nowadays is still very controversial. New developments on the knowledge of pathophysiology of renal damage associated to reflux opened the way towards a different diagnostic work-up and different therapeutic approaches. Recently, the “top-down” diagnostic approach has gained wider interest, versus the “down-top” protocol. The attention has recently focused on the renal parenchyma damage and less interest has been given to the presence and the radiological degree of vesicoureteral reflux. The review criteria were based on an in-depth search of references conducted on PubMed, using the terms “vesicoureteral reflux”, “children”, “incidence”, “etiology”, “diagnosis”, “treatment” and “outcomes”. The selection of the papers cited in this review was influenced by the content and the relevance to the points focused in the article. Conservative approaches include no treatment option with watchful waiting, long-term antibiotic prophylaxis and bladder rehabilitation. The operative treatment consists of endoscopic, open, laparoscopic and robotic procedures to stop the refluxing ureter. No final consensus has been achieved in literature yet, and further studies are necessary in order to better define the subset of children at risk of developing progression of renal damage. This review aims to clarify the diagnostic management and the urological-nephrological treatment of reflux in pediatric age, on the basis of a review of the best-published evidence.
Collapse
|
7
|
Identification of ELF3 as an early transcriptional regulator of human urothelium. Dev Biol 2013; 386:321-30. [PMID: 24374157 DOI: 10.1016/j.ydbio.2013.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 01/01/2023]
Abstract
Despite major advances in high-throughput and computational modelling techniques, understanding of the mechanisms regulating tissue specification and differentiation in higher eukaryotes, particularly man, remains limited. Microarray technology has been explored exhaustively in recent years and several standard approaches have been established to analyse the resultant datasets on a genome-wide scale. Gene expression time series offer a valuable opportunity to define temporal hierarchies and gain insight into the regulatory relationships of biological processes. However, unless datasets are exactly synchronous, time points cannot be compared directly. Here we present a data-driven analysis of regulatory elements from a microarray time series that tracked the differentiation of non-immortalised normal human urothelial (NHU) cells grown in culture. The datasets were obtained by harvesting differentiating and control cultures from finite bladder- and ureter-derived NHU cell lines at different time points using two previously validated, independent differentiation-inducing protocols. Due to the asynchronous nature of the data, a novel ranking analysis approach was adopted whereby we compared changes in the amplitude of experiment and control time series to identify common regulatory elements. Our approach offers a simple, fast and effective ranking method for genes that can be applied to other time series. The analysis identified ELF3 as a candidate transcriptional regulator involved in human urothelial cytodifferentiation. Differentiation-associated expression of ELF3 was confirmed in cell culture experiments and by immunohistochemical demonstration in situ. The importance of ELF3 in urothelial differentiation was verified by knockdown in NHU cells, which led to reduced expression of FOXA1 and GRHL3 transcription factors in response to PPARγ activation. The consequences of this were seen in the repressed expression of late/terminal differentiation-associated uroplakin 3a gene expression and in the compromised development and regeneration of urothelial barrier function.
Collapse
|
8
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
9
|
Kordi-Tamandani DM, Sadeghi-Bojd S, Torkamanzehi A. IL-19 and IL-20 genes polymorphisms and haplotype analysis in a vesicoureteral reflux population. Hum Immunol 2013; 74:131-134. [PMID: 23000500 DOI: 10.1016/j.humimm.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Vesicoureteral reflux (VUR) is a common childhood problem, causing renal wounds and escalating the risk of renal deficiency and hypertension. A vast literature exists suggesting that genetic variations play a significant role in the pathogenesis of VUR. The aim of the present study was to estimate whether genetic polymorphisms of IL-19 (GC rs2243158, AT rs2243158) and IL-20 (AG rs2981573, TG rs2981572) genes are involved in the development of VUR. MATERIALS AND METHODS The tetra amplification mutation refractory system-polymerase chain reaction (Tetra-ARMS PCR) was applied for analyzing four polymorphic sites of IL-19 (GC rs2243158, AT rs2243158) and IL-20 (AG rs2981573, TG rs2981572) genes in 110 healthy controls and 124 VUR children. RESULTS A significant association was found between the combined genotypes of IL19GC+CC and IL20TG+GG and increased risk of VUR (OR = 1.90, 95% CL, 1.06-3.41; OR=1.87, 95% CL, 1.06-3.29, respectively). The frequency of allele G in both sites of IL-20 (IL20AG rs2981573 and IL20TG, rs2981572) showed a statistically significant difference (p = 0.01) between cases and controls in comparison with the wild type. The combined haplotype analysis of IL-19 and IL-20 polymorphic sites revealed that HT2, HT3 and HT5 haplotypes marginally increased the risk of VUR, but not statistically significantly. Gene-gene interaction data of IL-19 (GC rs2243158, AT rs2243158) and IL-20 (AG rs2981573, TG rs2981572) in various genotype patterns highlighted the fact that most of the genotype combinations increased the risk of disease insignificantly. CONCLUSION This is the first evidence regarding IL-19 and IL-20 cytokine genes polymorphism and risk of VUR, suggesting the need for further study with large sample size and in different populations to confirm the presented data.
Collapse
|
10
|
Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS One 2012; 7:e31327. [PMID: 22558067 PMCID: PMC3338743 DOI: 10.1371/journal.pone.0031327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ~50% showed a clear-cut primary VUR phenotype and ~25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR.
Collapse
|
11
|
Abstract
Primary vesicoureteral reflux (VUR) is the most common urological anomaly in children, affecting 1-2% of the pediatric population and 30-40% of children presenting with urinary tract infections (UTIs). Reflux-associated nephropathy is a major cause of childhood hypertension and chronic renal failure. The hereditary and familial nature of VUR is well recognized and several studies have reported that siblings of children with VUR have a higher incidence of reflux than the general pediatric population. Familial clustering of VUR implies that genetic factors have an important role in its pathogenesis, but no single major locus or gene for VUR has yet been identified and most researchers now acknowledge that VUR is genetically heterogeneous. Improvements in genome-scan techniques and continuously increasing knowledge of the genetic basis of VUR should help us to further understand its pathogenesis.
Collapse
|
12
|
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8:449-68. [PMID: 21750501 DOI: 10.1038/nrurol.2011.100] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A functional and well-balanced immune response is required to resist most infections. Slight dysfunctions in innate immunity can turn the 'friendly' host defense into an unpleasant foe and give rise to disease. Beneficial and destructive forces of innate immunity have been discovered in the urinary tract and mechanisms by which they influence the severity of urinary tract infections (UTIs) have been elucidated. By modifying specific aspects of the innate immune response to UTI, genetic variation either exaggerates the severity of acute pyelonephritis to include urosepsis and renal scarring or protects against symptomatic disease by suppressing innate immune signaling, as in asymptomatic bacteriuria (ABU). Different genes are polymorphic in patients prone to acute pyelonephritis or ABU, respectively, and yet discussions of UTI susceptibility in clinical practice still focus mainly on social and behavioral factors or dysfunctional voiding. Is it not time for UTIs to enter the era of molecular medicine? Defining why certain individuals are protected from UTI while others have severe, recurrent infections has long been difficult, but progress is now being made, encouraging new approaches to risk assessment and therapy in this large and important patient group, as well as revealing promising facets of 'good' versus 'bad' inflammation.
Collapse
Affiliation(s)
- Bryndís Ragnarsdóttir
- Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, 22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Kelly H, Barton D, Molony C, Puri P. Linkage Analysis of Candidate Genes in Families With Vesicoureteral Reflux. J Urol 2009; 182:1669-72. [DOI: 10.1016/j.juro.2009.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Helena Kelly
- Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - David Barton
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
- University College Dublin Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Prem Puri
- Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
- National Children's Hospital, Dublin, Ireland
- University College Dublin Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 2009; 297:F1477-501. [PMID: 19587142 DOI: 10.1152/ajprenal.00327.2009] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The uroepithelium sits at the interface between the urinary space and underlying tissues, where it forms a high-resistance barrier to ion, solute, and water flux, as well as pathogens. However, the uroepithelium is not simply a passive barrier; it can modulate the composition of the urine, and it functions as an integral part of a sensory web in which it receives, amplifies, and transmits information about its external milieu to the underlying nervous and muscular systems. This review examines our understanding of uroepithelial regeneration and how specializations of the outermost umbrella cell layer, including tight junctions, surface uroplakins, and dynamic apical membrane exocytosis/endocytosis, contribute to barrier function and how they are co-opted by uropathogenic bacteria to infect the uroepithelium. Furthermore, we discuss the presence and possible functions of aquaporins, urea transporters, and multiple ion channels in the uroepithelium. Finally, we describe potential mechanisms by which the uroepithelium can transmit information about the urinary space to the other tissues in the bladder proper.
Collapse
|
16
|
Abstract
Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.
Collapse
|
17
|
Kreft ME, Jezernik K, Kreft M, Romih R. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci 2009; 1152:18-29. [PMID: 19161373 DOI: 10.1111/j.1749-6632.2008.04004.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Superficial urothelial cells that line the urinary bladder accommodate cyclical changes in organ volume while maintaining a permeability barrier between urine and tissue fluids. The specific apical plasma membrane traffic is necessary for their proper function. The composition of the apical plasma membrane is dramatically modified during differentiation of bladder urothelial cells, most notably by assembly of urothelial plaques containing uroplakins. However, the assembly of uroplakins into plaques, their insertion and removal from the apical surface, and the regulation of these processes are still poorly understood. This review examines the traffic (exocytosis/endocytosis) of the apical plasma membrane during differentiation of urothelial cells and focuses on the physiological and clinical significance of the apical plasma membrane traffic in bladder superficial urothelial cells.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
18
|
Gene discovery and vesicoureteric reflux. Pediatr Nephrol 2008; 23:1021-7. [PMID: 18253765 DOI: 10.1007/s00467-007-0704-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Vesicoureteric reflux (VUR) is a congenital urinary tract defect caused by abnormal insertion of the ureter within the bladder wall. This leads to a defective ureterovesical junction in which urine flows retrogradely from the bladder to the kidneys. Although VUR is associated with recurrent urinary tract infections, renal malformations, hypertension, and reflux nephropathy, its relationship to each of these clinical entities is poorly understood. Mutations in genes expressed by the developing kidney and urinary tract can cause VUR in mice, and some of these same genes have been identified in humans with VUR. By discovering the genes that are associated with VUR, new hypotheses will be generated such that, eventually, the relationship between VUR and its complications will be understood.
Collapse
|
19
|
Abstract
Vesicoureteral reflux (VUR), the retrograde flow of urine from the bladder toward the kidney, is common in young children. About 30% of children with urinary tract infections will be diagnosed with VUR after a voiding cystourethrogram. For most, VUR will resolve spontaneously; 20% to 30% will have further infections, but few will experience long-term renal sequelae. Developmentally, VUR arises from disruption of complex signaling pathways and cellular differentiation. These mechanisms are probably genetically programmed but may be influenced by environmental exposures. Phenotypic expression of VUR is variable, ranging from asymptomatic forms to severe renal parenchymal disease and end-stage disease. VUR is often familial but is genetically heterogeneous with variability in mode of inheritance and in which gene, or the number of genes, that are involved. Numerous genetic studies that explore associations with VUR are available. The relative utility of these for understanding the genetics of VUR is often limited because of small sample size, poor methodology, and a diverse spectrum of patients. Much, if not all, of the renal parenchymal damage associated with end-stage disease is likely to be congenital, which limits the opportunity for intervention to familial cases where risk prediction may be available. Management of children with VUR remains controversial because there is no strong supportive evidence that prophylactic antibiotics or surgical intervention improve outcomes. Furthermore, well-designed genetic epidemiological studies focusing on the severe end of the VUR phenotype may help define the causal pathway and identify modifiable or disease predictive factors.
Collapse
Affiliation(s)
- Gabrielle Williams
- School of Public Health, University of Sydney, The Children's Hospital at Westmead, New South Wales, Australia.
| | | | | | | |
Collapse
|
20
|
Kelly H, Molony CM, Darlow JM, Pirker ME, Yoneda A, Green AJ, Puri P, Barton DE. A genome-wide scan for genes involved in primary vesicoureteric reflux. J Med Genet 2007; 44:710-7. [PMID: 17660461 PMCID: PMC2752186 DOI: 10.1136/jmg.2007.051086] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Vesicoureteric reflux (VUR) is the retrograde flow of urine from the bladder into the ureters. It is the most common urological anomaly in children, and a major cause of end-stage renal failure and hypertension in both children and adults. VUR is seen in approximately 1-2% of Caucasian newborns and is frequently familial. OBJECTIVE AND METHODS In order to search for genetic loci involved in VUR, we performed a genome-wide linkage scan using 4710 single-nucleotide polymorphisms (SNPs) in 609 individuals from 129 Irish families with >1 affected member. RESULTS Nonparametric linkage (NPL) analysis of the dataset yielded moderately suggestive linkage at chromosome 2q37 (NPL(max) = 2.67, p<0.001). Analysis of a subset without any additional features, such as duplex kidneys, yielded a maximum NPL score of 4.1 (p = 0.001), reaching levels of genome-wide statistical significance. Suggestive linkage was also seen at 10q26 and 6q27, and there were several smaller peaks. CONCLUSION Our results confirm the previous conclusion that VUR is genetically heterogeneous, and support the identification of several disease-associated regions indicated by smaller studies, as well as indicating new regions of interest for investigation.
Collapse
Affiliation(s)
- H Kelly
- The National Centre for Medical Genetics, University College Dublin Department of Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sanna-Cherchi S, Caridi G, Weng PL, Scolari F, Perfumo F, Gharavi AG, Ghiggeri GM. Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 2007; 22:1675-84. [PMID: 17437132 PMCID: PMC1994209 DOI: 10.1007/s00467-007-0479-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/30/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract are frequently observed in children and represent a significant cause of morbidity and mortality. These conditions are phenotypically variable, often affecting several segments of the urinary tract simultaneously, making clinical classification and diagnosis difficult. Renal agenesis/hypoplasia and dysplasia account for a significant portion of these anomalies, and a genetic contribution to its cause is being increasingly recognized. Nevertheless, overlap between diseases and challenges in clinical diagnosis complicate studies attempting to discover new genes underlying this anomaly. Most of the insights in kidney development derive from studies in mouse models or from rare, syndromic forms of human developmental disorders of the kidney and urinary tract. The genes implicated have been shown to regulate the reciprocal induction between the ureteric bud and the metanephric mesenchyme. Strategies to find genes causing renal agenesis/hypoplasia and dysplasia vary depending on the characteristics of the study population available. The approaches range from candidate gene association or resequencing studies to traditional linkage studies, using outbred pedigrees or genetic isolates, to search for structural variation in the genome. Each of these strategies has advantages and pitfalls and some have led to significant discoveries in human disease. However, renal agenesis/hypoplasia and dysplasia still represents a challenge, both for the clinicians who attempt a precise diagnosis and for the geneticist who tries to unravel the genetic basis, and a better classification requires molecular definition to be retrospectively improved. The goal appears to be feasible with the large multicentric collaborative groups that share the same objectives and resources.
Collapse
Affiliation(s)
- Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY USA
- Department of Clinical Medicine, Nephrology and Health Science, University of Parma, Parma, Italy
| | - Gianluca Caridi
- Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Largo G. Gaslini 5, 16148 Genoa, Italy
| | - Patricia L. Weng
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY USA
- Department of Pediatrics, Division of Nephrology, Mount Sinai School of Medicine, New York, NY USA
| | - Francesco Scolari
- Division and Chair of Nephrology, Spedali Civili, University of Brescia, Brescia, Italy
| | | | - Ali G. Gharavi
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Gian Marco Ghiggeri
- Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Largo G. Gaslini 5, 16148 Genoa, Italy
| |
Collapse
|
22
|
Jenkins D, Woolf AS. Uroplakins: new molecular players in the biology of urinary tract malformations. Kidney Int 2006; 71:195-200. [PMID: 17183244 DOI: 10.1038/sj.ki.5002053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The uroplakins (UPs) are a family of proteins which associate with each other and form plaques on the apical surface of the urothelium. These plaques contribute to a permeability barrier, preventing the influx of urine from the urinary tract lumen. Urinary tract malformations associated with human and mouse UP mutations, the human fetal expression patterns of UPs and experiments in Xenopus oocytes are collectively revealing new functions for the UPs, forcing us to view these proteins in a new light. Rather than simply being products of the urothelial differentiation program, they may be a group of proteins central to the process of urinary tract differentiation itself.
Collapse
Affiliation(s)
- D Jenkins
- Clinical Genetics Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | |
Collapse
|
23
|
Vats KR, Ishwad C, Singla I, Vats A, Ferrell R, Ellis D, Moritz M, Surti U, Jayakar P, Frederick DR, Vats AN. A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33-34. J Am Soc Nephrol 2006; 17:1158-67. [PMID: 16565260 DOI: 10.1681/asn.2005040404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Congenital anomalies of kidney and urinary tract (CAKUT), including vesico-ureteric reflux (VUR), are major causes of ESRD in childhood. Herein is reported evidence for a locus on 13q33q34 associated with CAKUT. Deletion mapping of chromosome 13q was performed in four children with CAKUT using 31 microsatellite markers on peripheral blood genomic DNA that was obtained from the patients and their parents. mRNA expression of the positional candidate genes was compared with sequences in electronic databases in silico and also studied in adult and fetal mouse kidneys using reverse transcription-PCR. The children (three girls; age range 5 to 17 yr) had varying severity of developmental delay and other organ system involvement. The spectrum of CAKUT included high-grade VUR (n = 2), renal dysplasia (n = 2), and hydronephrosis (n = 1). Both the children with VUR had evidence of renal failure with one of them developing ESRD. Deletion mapping identified a 7-Mb critical region flanked by markers D13S1311 and D13S285. There are 33 genes (12 known; 21 computer predicted) in this region. In silico expression studies showed matches for 14 of these genes in the kidneys and 10 in the bladder expressed sequenced tags databases. Mouse kidney studies showed that of the 24 genes examined, several had variable expression through the different stages of renal development, whereas five of the genes were not expressed at all. Herein is reported a new locus on chromosome 13q33q34 that can be associated with VUR with several genes showing mRNA expression patterns that suggest their potential for involvement in renal/urinary tract developmental anomalies.
Collapse
Affiliation(s)
- Kalyani R Vats
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Vesicoureteric reflux (VUR) is a congenital urinary tract defect caused by the failure of the ureter to insert correctly into the bladder. It occurs in up to 1% of the general population and is associated with recurrent urinary tract infections and renal failure. Despite treatment of affected children for the past 40 years, the incidence of end-stage renal disease secondary to VUR has not decreased. Twin and family studies reveal that VUR has a genetic basis. Some of the gene candidates that have been identified regulate the position of ureteric budding, a critical step in both kidney and urinary tract development. Analysis of data from humans and mice suggests that some of the renal damage associated with VUR is congenital and is due to a kidney malformation. Therefore, in these cases, the association of VUR and renal failure may be caused by a genetic defect affecting the formation of the kidney and the urinary tract.
Collapse
Affiliation(s)
- I J Murawski
- Department of Pediatrics and Human Genetics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Sun TT. Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. Am J Physiol Renal Physiol 2006; 291:F9-21. [PMID: 16609152 DOI: 10.1152/ajprenal.00035.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The differentiation of cultured stratified epithelial cells can deviate significantly from that of normal epithelium, leading to suggestions that cultured cells undergo abnormal differentiation, or a truncated differentiation. Thus cultured epidermal and corneal epithelial cells stop synthesizing their tissue-specific keratin pair K1/K10 and K3/K12, respectively. The replacement of these keratins in the suprabasal compartment by K6/K16 keratins that are made by all stratified squamous epithelia during hyperplasia rules out a truncated differentiation. Importantly, the keratin pattern of in vivo corneal epithelium undergoing wound repair mimics that of cultured rabbit corneal epithelial cells. Although cultured urothelial cells continue to synthesize uroplakins, which normally form two-dimensional crystalline urothelial plaques covering almost the entire apical urothelial surface, these proteins do not assemble into crystals in cultured cells. Cultured epithelial cells can, however, rapidly regain normal differentiation on the removal of mitogenic stimuli, the use of a suitable extracellular matrix, or the transplantation of the cells to an in vivo, nonmitogenic environment. These data suggest that cultured epithelial cells adopt altered differentiation patterns mimicking in vivo regenerating or hyperplastic epithelia. Blocking the synthesis of tissue-specific differentiation products, such as the K1 and K10 keratins designed to form extensive disulfide cross-links in cornified cells, or the assembly of uroplakin plaques allows epithelial cells to better migrate and proliferate, activities that are of overriding importance during wound repair. Cultured urothelial and other stratified epithelial cells provide excellent models for studying the regulation of the synthesis and assembly of differentiation products, a key cellular process during epithelial wound repair.
Collapse
Affiliation(s)
- Tung-Tien Sun
- Epithelial Biology Unit, Department of Dermatology, New York University Cancer Institute, Medical School, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
26
|
Sanna-Cherchi S, Reese A, Hensle T, Caridi G, Izzi C, Kim YY, Konka A, Murer L, Scolari F, Ravazzolo R, Ghiggeri GM, Gharavi AG. Familial Vesicoureteral Reflux: Testing Replication of Linkage in Seven New Multigenerational Kindreds. J Am Soc Nephrol 2005; 16:1781-7. [PMID: 15829711 DOI: 10.1681/asn.2004121034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vesicoureteral reflux (VUR) (OMIM %193000), a common cause of childhood renal failure, is strongly influenced by hereditary factors. Familial VUR most closely conforms to autosomal-dominant inheritance, but because of variable penetrance and expressivity, large multigenerational pedigrees tractable to linkage analysis have been difficult to ascertain. A single genome-wide study of familial VUR has demonstrated linkage to chromosome 1p13, with 78% locus heterogeneity. Previous studies in humans have also suggested loci on chromosomes 6p21, 10q26, and 19q13, whereas mutations in ROBO2 were recently reported in some patients with VUR. Replication of these studies was attempted in seven previously undescribed families from Italy and the United States. Simulation studies, assuming 50% locus heterogeneity, showed that these kindreds had 85% power to replicate linkage and 53% power to achieve genome-wide significance at candidate intervals. Thirty-five markers on chromosomes 1p13, 3p12, 6p21, 10q26, and 19q13 were genotyped and analysis of linkage under a variety of models was performed. Parametric analysis excluded linkage to all candidate loci under genetic homogeneity; moreover, the data did not support statistically significant linkage under models of locus heterogeneity. Similarly, nonparametric, allele-sharing analysis did not reveal any evidence of linkage at any of the loci tested. Thus, despite sufficient power, linkage of familial VUR to previously reported candidate intervals could not be replicated. These data demonstrate substantial genetic heterogeneity of VUR and suggest that mapping strategies relying on a large number of kindreds or single "loaded" pedigrees will be most effective to achieve replication or detection of linkage.
Collapse
Affiliation(s)
- Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians and Surgeons, 630 W 168th Street, P&S 10-432 New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|