1
|
Gökçe Mİ, Karaburun MC. Cystinuria in children: diagnosis and treatment. World J Urol 2025; 43:226. [PMID: 40234286 PMCID: PMC12000261 DOI: 10.1007/s00345-025-05604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
PURPOSE Cystinuria is the predominant hereditary factor leading to kidney stone formation in the pediatric population. The aim of this manuscript is to provide an overview of cystinuria in children. METHODS The authors performed a literature review on studies regarding cystinuria in children. A narrative synthesis for analysis of the studies was used. RESULTS Cystine is a homodimeric amino acid formed by the disulfide bonding of two cysteine molecules. The problem with this autosomal recessive condition arises from a malfunction in the process of reabsorption. Cystine filtered from the renal glomerulus cannot be reabsorbed from the proximal tubules. Therefore, due to its extremely low solubility at normal urine pH, it precipitates and causes stone formation. Recurrent stone formation is the most prominent clinical presentation of cystinuria. The patients usually present with a renal colic episode with concomitant nausea and hematuria. The aim of medical treatment is to maintain the solubility of cystine in urine. The main strategies are to increase urine volume and urinary pH. Potassium citrate or potassium bicarbonate can be used to raise the pH of the urine to 7.5 to increase cystine solubility. If the treatment with alkalinization and higher urine output fails, cystine binding agents such as tiopronin and D-penicillamine can be added to the treatment. Surgical management of pediatric patients with cystine stones is similar to that in the adult population. However, cystine stones can be resistant to ESWL. Retrograde ureteroscopy with semirigid and flexible instruments is a good option for ureteral stones and also for renal stones less than 20 mm in diameter. The golden standard option for high-volume stones larger than 20 mm in diameter is percutaneous nephrolithotomy (PCNL). CONCLUSIONS Cystinuria is the primary hereditary factor contributing to the formation of kidney stones throughout childhood. It is a genetic disorder that typically manifests as recurrent stone formations. The aim of the treatment of genetically caused pediatric stone diseases is to prevent stone formation with medical treatments, remove existing stones through surgical treatments, and mitigate the risk of developing chronic kidney disease in the future.
Collapse
Affiliation(s)
- Mehmet İlker Gökçe
- Department of Urology, Ankara University Faculty of Medicine, Altındağ, 06230, Ankara, Turkey.
| | | |
Collapse
|
2
|
D'Ambrosio V, Capolongo G, Goldfarb D, Gambaro G, Ferraro PM. Cystinuria: an update on pathophysiology, genetics, and clinical management. Pediatr Nephrol 2022; 37:1705-1711. [PMID: 34812923 DOI: 10.1007/s00467-021-05342-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
Cystinuria is the most common genetic cause of nephrolithiasis in children. It is considered a heritable aminoaciduria as the genetic defect affects the reabsorption of cystine and three other amino acids (ornithine, lysine, and arginine) in the renal proximal tubule. Patients affected by this condition have elevated excretion of cystine in the urine, and because of this amino acid's low solubility at normal urine pH, patients tend to form cystine calculi. To date, two genes have been identified as disease-causative: SLC3A1 and SLC7A9, encoding for the two subunits of the heterodimeric transporter. The clinical features of this condition are solely related to nephrolithiasis. The diagnosis is usually made during infancy or adolescence, but cases of late diagnosis are common. The goal of therapy is to reduce excretion and increase the solubility of cystine, through both modifications of dietary habits and pharmacological treatment. However, therapeutic interventions are not always sufficient, and patients often have to undergo several surgical procedures during their lives to treat recurrent nephrolithiasis. The goal of this literature review is to synthesize the available evidence on diagnosis and management of patients affected by cystinuria in order to provide physicians with a practical tool that can be used in daily clinical practice. This review also aims to shed some light on new therapy directions with the aim of ameliorating kidney outcomes while improving adherence to treatment and quality of life of cystinuric patients.
Collapse
Affiliation(s)
- Viola D'Ambrosio
- Dipartimento Di Scienze Mediche E Chirurgiche, U.O.S. Terapia Conservativa Della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, U.O.C. Nefrologia, 00168, Rome, Italy
- Dipartimento Universitario Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, Unit of Nephrology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - David Goldfarb
- Nephrology Section, VA, New York Harbor Healthcare System, New York, NY, USA
- Division of Nephrology, New York University Langone Medical Center, New York, NY, USA
| | - Giovanni Gambaro
- Department of Medicine, Division of Nephrology and Dialysis, Renal Unit, University of Verona, Verona, Italy
| | - Pietro Manuel Ferraro
- Dipartimento Di Scienze Mediche E Chirurgiche, U.O.S. Terapia Conservativa Della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, U.O.C. Nefrologia, 00168, Rome, Italy.
- Dipartimento Universitario Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
3
|
Haziza S, Magnani R, Lan D, Keinan O, Saada A, Hershkovitz E, Yanay N, Cohen Y, Nevo Y, Houtz RL, Sheffield VC, Golan H, Parvari R. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLoS Genet 2015; 11:e1005388. [PMID: 26247364 PMCID: PMC4527749 DOI: 10.1371/journal.pgen.1005388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene. Calmodulin (CaM) is a highly abundant, ubiquitous, small protein, which plays a major role in the transmission of calcium signals to target proteins in eukaryotes. Hundreds of CaM targets are known, and their respective cellular functions include signaling, metabolism, cytoskeletal regulation, and ion channel regulation, to name but a few. CaM is frequently modified after translation, including frequently trimethylation at a single amino acid, however, the role of this methylation is not known. Human patients with a homozygous deletion of the gene that methylates CaM, CaM-KMT, are known, but they also have a deletion of additional genes. Thus, to study the role of CaM–KMT, we produced a mouse model in which CaM-KMT is the only deleted gene, with the deletion constructed as in the human patients. The model proved to reveal the function of methylation of CaM, since CaM was found to be non-methylated and the methylation of CaM found to be important in growth, muscle strength, somatosensory development and brain function. The current study also has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.
Collapse
Affiliation(s)
- Sitvanit Haziza
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roberta Magnani
- Department of Horticulture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Dima Lan
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Keinan
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ann Saada
- Department of Genetic and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Hershkovitz
- Pediatric Endocrinology & Metabolism Unit, Soroka Medical Center, Beer Sheva, Israel
| | - Nurit Yanay
- Pediatric Neuromuscular Laboratory and Pediatric Neurology Unit Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Cohen
- Pesticides and Mycotoxins Division, Aminolab, Weizmann Science Park, Ness Ziona, Israel
| | - Yoram Nevo
- Pediatric Neuromuscular Laboratory and Pediatric Neurology Unit Hadassah, Hebrew University Medical Center, Jerusalem, Israel
- Institute of Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Robert L. Houtz
- Department of Horticulture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, Division of Medical Genetics and Hughes Medical Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Hava Golan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
4
|
Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence. PLoS One 2012; 7:e52425. [PMID: 23285036 PMCID: PMC3527508 DOI: 10.1371/journal.pone.0052425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022] Open
Abstract
Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.
Collapse
|
6
|
Magnani R, Dirk LMA, Trievel RC, Houtz RL. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat Commun 2010; 1:43. [PMID: 20975703 DOI: 10.1038/ncomms1044] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/29/2010] [Indexed: 11/09/2022] Open
Abstract
Calmodulin (CaM) is a key mediator of calcium-dependent signalling and is subject to regulatory post-translational modifications, including trimethylation of Lys-115. In this paper, we identify a class I, non-SET domain protein methyltransferase, calmodulin-lysine N-methyltransferase (EC 2.1.1.60). A polypeptide chosen from a fraction enriched in calmodulin methyltransferase activity was trypsinized and analysed by tandem mass spectrometry. The amino-acid sequence obtained identified conserved, homologous proteins of unknown function across a wide range of species, thus implicating a broad role for lysine methylation in calcium-dependent signalling. Encoded by c2orf34, the human homologue is a component of two related multigene deletion syndromes in humans. Human, rat, frog, insect and plant homologues were cloned and Escherichia coli-recombinant proteins catalysed the formation of a trimethyllysyl residue at position 115 in CaM, as verified by product analyses and mass spectrometry.
Collapse
Affiliation(s)
- Roberta Magnani
- Department of Horticulture, Plant Physiology/Biochemistry/Molecular Biology Program, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|
8
|
Huang CC, Chang WSW. Cooperation between NRF-2 and YY-1 transcription factors is essential for triggering the expression of the PREPL-C2ORF34 bidirectional gene pair. BMC Mol Biol 2009; 10:67. [PMID: 19575798 PMCID: PMC2713978 DOI: 10.1186/1471-2199-10-67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 07/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Many mammalian genes are organized as bidirectional (head-to-head) gene pairs with the two genes separated only by less than 1 kb. The transcriptional regulation of these bidirectional gene pairs remains largely unclear, but a few studies have suggested that the two closely adjacent genes in divergent orientation can be co-regulated by a single transcription factor binding to a specific regulatory fragment. Here we report an evolutionarily conserved bidirectional gene pair, known as the PREPL-C2ORF34 gene pair, whose transcription relies on the synergic cooperation of two transcription factors binding to an intergenic bidirectional minimal promoter. Results While PREPL is present primarily in brain and heart, C2ORF34 is ubiquitously and abundantly expressed in almost all tissues. Genomic analyses revealed that these two non-homologous genes are adjacent in a head-to-head configuration on human chromosome 2p21 and separated by only 405 bp. Within this short intergenic region, a 243-bp GC-rich segment was demonstrated to function as a bidirectional minimal promoter to initiate the transcription of both flanking genes. Two key transcription factors, NRF-2 and YY-1, were further identified to coordinately participate in driving both gene expressions in an additive manner. The functional cooperation between these two transcription factors, along with their genomic binding sites and some cis-acting repressive elements, are essential for the transcriptional activation and tissue distribution of the PREPL-C2ORF34 bidirectional gene pair. Conclusion This study provides new insights into the complex transcriptional mechanism of a mammalian head-to-head gene pair which requires cooperative binding of multiple transcription factors to a bidirectional minimal promoter of the shared intergenic region.
Collapse
Affiliation(s)
- Chien-Chang Huang
- 1Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | | |
Collapse
|
9
|
Chabrol B, Martens K, Meulemans S, Cano A, Jaeken J, Matthijs G, Creemers JWM. Deletion of C2orf34, PREPL and SLC3A1 causes atypical hypotonia-cystinuria syndrome. BMJ Case Rep 2009; 2009:bcr08.2008.0719. [PMID: 21686663 DOI: 10.1136/bcr.08.2008.0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypotonia-cystinuria syndrome (HCS) and 2p21 deletion syndrome are two recessive contiguous gene deletion syndromes associated with cystinuria type I. In HCS patients, only SLC3A1 and PREPL are disrupted. In the 2p21 deletion syndrome, two additional genes (C2orf34 and PPM1B) are lost. Molecular analysis of the SLC3A1/PREPL locus was performed in the patients using quantitative polymerase chain reaction (PCR) methods. HCS in both siblings was confirmed with the deletion screen of the SLC3A1/PREPL locus. Fine mapping of the breakpoint revealed a deletion of 77.4 kb, including three genes: SLC3A1, PREPL and C2orf34. Features not present in classical HCS were a mild/moderate mental retardation and a respiratory chain complex IV deficiency. We report the first patients with a deletion of SLC3A1, PREPL and C2orf34. They present with a phenotype intermediate between HCS and 2p21 deletion syndrome.
Collapse
Affiliation(s)
- B Chabrol
- Reference Center for inborn metabolic disorders, CHU de la Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|