1
|
Pacot L, Ye M, Nectoux J, Laurendeau I, Briand-Suleau A, Coustier A, Maillard T, Barbance C, Orhant L, Vaucouleur N, Blanché H, Parfait B, Wolkenstein P, Vidaud M, Vidaud D, Pasmant E. Droplet Digital PCR for Fast and Accurate Characterization of NF1 Locus Deletions: Confirmation of the Predominant Maternal Origin of Type-1 Deletions. J Mol Diagn 2024; 26:150-157. [PMID: 38008284 DOI: 10.1016/j.jmoldx.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Neurofibromatosis type-1 is a genetic disorder caused by loss-of-function variants in the tumor-suppressor NF1. Approximately 4% to 11% of neurofibromatosis type-1 patients have a NF1 locus complete deletion resulting from nonallelic homologous recombination between low copy repeats. Codeleted genes probably account for the more severe phenotype observed in NF1-deleted patients. This genotype-phenotype correlation highlights the need for a detailed molecular description. A droplet digital PCR (ddPCR) set along the NF1 locus was designed to delimitate the three recurrent NF1 deletion breakpoints. The ddPCR was tested in 121 samples from nonrelated NF1-deleted patients. Classification based on ddPCR versus multiplex ligation-dependent probe amplification (MLPA) was compared. In addition, microsatellites were analyzed to identify parental origin of deletions. ddPCR identified 77 type-1 (64%), 20 type-2 (16%), 7 type-3 (6%), and 17 atypical deletions (14%). The results were comparable with MLPA, except for three atypical deletions misclassified as type-2 using MLPA, for which the SUZ12 gene was not deleted. A significant maternal bias (25 of 30) in the origin of deletions was identified. This study proposes a fast and efficient ddPCR quantification to allow fine NF1 deletion classification. It indicates that ddPCR can be implemented easily into routine diagnosis to complement the techniques dedicated to NF1 point variant identification. This new tool may help unravel the genetic basis conditioning phenotypic variability in NF1-deleted patients and offer tailored genetic counseling.
Collapse
Affiliation(s)
- Laurence Pacot
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Manuela Ye
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Juliette Nectoux
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Ingrid Laurendeau
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Audrey Briand-Suleau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Audrey Coustier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Théodora Maillard
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Cécile Barbance
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Lucie Orhant
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Nicolas Vaucouleur
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | | | - Béatrice Parfait
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Pierre Wolkenstein
- Department of Dermatology, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris, Créteil, France; INSERM, Clinical Investigation Center 1430, Referral Center of Neurofibromatosis, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris, Faculté de Santé Paris Est Créteil, Créteil, France
| | - Michel Vidaud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Dominique Vidaud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Eric Pasmant
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France.
| |
Collapse
|
2
|
Kehrer-Sawatzki H, Wahlländer U, Cooper DN, Mautner VF. Atypical NF1 Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large NF1 Deletions. Genes (Basel) 2021; 12:genes12101639. [PMID: 34681033 PMCID: PMC8535936 DOI: 10.3390/genes12101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-65421
| | - Ute Wahlländer
- Kliniken des Bezirks Oberbayern (KBO), Children Clinical Center Munich, 81377 Munich, Germany;
| | - David N. Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
3
|
Wang W, Wei CJ, Cui XW, Li YH, Gu YH, Gu B, Li QF, Wang ZC. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front Neurol 2021; 12:704639. [PMID: 34566848 PMCID: PMC8455870 DOI: 10.3389/fneur.2021.704639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kehrer-Sawatzki H, Kluwe L, Salamon J, Well L, Farschtschi S, Rosenbaum T, Mautner VF. Clinical characterization of children and adolescents with NF1 microdeletions. Childs Nerv Syst 2020; 36:2297-2310. [PMID: 32533297 PMCID: PMC7575500 DOI: 10.1007/s00381-020-04717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE An estimated 5-11% of patients with neurofibromatosis type 1 (NF1) harbour NF1 microdeletions encompassing the NF1 gene and its flanking regions. The purpose of this study was to evaluate the clinical phenotype in children and adolescents with NF1 microdeletions. METHODS We retrospectively analysed 30 children and adolescents with NF1 microdeletions pertaining to externally visible neurofibromas. The internal tumour load was determined by volumetry of whole-body magnetic resonance imaging (MRI) in 20 children and adolescents with NF1 microdeletions. Furthermore, the prevalence of global developmental delay, autism spectrum disorder and attention deficit hyperactivity disorder (ADHD) were evaluated. RESULTS Children and adolescents with NF1 microdeletions had significantly more often cutaneous, subcutaneous and externally visible plexiform neurofibromas than age-matched patients with intragenic NF1 mutations. Internal neurofibromas were detected in all 20 children and adolescents with NF1 microdeletions analysed by whole-body MRI. By contrast, only 17 (61%) of 28 age-matched NF1 patients without microdeletions had internal tumours. The total internal tumour load was significantly higher in NF1 microdeletion patients than in NF1 patients without microdeletions. Global developmental delay was observed in 28 (93%) of 30 children with NF1 microdeletions investigated. The mean full-scale intelligence quotient in our patient group was 77.7 which is significantly lower than that of patients with intragenic NF1 mutations. ADHD was diagnosed in 15 (88%) of 17 children and adolescents with NF1 microdeletion. Furthermore, 17 (71%) of the 24 patients investigated had T-scores ≥ 60 up to 75, indicative of mild to moderate autistic symptoms, which are consequently significantly more frequent in patients with NF1 microdeletions than in the general NF1 population. Also, the mean total T-score was significantly higher in patients with NF1 microdeletions than in the general NF1 population. CONCLUSION Our findings indicate that already at a very young age, NF1 microdeletions patients frequently exhibit a severe disease manifestation which requires specialized long-term clinical care.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Lan Kluwe
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Legius E, Brems H. Genetic basis of neurofibromatosis type 1 and related conditions, including mosaicism. Childs Nerv Syst 2020; 36:2285-2295. [PMID: 32601904 DOI: 10.1007/s00381-020-04771-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a frequent autosomal dominant disorder characterised by café-au-lait maculae (CALM), skinfold freckling, iris Lisch nodules and benign peripheral nerve sheath tumours (neurofibromas). MECHANISM The NF1 gene is a tumour suppressor gene and NF1 individuals have an increased risk for a long list of tumours, all resulting from a second hit in the normal copy of the NF1 gene. Remarkably, some non-tumour phenotypes such as CALM and pseudarthrosis are also caused by a "second hit". Germline mutations inactivating the NF1 gene show a large variability in genetic mechanisms ranging from single-nucleotide substitutions and somatic mosaicism to large deletions affecting neighbouring genes. Molecular confirmation of the clinical diagnosis is becoming increasingly more important to differentiate NF1 from other syndromes such as Legius syndrome, to investigate genotype-phenotype correlations relevant in 10% of cases and to detect somatic mosaicism. SURVEILLANCE AND THERAPY Some degree of learning difficulties, attention deficit and social problems are observed in most children and affect quality of life. There is a large individual variability in complications and the evolution of the disease is difficult to predict. Specialised outpatient clinics for children have been widely established and are important for surveillance and guidance. Regular surveillance is also important for adolescents and adults because many tumour complications can be detected by whole-body MRI and treated even before symptoms develop and irreversible damage occurs. Recent data on nodular plexiform neurofibromas with continued growth in adolescents and young adults show that many of these tumours are premalignant lesions called atypical neurofibromatous neoplasm of uncertain biological potential (ANNUBP). Specific surveillance and timely local resection of these benign peripheral nerve sheath tumours might be important to prevent malignant degeneration. In the last years, targeted therapy with MEK inhibitors has shown promise to treat unresectable and symptomatic plexiform neurofibromas. Many more challenges remain to find the best way to monitor children and adults for potential complications and to find a satisfying cure for many complications in this disorder.
Collapse
Affiliation(s)
- Eric Legius
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Kartalias K, Gillies AP, Peña MT, Estrada A, Bulas DI, Ferreira CR, Tosi LL. Fourteen-year follow-up of a child with acroscyphodysplasia with emphasis on the need for multidisciplinary management: a case report. BMC MEDICAL GENETICS 2020; 21:189. [PMID: 32993552 PMCID: PMC7526353 DOI: 10.1186/s12881-020-01127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Background Acroscyphodysplasia has been described as a phenotypic variant of acrodysostosis type 2 and pseudohypoparathyroidism. In acrodysostosis, skeletal features can include brachydactyly, facial hypoplasia, cone-shaped epiphyses, short stature, and advanced bone age. To date, reports on this disorder have focused on phenotypic findings, endocrine changes, and genetic variation. We present a 14-year overview of a patient, from birth to skeletal maturity, with acroscyphodysplasia, noting the significant orthopaedic challenges and the need for a multidisciplinary team, including specialists in genetics, orthopaedics, endocrinology, and otolaryngology, to optimize long-term outcomes. Case presentation The patient presented as a newborn with dysmorphic facial features, including severe midface hypoplasia, malar flattening, nasal stenosis, and feeding difficulties. Radiologic findings were initially subtle, and a skeletal survey performed at age 7 months was initially considered normal. Genetic evaluation revealed a variant in PDE4D and subsequent pseudohypoparathyroidism. The patient presented to the department of orthopaedics, at age 2 years 9 months with a leg length discrepancy, right knee contracture, and severely crouched gait. Radiographs demonstrated cone-shaped epiphyses of the right distal femur and proximal tibia, but no evidence of growth plate changes in the left leg. The child developed early posterior epiphyseal arrest on the right side and required multiple surgical interventions to achieve neutral extension. Her left distal femur developed late posterior physeal arrest and secondary contracture without evidence of schypho deformity, which improved with anterior screw epiphysiodesis. The child required numerous orthopaedic surgical interventions to achieve full knee extension bilaterally. At age 13 years 11 months, she was an independent ambulator with erect posture. The child underwent numerous otolaryngology procedures and will require significant ongoing care. She has moderate intellectual disability. Discussion and conclusions Key challenges in the management of this case included the subtle changes on initial skeletal survey and the marked asymmetry of her deformity. While cone-shaped epiphyses are a hallmark of acrodysostosis, posterior tethering/growth arrest of the posterior distal femur has not been previously reported. Correction of the secondary knee contracture was essential to improve ambulation. Children with acroscyphodysplasia require a multidisciplinary approach, including radiology, genetics, orthopaedics, otolaryngology, and endocrinology specialties.
Collapse
Affiliation(s)
- Katina Kartalias
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Austin P Gillies
- Bone Health Program, Division of Orthopaedics & Sports Medicine, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Maria T Peña
- Division of Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Andrea Estrada
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Endocrinology and Diabetes, Children's National Hospital, Washington, DC, USA
| | - Dorothy I Bulas
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Radiology, Children's National Hospital, Washington, DC, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Laura L Tosi
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Bone Health Program, Division of Orthopaedics & Sports Medicine, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
| |
Collapse
|
7
|
Leppävirta J, Kallionpää RA, Uusitalo E, Vahlberg T, Pöyhönen M, Peltonen J, Peltonen S. Neurofibromatosis type 1 of the child increases birth weight. Am J Med Genet A 2019; 179:1173-1183. [PMID: 31016862 PMCID: PMC6618292 DOI: 10.1002/ajmg.a.61161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
Neurofibromatosis type 1 (NF1) is associated with reduced adult height, but there are no cohort studies on birth size. This retrospective study includes a cohort of 1,410 persons with NF1 and a matched comparison cohort from the general population. Figures for birth size were retrieved from the administrative registers of Finland, and the data were converted to standard deviation scores (SDS), defined as standard deviation difference to the reference population. The birth weight among infants with NF1 was higher than among infants without the disorder (adjusted mean difference [95% confidence interval]: 0.53 SDS [0.19–0.87]), as was the head circumference at birth (0.58 SDS [0.26–0.90]). The birth length of the NF1 infants did not differ significantly from the comparison cohort. The birth weight in the group consisting of NF1 and non‐NF1 infants of NF1 mothers was lower than among infants of mothers in the comparison cohort (−0.28 SDS [−0.51 to −0.06]), as was the birth length (−0.22 SDS [−0.45 to 0.00]). In conclusion, the birth weight and head circumference of persons with NF1 are significantly higher than those of persons without the disorder. NF1 of the mother reduces birth weight and birth length of the infant.
Collapse
Affiliation(s)
- Jussi Leppävirta
- Department of Dermatology and VenereologyUniversity of TurkuTurkuFinland
- Department of DermatologyTurku University HospitalTurkuFinland
| | - Roope A. Kallionpää
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Elina Uusitalo
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Tero Vahlberg
- Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Minna Pöyhönen
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Department of Clinical GeneticsHUSLAB and Helsinki University Central HospitalHelsinkiFinland
| | - Juha Peltonen
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Sirkku Peltonen
- Department of Dermatology and VenereologyUniversity of TurkuTurkuFinland
- Department of DermatologyTurku University HospitalTurkuFinland
| |
Collapse
|
8
|
Sharafi P, Ayter S. Possible modifier genes in the variation of neurofibromatosis type 1 clinical phenotypes. J Neurogenet 2018; 32:65-77. [PMID: 29644913 DOI: 10.1080/01677063.2018.1456538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most common neurogenetic disorder worldwide, caused by mutations in the (NF1) gene. Although NF1 is a single-gene disorder with autosomal-dominant inheritance, its clinical expression is highly variable and unpredictable. NF1 patients have the highest known mutation rate among all human disorders, with no clear genotype-phenotype correlations. Therefore, variations in NF1 mutations may not correlate with the variations in clinical phenotype. Indeed, for the same mutation, some NF1 patients may develop severe clinical symptoms whereas others will develop a mild phenotype. Variations in the mutant NF1 allele itself cannot account for all of the disease variability, indicating a contribution of modifier genes, environmental factors, or their combination. Considering the gene structure and the interaction of neurofibromin protein with cellular components, there are many possible candidate modifier genes. This review aims to provide an overview of the potential modifier genes contributing to NF1 clinical variability.
Collapse
Affiliation(s)
- Parisa Sharafi
- a Faculty of Medicine , TOBB University of Economics and Technology , Ankara , Turkey
| | - Sükriye Ayter
- a Faculty of Medicine , TOBB University of Economics and Technology , Ankara , Turkey
| |
Collapse
|
9
|
Tripolszki K, Farkas K, Sulák A, Szolnoky G, Duga B, Melegh B, Knox RG, Parker VER, Semple RK, Kemény L, Széll M, Nagy N. Atypical neurofibromatosis type 1 with unilateral limb hypertrophy mimicking overgrowth syndrome. Clin Exp Dermatol 2017; 42:763-766. [PMID: 28598037 DOI: 10.1111/ced.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 02/02/2023]
Abstract
Neurofibromatosis type 1 (NF1; OMIM 162200), a dominantly inherited multitumor syndrome, results from mutations in the Neurofibromin 1 (NF1) gene. We present the case of a Hungarian woman with the clinical phenotype of NF1 over her whole body and the clinical features of unilateral overgrowth involving her entire left leg. This unusual phenotype suggested either the atypical form of NF1 or the coexistence of NF1 and overgrowth syndrome. Direct sequencing of the genomic DNA isolated from peripheral blood revealed a novel frameshift mutation (c.5727insT, p.V1909fsX1912) in the NF1 gene. Next-generation sequencing of 50 oncogenes and tumour suppressor genes, performed on the genomic DNAs isolated from tissue samples and peripheral blood, detected only wild-type sequences. Based on these results, we concluded that the patient is affected by an unusual phenotype of NF1, and that the observed unilateral overgrowth of the left leg might be a rare consequence of the identified c.5727insT mutation.
Collapse
Affiliation(s)
- K Tripolszki
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - K Farkas
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - A Sulák
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - G Szolnoky
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - B Duga
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - B Melegh
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - R G Knox
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, Cambridge, UK
| | - V E R Parker
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, Cambridge, UK
| | - R K Semple
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, Cambridge, UK
| | - L Kemény
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - M Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - N Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16-26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8-13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype-phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotype.
Collapse
Affiliation(s)
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
11
|
Imagawa E, Higashimoto K, Sakai Y, Numakura C, Okamoto N, Matsunaga S, Ryo A, Sato Y, Sanefuji M, Ihara K, Takada Y, Nishimura G, Saitsu H, Mizuguchi T, Miyatake S, Nakashima M, Miyake N, Soejima H, Matsumoto N. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum Mutat 2017; 38:637-648. [PMID: 28229514 DOI: 10.1002/humu.23200] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/30/2022]
Abstract
Weaver syndrome (WS) is a rare congenital overgrowth disorder caused by heterozygous mutations in EZH2 (enhancer of zeste homolog 2) or EED (embryonic ectoderm development). EZH2 and EED are core components of the polycomb repressive complex 2 (PRC2), which possesses histone methyltransferase activity and catalyzes trimethylation of histone H3 at lysine 27. Here, we analyzed eight probands with clinically suspected WS by whole-exome sequencing and identified three mutations: a 25.4-kb deletion partially involving EZH2 and CUL1 (individual 1), a missense mutation (c.707G>C, p.Arg236Thr) in EED (individual 2), and a missense mutation (c.1829A>T, p.Glu610Val) in SUZ12 (suppressor of zeste 12 homolog) (individual 3) inherited from her father (individual 4) with a mosaic mutation. SUZ12 is another component of PRC2 and germline mutations in SUZ12 have not been previously reported in humans. In vitro functional analyses demonstrated that the identified EED and SUZ12 missense mutations cause decreased trimethylation of lysine 27 of histone H3. These data indicate that loss-of-function mutations of PRC2 components are an important cause of WS.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoshinori Sato
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yui Takada
- Department of Pediatrics, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
12
|
Morris SM, Monroe CL, Gutmann DH. Macrocephaly Is Not a Predictor of Optic Pathway Glioma Development or Treatment in Neurofibromatosis Type 1. J Child Neurol 2016; 31:1540-1545. [PMID: 27581847 DOI: 10.1177/0883073816664659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 12/26/2022]
Abstract
Neurofibromatosis type 1 is a common neurogenetic disorder characterized by significant clinical variability. As such, numerous studies have focused on identifying clinical, radiographic, or molecular biomarkers that predict the occurrence or progression of specific clinical features in individuals with neurofibromatosis type 1. One of these clinical biomarkers, macrocephaly, has been proposed as a prognostic factor for optic pathway glioma development. In the current study, the authors demonstrate that macrocephaly is not associated with the development of these brain tumors or the need to institute treatment for clinical progression. These findings suggest that macrocephaly is not a robust biomarker of optic pathway glioma formation or progression in children with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney L Monroe
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Ning X, Farschtschi S, Jones A, Kehrer-Sawatzki H, Mautner VF, Friedman JM. Growth in neurofibromatosis 1 microdeletion patients. Clin Genet 2015; 89:351-4. [PMID: 26111455 DOI: 10.1111/cge.12632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/27/2022]
Abstract
Microdeletions of the entire NF1 gene and surrounding genomic region occur in about 5% of patients with neurofibromatosis 1 (NF1). NF1 microdeletion patients usually have more cutaneous and plexiform neurofibromas and a higher risk of developing malignant peripheral nerve sheath tumors than other people with NF1. Somatic overgrowth has also been observed in NF1 microdeletion patients, an observation that is remarkable because most NF1 patients are smaller than average for age and sex. We studied longitudinal measurements of height, weight, and head circumference in 56 patients with NF1 microdeletions and 226 NF1 patients with other kinds of mutations. Although children with NF1 microdeletions were much taller than non-deletion NF1 patients at all ages after 2 years, the lengths of deletion and nondeletion NF1 patients were similar in early infancy. NF1 microdeletion patients tended to be heavier than other NF1 patients, but height or weight more than 3 standard deviations above the mean for age and sex was infrequent in children with NF1 microdeletions. Head circumference and age of puberty were similar in deletion and non-deletion NF1 patients. The pattern of growth differs substantially in deletion and non-deletion NF1 patients, but the pathogenic basis for this difference is unknown.
Collapse
Affiliation(s)
- X Ning
- Tulane University School of Medicine, New Orleans, LA, USA
| | - S Farschtschi
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - A Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | - V-F Mautner
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - J M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Morcaldi G, Clementi M, Lama G, Gabrielli O, Vannelli S, Virdis R, Vivarelli R, Boero S, Bonioli E. Evaluation of tibial osteopathy occurrence in neurofibromatosis type 1 Italian patients. Am J Med Genet A 2013; 161A:927-34. [PMID: 23463485 DOI: 10.1002/ajmg.a.35753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/14/2012] [Indexed: 11/10/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a common autosomal dominant disorder characterized by high penetrance, widely variable expressivity and occurrence of specific skeletal changes such as tibial osteopathy (TO). We collected data on patients referred to the Italian Neurofibromatosis Study Group in order to compare clinical features between 49 NF1 patients with TO, and 98 age-matched NF1 patients without TO, and to determine whether the presence of TO is associated with a different risk of developing the typical NF1 complications. We assessed both groups for: age at diagnosis of NF1, gender distribution, family history, gender inheritance, presence of scoliosis, sphenoid wing osteopathy, other skeletal abnormalities, macrocrania, hydrocephalus, plexiform neurofibromas, tumors, optic pathway gliomas, T2H (high-signal intensity areas on T2 weighted brain MRI), epilepsy, headache, mental retardation, cardiovascular malformations, and Noonan phenotype. Patients of both groups were subdivided by gender and re-evaluated for these items. Statistical comparison was carried out between the two groups of patients for each feature. We collected data on type of treatment and on the clinical conditions of NF1-TO patients after follow-up. Patient's age at NF1 diagnosis was significantly younger in NF1-TO subjects compared with NF1 subjects without TO, and the incidence of T2H was significantly reduced in NF1-TO males compared with NF1 males without TO. The presence of TO does not imply that there is an increased risk of developing typical complications of NF1 (e.g., optic pathway glioma, plexiform neurofibroma, etc.), however, it does allow us to make an earlier diagnosis of NF1.
Collapse
Affiliation(s)
- Guido Morcaldi
- Department of Pediatrics, Gaslini Children's Hospital, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Human growth ensues from a complex interplay of physiological factors, in the wider setting of varying genetic traits and environmental influences. Intensive research in these divergent areas, and particularly in the field of genetics, continues to clarify the molecular basis of disorders which result in overgrowth, and it is therefore timely to provide a review of these findings. RECENT FINDINGS This article provides an overview of the factors which regulate growth, followed by a discussion of the more commonly encountered overgrowth syndromes and their genetic basis as it is understood at the current time. There is also an added focus on recently discovered genetic associations in some conditions, such as Weaver, Perlman and Proteus syndromes. SUMMARY New discoveries continue to be made regarding the genetic basis for many overgrowth syndromes and the development of a much needed molecular classification system for overgrowth may become possible as the interlinking functions of these genes on growth are unravelled. As there exists a wide spectrum of syndromes, disorders resulting in overgrowth can represent a diagnostic and therapeutic challenge, from those causing prenatal overgrowth with a poor prognosis to less severe genetic aberrations which are identified in later childhood or adult life.
Collapse
|
16
|
Harder A, Titze S, Herbst L, Harder T, Guse K, Tinschert S, Kaufmann D, Rosenbaum T, Mautner VF, Windt E, Wahlländer-Danek U, Wimmer K, Mundlos S, Peters H. Monozygotic Twins With Neurofibromatosis Type 1 (NF1) Display Differences in Methylation ofNF1Gene Promoter Elements, 5' Untranslated region, Exon and Intron 1. Twin Res Hum Genet 2012; 13:582-94. [DOI: 10.1375/twin.13.6.582] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder caused by heterozygotic inactivation of the NF1 tumor suppressor gene at 17q11.2. The associated phenotypes are highly variable, and modifying genes have been proposed to explain at least in part the intriguing expressivity. Given that haploinsufficiency of the NF1 gene product neurofibromin is responsible for some of the clinical manifestations, variations in expression of the wildtype NF1 allele might modify the phenotype. We therefore investigated epigenetic molecular modifications that could result in variable expression of the normal NF1 allele. To exclude confounding by DNA sequence variations, we analyzed monozygotic twin pairs with NF1 who presented with several discordant features. We fine-mapped the methylation pattern of a nearly 1 kb NF1 promoter region in lymphocytes of 8 twin pairs. All twin pairs showed significant intra-pair differences in methylation, especially of specific promoter subregions such as 5'UTR, exon 1 and intron 1 (+7 to +622), transcription factor binding sites and promoter elements like NF1HCS. Furthermore, we detected significant intra-pair differences in cytosine methylation for the region from -249 to -234 with regard to discordance for optic glioma with a higher grade of methylation in glioma cases. In conclusion, our findings of epigenetic differences of the NF1 promoter in leukocytes within mono zygotic twin pairs may serve as a proof of principle for other tissues. The results point towards a role of methylation patterns of the normal NF1 allele for expression differences and for modification of the NF1 phenotype.
Collapse
|
17
|
Bengesser K, Cooper DN, Steinmann K, Kluwe L, Chuzhanova NA, Wimmer K, Tatagiba M, Tinschert S, Mautner VF, Kehrer-Sawatzki H. A novel third type of recurrent NF1 microdeletion mediated by nonallelic homologous recombination between LRRC37B-containing low-copy repeats in 17q11.2. Hum Mutat 2010; 31:742-51. [PMID: 20506354 DOI: 10.1002/humu.21254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Large microdeletions encompassing the neurofibromatosis type-1 (NF1) gene and its flanking regions at 17q11.2 belong to the group of genomic disorders caused by aberrant recombination between segmental duplications. The most common NF1 microdeletions (type-1) span 1.4-Mb and have breakpoints located within NF1-REPs A and C, low-copy repeats (LCRs) containing LRRC37-core duplicons. We have identified a novel type of recurrent NF1 deletion mediated by nonallelic homologous recombination (NAHR) between the highly homologous NF1-REPs B and C. The breakpoints of these approximately 1.0-Mb ("type-3") NF1 deletions were characterized at the DNA sequence level in three unrelated patients. Recombination regions, spanning 275, 180, and 109-bp, respectively, were identified within the LRRC37B-P paralogues of NF1-REPs B and C, and were found to contain sequences capable of non-B DNA formation. Both LCRs contain LRRC37-core duplicons, abundant and highly dynamic sequences in the human genome. NAHR between LRRC37-containing LCRs at 17q21.31 is known to have mediated the 970-kb polymorphic inversions of the MAPT-locus that occurred independently in different primate species, but also underlies the syndromes associated with recurrent 17q21.31 microdeletions and reciprocal microduplications. The novel NF1 microdeletions reported here provide further evidence for the unusually high recombinogenic potential of LRRC37-containing LCRs in the human genome.
Collapse
|
18
|
|
19
|
Visser R, Koelma N, Vijfhuizen L, van der Wielen MJR, Kant SG, Breuning MH, Wit JM, Losekoot M. RNF135 mutations are not present in patients with Sotos syndrome-like features. Am J Med Genet A 2009; 149A:806-8. [PMID: 19291764 DOI: 10.1002/ajmg.a.32694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Remco Visser
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stewart H, Bowker C, Edees S, Smalley S, Crocker M, Mechan D, Forrester N, Spurlock G, Upadhyaya M. Congenital disseminated neurofibromatosis type 1: a clinical and molecular case report. Am J Med Genet A 2008; 146A:1444-52. [PMID: 18438896 DOI: 10.1002/ajmg.a.32305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition with a birth incidence of 1/3,500. Around 50% of cases are due to new mutations. The NF1 gene maps to 17q11.2 and encodes neurofibromin. NF1 is a "classical" tumor suppressor gene. Congenital disseminated NF1 is rare with just two cases previously reported. We present a deceased baby with congenital disseminated NF1 in whom we performed molecular studies. A germline mutation (R461X) in exon 10a of the NF1 gene was found. A 2 bp deletion (3508delCA) in codon 1170 of exon 21 was identified in DNA derived from some tumor tissue. Loss of heterozygosity in NF1 and TP53 was observed in other tumor samples. No microsatellite instability was observed in the tumor samples. This is the first report of molecular analysis of the NF1 locus in a patient with disseminated congenital neurofibromatosis. This case had a de novo germline mutation in NF1 and three documented somatic mutations in the NF1 and TP53 genes in tumor specimens.
Collapse
Affiliation(s)
- H Stewart
- Department of Clinical Genetics, Churchill Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kehrer-Sawatzki H, Schmid E, Fünsterer C, Kluwe L, Mautner VF. Absence of cutaneous neurofibromas in an NF1 patient with an atypical deletion partially overlapping the common 1.4 Mb microdeleted region. Am J Med Genet A 2008; 146A:691-9. [PMID: 18265407 DOI: 10.1002/ajmg.a.32045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The majority of neurofibromatosis type 1 (NF1) microdeletions in 17q11.2 span approximately 1.4 Mb and have breakpoints that lie within the proximal and distal NF1-low copy repeats, termed NF1-REPs. Less frequent are patients with atypical deletions and non-recurring breakpoints. NF1 patients with gross deletions have been reported to manifest a more severe clinical phenotype than NF1 patients with intragenic mutations, and display early onset and extensive growth of neurofibromas. It has been suggested that the deletion of a neighboring gene or genes in addition to the NF1 gene may modify the expression of the disease, particularly with regard to the high burden of cutaneous neurofibromas. Thus, atypical deletions partially overlapping with the common 1.4 Mb microdeletion interval could prove useful in identifying possible genetic modifiers in the NF1 gene region whose haploinsufficiency might promote neurofibroma growth. Here we report a 20-year-old female who has an atypical deletion with a proximal breakpoint in NF1 intron 21 and a distal deletion breakpoint in the ACCN1 gene. The deletion spans 2.7 Mb and was mediated by an intrachromosomal non-homology-driven mechanism, for example, non-homologous end-joining (NHEJ). Remarkably, this patient did not exhibit cutaneous neurofibromas. However, genotype-phenotype comparisons in this and other previously reported patients with atypical deletions partially overlapping the commonly deleted 1.4 Mb interval do not identify a specific deleted region that is associated with increased neurofibroma growth.
Collapse
|
22
|
Bartsch O, Vlcková Z, Erdogan F, Ullmann R, Novotná D, Spiegel M, Beyer V, Haaf T, Zechner U, Seemanová E. Two independent chromosomal rearrangements, a very small (550 kb) duplication of the 7q subtelomeric region and an atypical 17q11.2 (NF1) microdeletion, in a girl with neurofibromatosis. Cytogenet Genome Res 2007; 119:158-64. [PMID: 18160797 DOI: 10.1159/000109634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/13/2007] [Indexed: 11/19/2022] Open
Abstract
Most patients with neurofibromatosis (NF1) are endowed with heterozygous mutations in the NF1 gene. Approximately 5% show an interstitial deletion of chromosome 17q11.2 (including NF1) and in most cases also a more severe phenotype. Here we report on a 7-year-old girl with classical NF1 signs, and in addition mild overgrowth (97th percentile), relatively low OFC (10th-25th percentile), facial dysmorphy, hoarse voice, and developmental delay. FISH analysis revealed a 17q11.2 microdeletion as well as an unbalanced 7p;13q translocation leading to trisomy of the 7q36.3 subtelomeric region. The patient's mother and grandmother who were phenotypically normal carried the same unbalanced translocation. The 17q11.2 microdeletion had arisen de novo. Array comparative genomic hybridization (CGH) demonstrated gain of a 550-kb segment from 7qter and loss of 2.5 Mb from 17q11.2 (an atypical NF1 microdeletion). We conclude that the patient's phenotype is caused by the atypical NF1 deletion, whereas 7q36.3 trisomy represents a subtelomeric copy number variation without phenotypic consequences. To our knowledge this is the first report that a duplication of the subtelomeric region of chromosome 7q containing functional genes (FAM62B, WDR60, and VIPR2) can be tolerated without phenotypic consequences. The 17q11.2 microdeletion (containing nine more genes than the common NF1 microdeletions) and the 7qter duplication were not accompanied by unexpected clinical features. Most likely the 7qter trisomy and the 17q11.2 microdeletion coincide by chance in our patient.
Collapse
Affiliation(s)
- O Bartsch
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steinmann K, Cooper DN, Kluwe L, Chuzhanova NA, Senger C, Serra E, Lazaro C, Gilaberte M, Wimmer K, Mautner VF, Kehrer-Sawatzki H. Type 2 NF1 deletions are highly unusual by virtue of the absence of nonallelic homologous recombination hotspots and an apparent preference for female mitotic recombination. Am J Hum Genet 2007; 81:1201-20. [PMID: 17999360 PMCID: PMC2276354 DOI: 10.1086/522089] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/03/2007] [Indexed: 11/03/2022] Open
Abstract
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.
Collapse
|
24
|
Douglas J, Cilliers D, Coleman K, Tatton-Brown K, Barker K, Bernhard B, Burn J, Huson S, Josifova D, Lacombe D, Malik M, Mansour S, Reid E, Cormier-Daire V, Cole T, Rahman N. Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. Nat Genet 2007; 39:963-5. [PMID: 17632510 DOI: 10.1038/ng2083] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/22/2007] [Indexed: 11/08/2022]
Abstract
17q11 microdeletions that encompass NF1 cause 5%-10% of cases of neurofibromatosis type 1, and individuals with microdeletions are typically taller than individuals with intragenic NF1 mutations, suggesting that deletion of a neighboring gene might promote human growth. We identified mutations in RNF135, which is within the NF1 microdeletion region, in six families characterized by overgrowth, learning disability, dysmorphic features and variable additional features. These data identify RNF135 as causative of a new overgrowth syndrome and demonstrate that RNF135 haploinsufficiency contributes to the phenotype of NF1 microdeletion cases.
Collapse
Affiliation(s)
- Jenny Douglas
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Upadhyaya M, Huson SM, Davies M, Thomas N, Chuzhanova N, Giovannini S, Evans DG, Howard E, Kerr B, Griffiths S, Consoli C, Side L, Adams D, Pierpont M, Hachen R, Barnicoat A, Li H, Wallace P, Van Biervliet JP, Stevenson D, Viskochil D, Baralle D, Haan E, Riccardi V, Turnpenny P, Lazaro C, Messiaen L. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet 2007; 80:140-51. [PMID: 17160901 PMCID: PMC1785321 DOI: 10.1086/510781] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/07/2006] [Indexed: 01/23/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by cafe-au-lait spots, skinfold freckling, and cutaneous neurofibromas. No obvious relationships between small mutations (<20 bp) of the NF1 gene and a specific phenotype have previously been demonstrated, which suggests that interaction with either unlinked modifying genes and/or the normal NF1 allele may be involved in the development of the particular clinical features associated with NF1. We identified 21 unrelated probands with NF1 (14 familial and 7 sporadic cases) who were all found to have the same c.2970-2972 delAAT (p.990delM) mutation but no cutaneous neurofibromas or clinically obvious plexiform neurofibromas. Molecular analysis identified the same 3-bp inframe deletion (c.2970-2972 delAAT) in exon 17 of the NF1 gene in all affected subjects. The Delta AAT mutation is predicted to result in the loss of one of two adjacent methionines (codon 991 or 992) ( Delta Met991), in conjunction with silent ACA-->ACG change of codon 990. These two methionine residues are located in a highly conserved region of neurofibromin and are expected, therefore, to have a functional role in the protein. Our data represent results from the first study to correlate a specific small mutation of the NF1 gene to the expression of a particular clinical phenotype. The biological mechanism that relates this specific mutation to the suppression of cutaneous neurofibroma development is unknown.
Collapse
Affiliation(s)
- M Upadhyaya
- Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
De Raedt T, Maertens O, Chmara M, Brems H, Heyns I, Sciot R, Majounie E, Upadhyaya M, De Schepper S, Speleman F, Messiaen L, Vermeesch JR, Legius E. Somatic loss of wild typeNF1 allele in neurofibromas: Comparison ofNF1 microdeletion and non-microdeletion patients. Genes Chromosomes Cancer 2006; 45:893-904. [PMID: 16830335 DOI: 10.1002/gcc.20353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurofibromatosis type I (NF1) is an autosomal dominant familial tumor syndrome characterized by the presence of multiple benign neurofibromas. In 95% of NF1 individuals, a mutation is found in the NF1 gene, and in 5% of the patients, the germline mutation consists of a microdeletion that includes the NF1 gene and several flanking genes. We studied the frequency of loss of heterozygosity (LOH) in the NF1 region as a mechanism of somatic NF1 inactivation in neurofibromas from NF1 patients with and without a microdeletion. There was a statistically significant difference between these two patient groups in the proportion of neurofibromas with LOH. None of the 40 neurofibromas from six different NF1 microdeletion patients showed LOH, whereas LOH was observed in 6/28 neurofibromas from five patients with an intragenic NF1 mutation (P = 0.0034, Fisher's exact). LOH of the NF1 microdeletion region in NF1 microdeletion patients would de facto lead to a nullizygous state of the genes located in the deletion region and might be lethal. The mechanisms leading to LOH were further analyzed in six neurofibromas. In two out of six neurofibromas, a chromosomal microdeletion was found; in three, a mitotic recombination was responsible for the observed LOH; and in one, a chromosome loss with reduplication was present. These data show an important difference in the mechanisms of second hit formation in the 2 NF1 patient groups. We conclude that NF1 is a familial tumor syndrome in which the type of germline mutation influences the type of second hit in the tumors.
Collapse
Affiliation(s)
- Thomas De Raedt
- Center for Human Genetics, University Hospital Leuven, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|