1
|
Albini A, Di Paola L, Mei G, Baci D, Fusco N, Corso G, Noonan D. Inflammation and cancer cell survival: TRAF2 as a key player. Cell Death Dis 2025; 16:292. [PMID: 40229245 PMCID: PMC11997178 DOI: 10.1038/s41419-025-07609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
TNF receptor-associated factor 2 (TRAF2) plays a crucial role in both physiological and pathological processes. It takes part in the regulation of cell survival and death, tissue regeneration, development, endoplasmic reticulum stress response, autophagy, homeostasis of the epithelial barrier and regulation of adaptive and innate immunity. Initially identified for its interaction with TNF receptor 2 (TNFR2), TRAF2 contains a TRAF domain that enables homo- and hetero-oligomerization, allowing it to interact with multiple receptors and signaling molecules. While best known for mediating TNFR1 and TNFR2 signaling, TRAF2 also modulates other receptor pathways, including MAPK, NF-κB, and Wnt/β-catenin cascades. By regulating NF-κB-inducing kinase (NIK), TRAF2 is a key activator of the alternative NF-κB pathway, linking it to inflammatory diseases, immune dysfunction, and tumorigenesis. In the innate immune system, TRAF2 influences macrophage differentiation, activation, and survival and stimulates natural killer cell cytotoxicity. In the adaptive immune system, it represses effector B- and T-cell activity while sustaining regulatory T-cell function, thus promoting immune suppression. The lack of fine-tuning of TRAF2 activity leads to excessive NF-kB activation, driving chronic inflammation and autoimmunity. Although TRAF2 can act as a tumor suppressor, it is predominantly described as a tumor promoter, as its expression has been correlated with increased metastatic potential and poorer prognosis in several types of cancer. Targeting TRAF2 or TRAF2-dependent signaling pathways might represent a promising anti-cancer therapeutic strategy.
Collapse
Grants
- The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022, grant 2022PJKF88 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- "Umberto Veronesi" Foundation project: "Massive CDH1 genetic screening in the so-called hereditary breast-gastric cancer syndrome". The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Nicola Fusco
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Douglas Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
2
|
Puppala S, Chan J, Zimmerman KD, Hamid Z, Ampong I, Huber HF, Li G, Jadhav AYL, Li C, Nathanielsz PW, Olivier M, Cox LA. Multi-omics Analysis of Aging Liver Reveals Changes in Endoplasmic Stress and Degradation Pathways in Female Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554149. [PMID: 37662261 PMCID: PMC10473634 DOI: 10.1101/2023.08.21.554149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The liver is critical for functions that support metabolism, immunity, digestion, detoxification, and vitamin storage. Aging is associated with severity and poor prognosis of various liver diseases such as nonalcoholic fatty liver disease (NAFLD). Previous studies have used multi-omic approaches to study liver diseases or to examine the effects of aging on the liver. However, to date, no studies have used an integrated omics approach to investigate aging-associated molecular changes in the livers of healthy female nonhuman primates. The goal of this study was to identify molecular changes associated with healthy aging in the livers of female baboons ( Papio sp., n=35) by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. To integrate omics data, we performed unbiased weighted gene co-expression network analysis (WGCNA), and the results revealed 3 modules containing 3,149 genes and 33 proteins were positively correlated with age, and 2 modules containing 37 genes and 216 proteins were negatively correlated with age. Pathway enrichment analysis showed that unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were positively associated with age, whereas xenobiotic metabolism and melatonin and serotonin degradation pathways were negatively associated with age. The findings of our study suggest that UPR and a reduction in reactive oxygen species generated from serotonin degradation could protect the liver from oxidative stress during the aging process in healthy female baboons.
Collapse
|
3
|
Huang JP, Li J, Xiao YP, Xu LG. BAG6 negatively regulates the RLR signaling pathway by targeting VISA/MAVS. Front Immunol 2022; 13:972184. [PMID: 36045679 PMCID: PMC9420869 DOI: 10.3389/fimmu.2022.972184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
The virus-induced signaling adaptor protein VISA (also known as MAVS, ISP-1, Cardif) is a critical adaptor protein in the innate immune response to RNA virus infection. Upon viral infection, VISA self-aggregates to form a sizeable prion-like complex and recruits downstream signal components for signal transduction. Here, we discover that BAG6 (BCL2-associated athanogene 6, formerly BAT3 or Scythe) is an essential negative regulator in the RIG-I-like receptor signaling pathway. BAG6 inhibits the aggregation of VISA by promoting the K48-linked ubiquitination and specifically attenuates the recruitment of TRAF2 by VISA to inhibit RLR signaling. The aggregation of VISA and the interaction of VISA and TRAF2 are enhanced in BAG6-deficient cell lines after viral infection, resulting in the enhanced transcription level of downstream antiviral genes. Our research shows that BAG6 is a critical regulating factor in RIG-I/VISA-mediated innate immune response by targeting VISA.
Collapse
|
4
|
Palumbo C, Mecchia A, Bocedi A, Aquilano K, Lettieri-Barbato D, Rosina M, Di Venere A, Rodolfo C, Caccuri AM. Revisited role of TRAF2 and TRAF2 C-terminal domain in endoplasmic reticulum stress-induced autophagy in HAP1 leukemia cells. Int J Biochem Cell Biol 2022; 145:106193. [PMID: 35257890 DOI: 10.1016/j.biocel.2022.106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022]
Abstract
The scaffold protein Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) has been reported to play a key role in the endoplasmic reticulum (ER) stress-induced activation of c-Jun N-terminal Kinase (JNK) and hence autophagy. Autophagy is a highly conserved catabolic process, whose dysregulation is involved in the pathogenesis of various human diseases, including cancer. We investigated the involvement of TRAF2 in autophagy regulation in the human leukemic HAP1 cell line, under both basal and ER stress conditions. In TRAF2-knockout HAP1 cell line (KO), the basal autophagic flux was higher than in the parental cell line (WT). Moreover, tunicamycin-induced ER stress stimulated JNK activation and autophagy both in WT and KO HAP1. On the other hand, re-expression of a TRAF2 C-terminal fragment (residues ,310-501), in a TRAF2-KO cellular background, rendered HAP1 cells unable to activate both JNK and autophagy upon ER stress induction. Of note, this apparent dominant negative effect of the C-terminal fragment was observed even in the absence of the endogenous, full-length TRAF2 molecule. Furthermore, the expression of the C-terminal fragment resulted in both protein kinase B (AKT) pathway activation and increased resistance to the toxic effects induced by prolonged ER stress conditions. These findings indicate that TRAF2 is dispensable for the activation of both JNK and autophagy in HAP1 cells, while the TRAF2 C-terminal domain may play an autonomous role in regulating the cellular response to ER stress.
Collapse
Affiliation(s)
- Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Maria Caccuri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy; The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Wang Y, Xiong J, Yuan Y, Peng C, Wu P, Wang Y, Lu J, Yin Y, Xu J, Chen S, Liu J. Suppression of RIP1 activity via S415 dephosphorylation ameliorates obesity-related hepatic insulin resistance. Obesity (Silver Spring) 2022; 30:680-693. [PMID: 35156314 DOI: 10.1002/oby.23361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Receptor-interacting serine/threonine-protein kinase 1 (RIP1) is a well-documented key regulator of TNFα-mediated inflammation, apoptosis, and necroptosis, which contribute to the development of obesity-related metabolic diseases such as nonalcoholic steatohepatitis. However, the mechanism regarding how RIP1 influences obesity-related insulin resistance remains elusive. METHODS Primary hepatocytes with necrostatin 1 treatment or RIP1 expression were exposed to palmitic acid (PA), prior to the examination of cellular insulin signaling. Phosphorylation sites of RIP1 were detected by liquid chromatography with tandem mass spectrometry, and RIP1 variants with mutated phosphorylation sites were overexpressed in hepatocytes to identify the specific residue that influenced the RIP1-mediated insulin resistance. Adenovirus expressing RIP1 (S415A) mutant were administered into diet-induced obese mice to assess the effects on insulin sensitivity. RESULTS This study uncovered an aberrant increase in RIP1 activity during the development of obesity-induced insulin resistance. Inhibition of RIP1 activity with necrostatin 1 ameliorated PA- or high-fat diet-caused hepatic insulin resistance. With liquid chromatography with tandem mass spectrometry analysis and mutagenesis screening, S415, a novel phosphorylation site of RIP1, was identified to be responsible for RIP1-mediated insulin resistance. Loss-of-function mutation of S415 efficiently blunted RIP1-evoked insulin resistance in PA-treated hepatocytes or diet-induced obese mice. CONCLUSIONS These findings highlight the diabetogenic role of RIP1 S415 and propose RIP1 as a promising therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Peng
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Ping Wu
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Yibing Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yin
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Junting Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ma X, Rawnsley DR, Kovacs A, Islam M, Murphy JT, Zhao C, Kumari M, Foroughi L, Liu H, Qi K, Diwan A, Hyrc K, Evans S, Satoh T, French BA, Margulies KB, Javaheri A, Razani B, Mann DL, Mani K, Diwan A. TRAF2, an Innate Immune Sensor, Reciprocally Regulates Mitophagy and Inflammation to Maintain Cardiac Myocyte Homeostasis. JACC Basic Transl Sci 2022; 7:223-243. [PMID: 35411325 PMCID: PMC8993766 DOI: 10.1016/j.jacbts.2021.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.
Collapse
Key Words
- AAV9, adeno-associated virus serotype 9
- ER, endoplasmic reticulum
- FS, fractional shortening
- GFP, green fluorescent protein
- IP, intraperitoneal
- LV, left ventricular
- MAM, mitochondria-associated membranes
- MCM, MerCreMer
- MEF, murine embryonic fibroblast
- PINK1, PTEN-induced kinase 1
- RFP, red fluorescent protein
- TLR9, toll-like receptor 9
- TRAF2
- TRAF2, tumor necrosis factor receptor-associated factor-2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- cTnT, cardiac troponin T
- cell death
- inflammation
- mitophagy
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moydul Islam
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Chen Zhao
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Haiyan Liu
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Kevin Qi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krzysztof Hyrc
- Alafi Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Evans
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kartik Mani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Sun L, Patai ÁV, Hogenson TL, Fernandez-Zapico ME, Qin B, Sinicrope FA. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene 2021; 40:5105-5115. [PMID: 34193942 DOI: 10.1038/s41388-021-01910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
Colorectal cancer (CRC) cells have low or absent tumor cell PD-L1 expression that we previously demonstrated can confer chemotherapy resistance. Here, we demonstrate that PD-L1 depletion enhances JNK activity resulting in increased BimThr116 phosphorylation and its sequestration by MCL-1 and BCL-2. Activated JNK signaling in PD-L1-depeted cells was due to reduced mRNA stability of the CYLD deubiquitinase. PD-L1 was found to compete with the ribonuclease EXOSC10 for binding to CYLD mRNA. Thus, loss of PD-L1 promoted binding and degradation of CYLD mRNA by EXOSC10 which enhanced JNK activity. An irreversible JNK inhibitor (JNK-IN-8) reduced BimThr116 phosphorylation and unsequestered Bim from MCL-1 and BCL-2 to promote apoptosis. In cells lacking PD-L1, treatment with JNK-IN-8, an MCL-1 antagonist (AZD5991), or their combination promoted apoptosis and reduced long-term clonogenic survival by anticancer drugs. Similar effects of the JNK inhibitor on cell viability were observed in CRC organoids with suppression of PD-L1. These data indicate that JNK inhibition may represent a promising strategy to overcome drug resistance in CRC cells with low or absent PD-L1 expression.
Collapse
Affiliation(s)
- Lei Sun
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA.,Department of Gastrointestinal Surgery, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Árpád V Patai
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bo Qin
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA.
| | - Frank A Sinicrope
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA. .,Departments of Medicine and Oncology, Mayo Clinic, Rochester, MN, USA. .,Mayo Comprehensive Cancer Center, Rochester, MN, USA.
| |
Collapse
|
8
|
Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis 2021; 12:608. [PMID: 34117217 PMCID: PMC8196033 DOI: 10.1038/s41419-021-03887-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
Collapse
Affiliation(s)
- Pengshan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yinkun Fu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Man Mohan
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Single nucleotide polymorphisms of TRAF2 and TRAF5 gene in ankylosing spondylitis: a case-control study. Clin Exp Med 2021; 21:645-653. [PMID: 33997937 DOI: 10.1007/s10238-021-00719-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Objective To investigate the role of eight locus polymorphisms of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 gene and their interaction in the susceptibility to ankylosing spondylitis (AS) in Chinese Han population. Methods Eight single nucleotide polymorphisms (SNPs) of TRAF2 (rs3750511, rs10781522, rs17250673, rs59471504) and TRAF5 (rs6540679, rs12569232, rs4951523, rs7514863) gene were genotyped in 673 AS patients and 687 controls. Results The SNPs of TRAF2 and TRAF5 do not indicate a correlation with the susceptibility of AS in Chinese Han population. Genotype frequencies of rs3750511 were statistically significant in females between patients and controls. The allele frequencies of rs10781522 and genotype frequencies of rs3750511 were statistically significant between groups of different diseases activity. One three-locus model, TRAF2 (rs10781522, rs17250673) and TRAF5 (rs12569232), had a maximum testing accuracy of 52.67% and a maximum cross-validation consistency (10/10) that was significant at the level of P = 0.0001, after determined empirically by permutation testing. As to environmental variables, only marginal association was found between sleep quality and AS susceptibility. Conclusion TRAF2 rs3750511 polymorphism may be associated with the susceptibility and severity of AS. Besides, the interaction of TRAF2 and TRAF5 genes may be associated with AS susceptibility, but many open questions remain.
Collapse
|
10
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
11
|
Zhu Q, Chen J, Pan P, Lin F, Zhang X. UBE2N Regulates Paclitaxel Sensitivity of Ovarian Cancer via Fos/P53 Axis. Onco Targets Ther 2020; 13:12751-12761. [PMID: 33363381 PMCID: PMC7751838 DOI: 10.2147/ott.s271164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background Chemo-resistance is still considered one of the key factors in the mortality of ovarian cancer. In this work, we found that ubiquitin-conjugating enzyme E2 N (UBE2N) is downregulated in paclitaxel-resistant ovarian cancer cells. It suggests UBE2N to be critical in the regulation of paclitaxel sensitivity in ovarian cancer. Materials and Methods Ovarian cancer cells with stably overexpressed UBE2N were injected into nude mice to assess tumor growth and paclitaxel sensitivity in vivo. The MTT assay was applied to observe the effect of UBE2N expression on paclitaxel sensitivity. A real-time PCR array, specific for human cancer drug resistance, was used to examine the potential downstream target genes of UBE2N. The expression of UBE2N and potential downstream target genes was determined by Western blotting. The analysis of Gene Ontology and protein–protein interactions of these differentially expressed genes (DEGs) was performed using online tools. To evaluate the prognostic value of hub genes expression for ovarian cancer patients treated with paclitaxel, we applied the online survival analysis tool. Results Overexpressed UBE2N enhanced the paclitaxel sensitivity of ovarian cancer cells in vitro and in vivo. Thirteen upregulated DEGs and 11 downregulated DEGs were identified when we knockdown UBE2N. Meanwhile, 9 hub genes with a high degree of connectivity were selected. Only Fos proto-oncogene, AP-1 transcription factor subunit (Fos), was overexpressed upon decreasing UBE2N levels, indicating a poor outcome for patients treated with paclitaxel. Moreover, reduced UBE2N could increase Fos expression and reduce P53. Furthermore, reversed regulation of Fos and P53 based on UBE2N reduction could reverse paclitaxel sensitivity, respectively. Conclusion Our study suggests that UBE2N could be used as a therapeutic agent for paclitaxel-resistant ovarian cancer through Fos/P53 pathway. Further studies are needed to elucidate the specific mechanism.
Collapse
Affiliation(s)
- Qiuyuan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jieyuan Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Peipei Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xu Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
12
|
Computational repositioning of dimethyl fumarate for treating alcoholic liver disease. Cell Death Dis 2020; 11:641. [PMID: 32811823 PMCID: PMC7434920 DOI: 10.1038/s41419-020-02890-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is a chronic alcohol-induced disorder of the liver for which there are few effective therapies for severe forms of ALD and for those who do not achieve alcohol abstinence. In this study, we used a systematic drug-repositioning bioinformatics approach querying a large compendium of gene-expression profiles to identify candidate U.S. Food and Drug Administration (FDA)–approved drugs to treat ALD. One of the top compounds predicted to be therapeutic for ALD by our approach was dimethyl fumarate (DMF), an nuclear factor erythroid 2-related factor 2 (NRF2) inducer. We experimentally validated DMF in liver cells and in vivo. Our work demonstrates that DMF is able to significantly upregulate the NRF2 protein level, increase NRF2 phosphorylation, and promote NRF2 nuclear localization in liver cells. DMF also reduced the reactive oxygen species (ROS) level, lipid peroxidation, and ferroptosis. Furthermore, DMF treatment could prevent ethanol-induced liver injury in ALD mice. Our results provide evidence that DMF might serve as a therapeutic option for ALD in humans, and support the use of computational repositioning to discover therapeutic options for ALD.
Collapse
|
13
|
Role of RING-Type E3 Ubiquitin Ligases in Inflammatory Signalling and Inflammatory Bowel Disease. Mediators Inflamm 2020; 2020:5310180. [PMID: 32848509 PMCID: PMC7436281 DOI: 10.1155/2020/5310180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/22/2020] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination is a three-step enzymatic cascade for posttranslational protein modification. It includes the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). RING-type E3 ubiquitin ligases catalyse the posttranslational proteolytic and nonproteolytic functions in various physiological and pathological processes, such as inflammation-associated signal transduction. Resulting from the diversity of substrates and functional mechanisms, RING-type ligases regulate microbe recognition and inflammation by being involved in multiple inflammatory signalling pathways. These processes also occur in autoimmune diseases, especially inflammatory bowel disease (IBD). To understand the importance of RING-type ligases in inflammation, we have discussed their functional mechanisms in multiple inflammation-associated pathways and correlation between RING-type ligases and IBD. Owing to the limited data on the biology of RING-type ligases, there is an urgent need to analyse their potential as biomarkers and therapeutic targets in IBD in the future.
Collapse
|
14
|
Workman LM, Zhang L, Fan Y, Zhang W, Habelhah H. TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Mol Cell Biol 2020; 40:e00429-19. [PMID: 32041822 PMCID: PMC7156217 DOI: 10.1128/mcb.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
CD40 plays an important role in immune responses by activating the c-Jun N-terminal protein kinase (JNK) and NF-κB pathways; however, the precise mechanisms governing the spatiotemporal activation of these two signaling pathways are not fully understood. Here, using four different TRAF2-deficient cell lines (A20.2J, CH12.LX, HAP1, and mouse embryonic fibroblasts [MEFs]) reconstituted with wild-type or phosphorylation mutant forms of TRAF2, along with immunoprecipitation, immunoblotting, gene expression, and immunofluorescence analyses, we report that CD40 ligation elicits TANK-binding kinase 1 (TBK1)-mediated phosphorylation of TRAF2 at Ser-11. This phosphorylation interfered with the interaction between TRAF2's RING domain and membrane phospholipids and enabled translocation of the TRAF2 complex from CD40 to the cytoplasm. We also observed that this cytoplasmic translocation is required for full activation of the JNK pathway and the secondary phase of the NF-κB pathway. Moreover, we found that in the absence of Ser-11 phosphorylation, the TRAF2 RING domain interacts with phospholipids, leading to the translocation of the TRAF2 complex to lipid rafts, resulting in its degradation and activation of the noncanonical NF-κB pathway. Thus, our results provide new insights into the CD40 signaling mechanisms whereby Ser-11 phosphorylation controls RING domain-dependent subcellular localization of TRAF2 to modulate the spatiotemporal activation of the JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Lauren M Workman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laiqun Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yumei Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hasem Habelhah
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
15
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
16
|
Kaowinn S, Seo EJ, Heo W, Bae JH, Park EJ, Lee S, Kim YJ, Koh SS, Jang IH, Shin DH, Chung YH. Cancer upregulated gene 2 (CUG2), a novel oncogene, promotes stemness-like properties via the NPM1-TGF-β signaling axis. Biochem Biophys Res Commun 2019; 514:1278-1284. [DOI: 10.1016/j.bbrc.2019.05.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 01/18/2023]
|
17
|
Kaowinn S, Oh S, Moon J, Yoo AY, Kang HY, Lee MR, Kim JE, Hwang DY, Youn SE, Koh SS, Chung YH. CGK062, a small chemical molecule, inhibits cancer upregulated gene 2‑induced oncogenesis through NEK2 and β‑catenin. Int J Oncol 2019; 54:1295-1305. [PMID: 30968157 PMCID: PMC6411349 DOI: 10.3892/ijo.2019.4724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
The mechanisms through which cancer‑upregulated gene 2 (CUG2), a novel oncogene, affects Wnt/β‑catenin signaling, essential for tumorigenesis, are unclear. In this study, we aimed to elucidate some of these mechanisms in A549 lung cancer cells. Under the overexpression of CUG2, the protein levels and activity of β‑catenin were evaluated by western blot analysis and luciferase assay. To examine a biological consequence of β‑catenin under CUG2 overexpression, cell migration, invasion and sphere formation assay were performed. The upregulation of β‑catenin induced by CUG2 overexpression was also accessed by xenotransplantation in mice. We first found that CUG2 overexpression increased β‑catenin expression and activity. The suppression of β‑catenin decreased cancer stem cell (CSC)‑like phenotypes, indicating that β‑catenin is involved in CUG2‑mediated CSC‑like phenotypes. Notably, CUG2 overexpression increased the phosphorylation of β‑catenin at Ser33/Ser37, which is known to recruit E3 ligase for β‑catenin degradation. Moreover, CUG2 interacted with and enhanced the expression and kinase activity of never in mitosis gene A‑related kinase 2 (NEK2). Recombinant NEK2 phosphorylated β‑catenin at Ser33/Ser37, while NEK2 knockdown decreased the phosphorylation of β‑catenin, suggesting that NEK2 is involved in the phosphorylation of β‑catenin at Ser33/Ser37. Treatment with CGK062, a small chemical molecule, which promotes the phosphorylation of β‑catenin at Ser33/Ser37 through protein kinase C (PKC)α to induce its degradation, reduced β‑catenin levels and inhibited the CUG2‑induced features of malignant tumors, including increased cell migration, invasion and sphere formation. Furthermore, CGK062 treatment suppressed CUG2‑mediated tumor formation in nude mice. Taken together, the findings of this study suggest that CUG2 enhances the phosphorylation of β‑catenin at Ser33/Ser37 by activating NEK2, thus stabilizing β‑catenin. CGK062 may thus have potential for use as a therapeutic drug against CUG2‑overexpressing lung cancer cells.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jeong Moon
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ah Young Yoo
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Rim Lee
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - So Eun Youn
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Sang Seok Koh
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Young-Hwa Chung
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
19
|
Abstract
The endoplasmic reticulum (ER) is critical in protein processing and particularly in ensuring that proteins undergo their correct folding to exert their functionality. What is becoming increasingly clear is that the ER may undergo increasing stress brought about by nutrient deprivation, hypoxia, oxidized lipids, point mutations in secreted proteins, cellular differentiation or significant deviation from metabolic set points, and loss of Ca2+ homeostasis, with detrimental effects on ER-resident calcium-dependent chaperones, alone or in combination. This results in the unfolded protein response (UPR) that is a repair mechanism to limit the formation of newly damaged proteins until ER homeostasis is restored, though may result in increased cell death. ER stress has been shown to be implicated in a variety of diseases. Statins are well-known cholesterol-lowering drugs and have been extensively reported to possess beneficial cholesterol-independent effects in a variety of human diseases. This review focuses on the concept of ER stress, the underlying molecular mechanisms and their relationship to the pathophysiology and, finally, the role of statins in moderating ER stress and UPR.
Collapse
|
20
|
Chen S, Yang J, Yang L, Zhang Y, Zhou L, Liu Q, Duan C, Mieres CA, Zhou G, Xu G. Ubiquitin ligase
TRAF
2 attenuates the transcriptional activity of the core clock protein
BMAL
1 and affects the maximal
Per1
mRNA
level of the circadian clock in cells. FEBS J 2018; 285:2987-3001. [DOI: 10.1111/febs.14595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Crystal A. Mieres
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Guanghai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Institute of Cardiovascular Endocrinology Key Laboratory of Atherosclerosis in Universities of Shandong Taishan Medical University Tai'an Shandong China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
21
|
Kaowinn S, Kim J, Lee J, Shin DH, Kang CD, Kim DK, Lee S, Kang MK, Koh SS, Kim SJ, Chung YH. Cancer upregulated gene 2 induces epithelial-mesenchymal transition of human lung cancer cells via TGF-β signaling. Oncotarget 2018; 8:5092-5110. [PMID: 27974707 PMCID: PMC5354895 DOI: 10.18632/oncotarget.13867] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023] Open
Abstract
Cancer upregulated gene 2 (CUG2) enhances cell migration and invasion, but the underlying mechanism has not been revealed. Herein, CUG2 decreased the expression of E-cadherin and increased the expression of N-cadherin and vimentin, characteristics of the epithelial-mesenchymal transition (EMT). A CUG2 deletion mutant, lacking interaction with nucleophosmin 1 (NPM1), or suppression of NPM1 reduced wound healing and cell invasion, indicating that CUG2-mediated EMT requires NPM1. CUG2 enhanced activation of Smad2/3 and expression of Snail and Twist, while the CUG2 silence decreased these TGF-β signaling pathways, leading to suppression of EMT. NPM silence also inhibited the CUG2-induced TGF-β signaling. These results suggest that TGF-β signaling is involved in CUG2-induced EMT. Treatment with EW-7197, a novel inhibitor of TGF-β signaling, diminished CUG2-mediated EMT and inhibition of Akt, ERK, JNK, and p38 MAPK, non-canonical TGF-β signaling molecules, also decreased expression of Smad2/3, Snail and Twist, leading to inhibition of EMT. The results confirm that TGF-β signaling is essential for CUG2-mediated EMT. Interestingly, TGF-β enhanced CUG2 expression. We further found that both CUG2-induced TGF-β production and TGF-β-induced CUG2 up-regulation required a physical interaction between Sp1 and Smad2/3 in the CUG2 and TGF-β promoter, as demonstrated by a promoter reporter assay, immunoprecipitation, and ChIP assay. These results indicated close crosstalk between CUG2 and TGF-β. Conversely, suppression of CUG2 or NPM1 did not completely inhibit TGF-β-induced EMT, indicating that the effect of TGF-β on EMT is dominant over the effect of CUG2 on EMT. Collectively, our findings suggest that CUG2 induces the EMT via TGF-β signaling.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeonghyo Kim
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jaebeom Lee
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dae-Kee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, EwhaWomans University, Seoul 120-750, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Min Kyung Kang
- Department of Biological Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Seong-Jin Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
22
|
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett 2018; 196:113-118. [PMID: 29378215 DOI: 10.1016/j.imlet.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
23
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
The inhibition of UBC13 expression and blockage of the DNMT1-CHFR-Aurora A pathway contribute to paclitaxel resistance in ovarian cancer. Cell Death Dis 2018; 9:93. [PMID: 29367628 PMCID: PMC5833742 DOI: 10.1038/s41419-017-0137-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/03/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Paclitaxel is widely used as a first-line chemotherapeutic drug for patients with ovarian cancer and other solid cancers, but drug resistance occurs frequently, resulting in ovarian cancer still presenting as the highest lethality among all gynecological tumors. Here, using DIGE quantitative proteomics, we identified UBC13 as down-regulated in paclitaxel-resistant ovarian cancer cells, and it was further revealed by immunohistochemical staining that UBC13 low-expression was associated with poorer prognosis and shorter survival of the patients. Through gene function experiments, we found that paclitaxel exposure induced UBC13 down-regulation, and the enforced change in UBC13 expression altered the sensitivity to paclitaxel. Meanwhile, the reduction of UBC13 increased DNMT1 levels by attenuating its ubiquitination, and the up-regulated DNMT1 enhanced the CHFR promoter DNA methylation levels, leading to a reduction of CHFR expression, and an increased in the levels of Aurora A. Our findings revealed a novel function for UBC13 in regulating paclitaxel sensitivity through a DNMT1-CHFR-Aurora A pathway in ovarian cancer cells. UBC13 could potentially be employed as a therapeutic molecular drug for reversing paclitaxel resistance in ovarian cancer patients.
Collapse
|
25
|
Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J 2018; 32:230-242. [PMID: 28874458 PMCID: PMC5731130 DOI: 10.1096/fj.201700415rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
The tumor necrosis factor receptor-associated factor 2 (TRAF2) is a second messenger adaptor protein that plays an essential role in propagating TNF-α-mediated signaling pathways. Modulation of TRAF2 activity by ubiquitination is well studied; however, the deubiquitinating enzyme (DUB), which regulates TRAF2 stability, has not been identified. Here we reveal USP48 as the first identified DUB to deubiquitinate and stabilize TRAF2 in epithelial cells. Down-regulation of USP48 increases K48-linked polyubiquitination of TRAF2 and reduces TRAF2 protein levels. Interestingly, USP48 only targets the TRAF2 related to JNK pathway, not the TRAF2 related to NF-κB and p38 pathways. USP48 is serine phosphorylated in response to TNF-α. The phosphorylation is catalyzed by glycogen synthase kinase 3β (GSK3β), ultimately resulting in increases in USP48 DUB activity. Furthermore, we reveal a new biologic function of TRAF2 that contributes to epithelial barrier dysfunction, which is attenuated by knockdown of USP48. Inhibition of TRAF2/JNK pathway increases E (epithelial)-cadherin expression and enhances epithelial barrier integrity, while knockdown of USP48 attenuates TNF-α/JNK pathway and increases E-cadherin expression and cell-cell junction in epithelial cells. These data, taken together, indicate that USP48 stabilizes TRAF2, which is promoted by GSK3β-mediated phosphorylation. Further, down-regulation of USP48 increases E-cadherin expression and epithelial barrier integrity through reducing TRAF2 stability.-Li, S., Wang, D., Zhao, J., Weathington, N. M., Shang, D., Zhao, Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel M Weathington
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yutong Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
26
|
Mukherjee T, Chatterjee B, Dhar A, Bais SS, Chawla M, Roy P, George A, Bal V, Rath S, Basak S. A TNF-p100 pathway subverts noncanonical NF-κB signaling in inflamed secondary lymphoid organs. EMBO J 2017; 36:3501-3516. [PMID: 29061763 PMCID: PMC5709727 DOI: 10.15252/embj.201796919] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Lymphotoxin-beta receptor (LTβR) present on stromal cells engages the noncanonical NF-κB pathway to mediate RelB-dependent expressions of homeostatic chemokines, which direct steady-state ingress of naïve lymphocytes to secondary lymphoid organs (SLOs). In this pathway, NIK promotes partial proteolysis of p100 into p52 that induces nuclear translocation of the RelB NF-κB heterodimers. Microbial infections often deplete homeostatic chemokines; it is thought that infection-inflicted destruction of stromal cells results in the downregulation of these chemokines. Whether inflammation per se also regulates these processes remains unclear. We show that TNF accumulated upon non-infectious immunization of mice similarly downregulates the expressions of these chemokines and consequently diminishes the ingress of naïve lymphocytes in inflamed SLOs. Mechanistically, TNF inactivated NIK in LTβR-stimulated cells and induced the synthesis of Nfkb2 mRNA encoding p100; these together potently accumulated unprocessed p100, which attenuated the RelB activity as inhibitory IκBδ. Finally, a lack of p100 alleviated these TNF-mediated inhibitions in inflamed SLOs of immunized Nfkb2-/- mice. In sum, we reveal that an inhibitory TNF-p100 pathway modulates the adaptive compartment during immune responses.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- Kusuma School of Biological Sciences, IIT-Delhi, New Delhi, India
| | - Atika Dhar
- National Institute of Immunology, New Delhi, India
| | - Sachendra S Bais
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
27
|
Ceccarelli A, Di Venere A, Nicolai E, De Luca A, Rosato N, Gratton E, Mei G, Caccuri AM. New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:813-822. [PMID: 28499815 DOI: 10.1016/j.bbalip.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role.
Collapse
Affiliation(s)
- Arianna Ceccarelli
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA
| | - Giampiero Mei
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Anna Maria Caccuri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
28
|
Oh YT, Yue P, Sun SY. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Commun Signal 2017; 15:18. [PMID: 28482915 PMCID: PMC5422905 DOI: 10.1186/s12964-017-0174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Death receptor (DR5), a well-characterized death domain-containing cell surface pro-apoptotic protein, has been suggested to suppress cancer cell invasion and metastasis. However, the underlying mechanisms have not been fully elucidated. Our recent work demonstrates that DR5 suppression promotes cancer cell invasion and metastasis through caspase-8/TRAF2-mediated activation of ERK and JNK signaling and MMP1 elevation. The current study aimed at addressing the mechanism through which TRAF2 is activated in a caspase-8 dependent manner. RESULTS DR5 knockdown increased TRAF2 polyubiquitination, a critical event for TRAF2-mediated JNK/AP-1 activation. Suppression of sphingosine-1-phosphate (S1P) generation or depletion of casapse-8 inhibited not only enhancement of cell invasion, but also elevation and polyubiquitination of TRAF2, activation of JNK/AP-1 activation and increased expression of MMP1 induced by DR5 knockdown. CONCLUSIONS Both S1P and caspase-8 are critical for TRAF2 stabilization, polyubiquitination, subsequent activation of JNK/AP1 signaling and MMP1 expression and final promotion of cell invasion.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA 30322 USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA 30322 USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA 30322 USA
| |
Collapse
|
29
|
Brefeldin A-Inhibited Guanine Nucleotide-Exchange Factor 1 (BIG1) Governs the Recruitment of Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) to Tumor Necrosis Factor Receptor 1 (TNFR1) Signaling Complexes. Int J Mol Sci 2016; 17:ijms17111869. [PMID: 27834853 PMCID: PMC5133869 DOI: 10.3390/ijms17111869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/02/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a critical mediator of tumor necrosis factor-α (TNF-α) signaling. However, the regulatory mechanisms of TRAF2 are not fully understood. Here we show evidence that TRAF2 requires brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) to be recruited into TNF receptor 1 (TNFR1) signaling complexes. In BIG1 knockdown cells, TNF-α-induced c-Jun N-terminal kinase (JNK) activation was attenuated and the sensitivity to TNF-α-induced apoptosis was increased. Since these trends correlated well with those of TRAF2 deficient cells as previously demonstrated, we tested whether BIG1 functions as an upstream regulator of TRAF2 in TNFR1 signaling. As expected, we found that knockdown of BIG1 suppressed TNF-α-dependent ubiquitination of TRAF2 that is required for JNK activation, and impaired the recruitment of TRAF2 to the TNFR1 signaling complex (complex I). Moreover, we found that the recruitment of TRAF2 to the death-inducing signaling complex termed complex II was also impaired in BIG1 knockdown cells. These results suggest that BIG1 is a key component of the machinery that drives TRAF2 to the signaling complexes formed after TNFR1 activation. Thus, our data demonstrate a novel and unexpected function of BIG1 that regulates TNFR1 signaling by targeting TRAF2.
Collapse
|
30
|
Lin B, Xu D, Leaman DW. X-linked inhibitor of apoptosis-associated factor 1 regulates TNF receptor 1 complex stability. FEBS Lett 2016; 590:4381-4392. [PMID: 27768232 DOI: 10.1002/1873-3468.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a cytokine-regulated, tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain-containing protein that has a poorly defined cellular function. Here, we show that ectopically expressed XAF1 inhibits TNF-ɑ-induced NF-κB activation, whereas shRNA silencing of endogenous XAF1 augments it. Our data suggest that XAF1 may inhibit TNF-ɑ-induced NF-κB activation by disrupting the assembly of the TRADD/TRAF2/RIP1 complex (complex I) downstream of TNF receptor activation. XAF1 interacts with TRAF2 and inhibits TRAF2-dependent NF-κB activation, in part, by blocking TRAF2 polyubiquitination. Our findings also indicate that although XAF1 does not directly inhibit RIP1-dependent NF-κB activation, it binds RIP1 and disrupts RIP1/TRADD association. Our data suggest that XAF1 acts as a feedback regulator of the TNF receptor signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Da Xu
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, OH, USA
| |
Collapse
|
31
|
Joo E, Fukushima T, Harada N, Reed JC, Matsuzawa SI, Inagaki N. Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Sci Rep 2016; 6:35983. [PMID: 27796312 PMCID: PMC5086849 DOI: 10.1038/srep35983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with low-grade inflammation that leads to insulin resistance and type 2 diabetes via Toll-like Receptor (TLR) and TNF-family cytokine receptor (TNFR) signaling pathways. Ubc13 is an ubiquitin-conjugating enzyme responsible for non-canonical K63-linked polyubiquitination of TNF receptor-associated factor (TRAF)-family adapter proteins involved in TLR and TNFR pathways. However, the relationship between Ubc13 and metabolic disease remains unclear. In this study, we investigated the role of Ubc13 in insulin resistance and high-fat diet (HFD)-induced obesity. We compared wild-type (WT) and Ubc13 haploinsufficient (ubc13+/−) mice under normal diet (ND) and HFD, since homozygous knockout mice (ubc13−/−) are embryonic lethal. Male and female ubc13+/− mice were protected against age-related insulin resistance under ND and HFD compared to WT mice. Interestingly, only female ubc13+/− mice were protected against HFD-induced obesity and hepatic steatosis. Moreover, only female HFD-fed ubc13+/− mice showed lower expression of inflammatory cytokines that was secondary to reduction in weight gain not present in the other groups. In summary, our results indicate that suppression of Ubc13 activity may play a metabolic role independent of its inflammatory function. Thus, Ubc13 could represent a therapeutic target for insulin resistance, diet-induced obesity, and associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Erina Joo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toru Fukushima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - John C Reed
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Roche, Pharma Research &Early Development, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
32
|
TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol 2016; 116:1-10. [DOI: 10.1016/j.bcp.2016.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
|
33
|
Session 7: Ubiquitin & Proteasomes. Toxicol Pathol 2016. [DOI: 10.1080/01926230490882475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Tortola L, Nitsch R, Bertrand MJM, Kogler M, Redouane Y, Kozieradzki I, Uribesalgo I, Fennell LM, Daugaard M, Klug H, Wirnsberger G, Wimmer R, Perlot T, Sarao R, Rao S, Hanada T, Takahashi N, Kernbauer E, Demiröz D, Lang M, Superti-Furga G, Decker T, Pichler A, Ikeda F, Kroemer G, Vandenabeele P, Sorensen PH, Penninger JM. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep 2016; 15:1481-1492. [PMID: 27160902 PMCID: PMC4893156 DOI: 10.1016/j.celrep.2016.04.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/11/2015] [Accepted: 04/04/2016] [Indexed: 12/19/2022] Open
Abstract
The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway. Hace1 deficiency impairs TNF-driven NF-κB activation and apoptosis Necroptosis via RIP1/RIP3/MLKL is still functional in the absence of Hace1 Hace1–/– animals show enhanced severity of colitis and colon cancer Genetic inactivation of RIP3 and TNFR1 reverts the phenotype of hace1–/– mice
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Roberto Nitsch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria; Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Younes Redouane
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Ivona Kozieradzki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Iris Uribesalgo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Lilian M Fennell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Helene Klug
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerald Wirnsberger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Reiner Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Renu Sarao
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Toshikatsu Hanada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Nozomi Takahashi
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Elisabeth Kernbauer
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Duygu Demiröz
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Michaela Lang
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Andrea Pichler
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Guido Kroemer
- INSERM U848, 39 rue Camille Desmoulins, 94805 Villejuif, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, BC V5Z1L3, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.
| |
Collapse
|
35
|
Orlova NN, Lebedev TD, Spirin PV, Prassolov VS. Key molecular mechanisms associated with cell malignant transformation in acute myeloid leukemia. Mol Biol 2016. [DOI: 10.1134/s0026893316020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Zhang L, Blackwell K, Workman LM, Gibson-Corley KN, Olivier AK, Bishop GA, Habelhah H. TRAF2 exerts opposing effects on basal and TNFα-induced activation of the classic IKK complex in hematopoietic cells in mice. J Cell Sci 2016; 129:1455-67. [PMID: 26872784 DOI: 10.1242/jcs.180554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
The role of TRAF2 and TRAF5 in TNFα-induced NF-κB activation has become complicated owing to the accumulation of conflicting data. Here, we report that 7-day-old TRAF2-knockout (KO) and TRAF2 TRAF5 double KO (TRAF2/5-DKO) mice exhibit enhanced canonical IκB kinase (IKK) and caspase-8 activation in spleen and liver, and that subsequent knockout of TNFα suppresses the basal activity of caspase-8, but not of IKK. In primary TRAF2 KO and TRAF2/5-DKO cells, TNFα-induced immediate IKK activation is impaired, whereas delayed IKK activation occurs normally; as such, owing to elevated basal and TNFα-induced delayed IKK activation, TNFα stimulation leads to significantly increased induction of a subset of NF-κB-dependent genes in these cells. In line with this, both TRAF2 KO and TRAF2/5-DKO mice succumb to a sublethal dose of TNFα owing to increased expression of NF-κB target genes, diarrhea and bradypnea. Notably, depletion of IAP1 and IAP2 (also known as BIRC2 and BIRC3, respectively) also results in elevated basal IKK activation that is independent of autocrine TNFα production and that impairs TNFα-induced immediate IKK activation. These data reveal that TRAF2, IAP1 and IAP2, but not TRAF5, cooperatively regulate basal and TNFα-induced immediate IKK activation.
Collapse
Affiliation(s)
- Laiqun Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ken Blackwell
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Lauren M Workman
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Alicia K Olivier
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Gail A Bishop
- Department of Microbiology & Internal Medicine, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Hasem Habelhah
- Department of Pathology, Carver College of Medicine, University of Iowa, and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells. Mol Neurobiol 2016; 54:1301-1313. [PMID: 26843107 PMCID: PMC5310569 DOI: 10.1007/s12035-016-9742-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/23/2022]
Abstract
The tumor necrosis factor receptor-associated factors (TRAFs) have been classically described as adaptor proteins that function as solely cytosolic signaling intermediates for the TNF receptor superfamily, Toll-like receptors (TLRs), NOD, like receptors (NLRs), cytokine receptors, and others. In this study, we show for the first time that TRAFs are present within the cytoplasm and nucleus of Neuro2a cells and primary cortical neurons, and that TRAF2 and TRAF3 translocate into the nucleus within minutes of CD40L stimulation. Analysis of the transcriptional regulatory potential of TRAFs by luciferase assay revealed that each of the TRAFs differentially functions as a transcriptional activator or repressor in a cell-specific manner. Interestingly, ChIP-qPCR data demonstrate that TRAFs 2/3, p65, and pRNAPol II form part of a transcriptional complex on the Icam-1 gene promoter upon CD40L stimulation. We further determined that TRAF2 recruitment to the nucleus is critical for the ubiquitination of H2b, a transcription permissive epigenetic modification. Our findings demonstrate for the first time that TRAFs 2/3 participate in the formation of a CD40L-induced transcriptional complex in neuronal cells.
Collapse
|
38
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
39
|
Heaton SM, Borg NA, Dixit VM. Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 2015; 213:1-13. [PMID: 26712804 PMCID: PMC4710203 DOI: 10.1084/jem.20151531] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023] Open
Abstract
Viral infection activates danger signals that are transmitted via the retinoic acid-inducible gene 1-like receptor (RLR), nucleotide-binding oligomerization domain-like receptor (NLR), and Toll-like receptor (TLR) protein signaling cascades. This places host cells in an antiviral posture by up-regulating antiviral cytokines including type-I interferon (IFN-I). Ubiquitin modifications and cross-talk between proteins within these signaling cascades potentiate IFN-I expression, and inversely, a growing number of viruses are found to weaponize the ubiquitin modification system to suppress IFN-I. Here we review how host- and virus-directed ubiquitin modification of proteins in the RLR, NLR, and TLR antiviral signaling cascades modulate IFN-I expression.
Collapse
Affiliation(s)
- Steven M Heaton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
40
|
Yang KC, Ma X, Liu H, Murphy J, Barger PM, Mann DL, Diwan A. Tumor necrosis factor receptor-associated factor 2 mediates mitochondrial autophagy. Circ Heart Fail 2014; 8:175-87. [PMID: 25339503 DOI: 10.1161/circheartfailure.114.001635] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tumor necrosis factor (TNF) signaling protects against ischemia/reperfusion-induced cardiomyocyte death, in vitro, ex vivo, and in vivo. TNF-receptor-associated factor 2 (TRAF2), an E3 ubiquitin ligase, coordinates cytoprotective signaling downstream of both TNF receptors, via unclear mechanisms. Noting that TRAF2 is recruited to mitochondria, and that autophagic removal of ubiquitin-tagged damaged mitochondria is cytoprotective, we tested the hypothesis that TRAF2 mediates mitochondrial autophagy. METHODS AND RESULTS TRAF2 localizes to the mitochondria in neonatal rat cardiac myocytes, and TNF treatment transcriptionally upregulates TRAF2 abundance in the mitochondrial subfraction. TRAF2 colocalizes with ubiquitin, p62 adaptor protein, and mitochondria within LC3-bound autophagosomes; and exogenous TRAF2 enhances autophagic removal of mitochondria. TRAF2 knockdown with adenoviral shRNA transduction induces accumulation of depolarized mitochondria in resting neonatal rat cardiac myocytes, as well as in those treated with TNF or uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone, suggesting an essential role for TRAF2 in homeostatic and stress-induced mitochondrial autophagy. TRAF2 also colocalizes and interacts with PARKIN, a previously described E3 ubiquitin ligase and mitophagy effector, on depolarized mitochondria in neonatal rat cardiac myocytes. Exogenous expression of TRAF2, but not its E3 ligase-deficient mutants, is sufficient to partially restore mitophagy in the setting of PARKIN knockdown, suggesting redundancy in their ubiquitin ligase roles. TRAF2 abundance increases in the mitochondrial subfraction of ischemia/reperfusion-modeled hearts; and exogenous TRAF2, but not its E3 ligase-deficient mutants, reduces depolarized mitochondria and rescues cell death in neonatal rat cardiac myocytes subjected to hypoxia/reoxygenation. CONCLUSIONS Taken together, these data indicate an essential role for TRAF2 in concert with PARKIN as a mitophagy effector, which contributes to TRAF2-induced cytoprotective signaling.
Collapse
Affiliation(s)
- Kai-Chun Yang
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - Xiucui Ma
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - Haiyan Liu
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - John Murphy
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - Philip M Barger
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - Douglas L Mann
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.)
| | - Abhinav Diwan
- From the Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine (K.-C.Y., X.M., H.L., J.M., P.M.B., D.L.M., A.D.), Department of Cell Biology and Physiology (D.L.M., A.D.), Washington University School of Medicine, St. Louis, MO; and Department of Medicine, John Cochran VA Medical Center, St. Louis, MO (X.M., H.L., A.D.).
| |
Collapse
|
41
|
Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 2014; 111:E4513-22. [PMID: 25288773 DOI: 10.1073/pnas.1406985111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.
Collapse
|
42
|
Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper-Schichl YM. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem 2014; 289:25088-100. [PMID: 25056949 DOI: 10.1074/jbc.m114.563312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of TNF to its receptor (TNFR1) elicits the spatiotemporal assembly of two signaling complexes that coordinate the balance between cell survival and cell death. We have shown previously that, following TNF treatment, the mRNA decay protein tristetraprolin (TTP) is Lys-63-polyubiquitinated by TNF receptor-associated factor 2 (TRAF2), suggesting a regulatory role in TNFR signaling. Here we demonstrate that TTP interacts with TNFR1 in a TRAF2-dependent manner, thereby initiating the MEKK1/MKK4-dependent activation of JNK activities. This regulatory function toward JNK activation but not NF-κB activation depends on lysine 105 of TTP, which we identified as the corresponding TRAF2 ubiquitination site. Disabling TTP polyubiquitination results in enhanced TNF-induced apoptosis in cervical cancer cells. Together, we uncover a novel aspect of TNFR1 signaling where TTP, in alliance with TRAF2, acts as a balancer of JNK-mediated cell survival versus death.
Collapse
Affiliation(s)
- Ulrike Resch
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Angélica Cuapio
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Caterina Sturtzel
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Erhard Hofer
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Rainer de Martin
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Yvonne M Holper-Schichl
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
43
|
Pandya C, Kutiyanawalla A, Turecki G, Pillai A. Glucocorticoid regulates TrkB protein levels via c-Cbl dependent ubiquitination: a decrease in c-Cbl mRNA in the prefrontal cortex of suicide subjects. Psychoneuroendocrinology 2014; 45:108-18. [PMID: 24845182 PMCID: PMC4112477 DOI: 10.1016/j.psyneuen.2014.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 01/01/2023]
Abstract
Brain derived neurotrophic factor (BDNF) signaling through its receptor TrkB plays a crucial role in neurodevelopment and plasticity. Stress and glucocorticoids have been shown to alter TrkB signaling in neurons, and defects in TrkB expression have been reported in the prefrontal cortex of suicide subjects. Glucocorticoid treatment has been shown to induce deleterious effects on the neuronal maturation. However, the mechanisms involved in the regulation of TrkB by glucocorticoid during neurodevelopment are not clear. Here we show that acute corticosterone exposure induced posttranslational upregulation of TrkB in primary cortical neurons (days in vitro 4, DIV4), which was blocked by the proteasome inhibitors. Acute corticosterone-induced increase in TrkB protein levels was dependent on glucocorticoid receptor (GR). At the cellular level, ubiquitin E3 ligase c-Cbl mediates TrkB stabilization and corticosterone-induced TrkB levels. Moreover, the tyrosine kinase binding domain in c-Cbl plays a critical role in corticosterone-induced TrkB levels. Chronic treatment of neurons with corticosterone induced significant decreases in both TrkB and c-Cbl protein levels. Acute corticosterone treatment failed to induce any significant change in TrkB and c-Cbl protein levels in mature neurons (DIV 12), where as chronic corticosterone exposure reduced TrkB levels. Under an in vivo condition, chronic corticosterone exposure induced down-regulation of c-Cbl in mouse frontal cortex and hippocampus. Importantly, we demonstrate for the first time a significant decrease in c-Cbl mRNA levels in the prefrontal cortex of suicide subjects indicating the possible role of c-Cbl in the pathophysiology of suicidal behavior. Thus, ubiquitin-proteasome-mediated TrkB regulation may be an important mechanism for improving BDNF signaling and maintaining neuroplasticity in stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chirayu Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Ammar Kutiyanawalla
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
44
|
Vuillier F, Gaud G, Guillemot D, Commere PH, Pons C, Favre M. Loss of the HPV-infection resistance EVER2 protein impairs NF-κB signaling pathways in keratinocytes. PLoS One 2014; 9:e89479. [PMID: 24586810 PMCID: PMC3929693 DOI: 10.1371/journal.pone.0089479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/21/2014] [Indexed: 02/02/2023] Open
Abstract
Homozygous mutations in EVER genes cause epidermodysplasia verruciformis (EV), characterized by an immune defect and the development of skin cancers associated with β-human papillomavirus (HPV) infections. The effects of EVER protein loss on the keratinocyte immune response remain unknown. We show here that EVER2 plays a critical role in the interplay between the NF-κB and JNK/AP-1 signaling pathways. EVER2-deficient cells overproduce IL-6 following the upregulation of JNK activation. They respond poorly to phorbol ester and TNF via the NF-κB pathway. They have lower levels of IKKα subunit, potentially accounting for impairments of p100 processing and the alternative NF-κB pathway. The loss of EVER2 is associated with an unusual TRAF protein profile. We demonstrate that EVER2 deficiency sustains TRAF2 ubiquitination and decreases the pool of TRAF2 available in the detergent-soluble fraction of the cell. Finally, we demonstrate that EVER2 loss induces constitutive PKCα-dependent c-jun phosphorylation and facilitates activation of the HPV5 long control region through a JNK-dependent pathway. These findings indicate that defects of the EVER2 gene may create an environment conducive to HPV replication and the persistence of lesions with the potential to develop into skin cancer.
Collapse
Affiliation(s)
- Françoise Vuillier
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Guillaume Gaud
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Delphine Guillemot
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | | | - Christian Pons
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Michel Favre
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| |
Collapse
|
45
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is a pivotal intracellular mediator of signaling pathways downstream of TNFR1 and -2 with known pro- and antiviral effects. We investigated its role in the replication of the prototype poxvirus vaccinia virus (VACV). Loss of TRAF2 expression, either through small interfering RNA treatment of HeLa cells or through genetic knockout in murine embryonic fibroblasts (MEFs), led to significant reductions in VACV growth following low-multiplicity infection. In single-cycle infections, there was delayed production of both early and late VACV proteins as well as accelerated virus-induced alterations to cell morphology, indicating that TRAF2 influences early stages of virus replication. Consistent with an early role, uncoating assays showed normal virus attachment but delayed virus entry in the absence of TRAF2. Although alterations to c-Jun N-terminal kinase (JNK) signaling were apparent in VACV-infected TRAF2−/− MEFs, treatment of wild-type cells with a JNK inhibitor did not affect virus entry. Instead, treatment with an inhibitor of endosomal acidification greatly reduced virus entry into TRAF2−/− MEFs, suggesting that VACV is reliant on the endosomal route of entry in the absence of TRAF2. Thus, TRAF2 is a proviral factor for VACV that plays a role in promoting efficient viral entry, most likely via the plasma membrane. IMPORTANCE Tumor necrosis factor receptor-associated factors (TRAFs) are key facilitators of intracellular signaling with roles in innate and adaptive immunity and stress responses. We have discovered that TRAF2 is a proviral factor in vaccinia virus replication in both HeLa cells and mouse embryonic fibroblasts and that its influence is exercised through promotion of efficient virus entry.
Collapse
|
46
|
Gardam S, Brink R. Non-Canonical NF-κB Signaling Initiated by BAFF Influences B Cell Biology at Multiple Junctures. Front Immunol 2014; 4:509. [PMID: 24432023 PMCID: PMC3880999 DOI: 10.3389/fimmu.2013.00509] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
It has been more than a decade since it was recognized that the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical pathway involving NF-κB2. During this time a great deal of evidence has been amassed on the ligands and receptors that activate these pathways, the cytoplasmic adapter molecules involved in transducing the signals from receptors to nucleus, and the resulting physiological outcomes within body tissues. In contrast to NF-κB1 signaling, which can be activated by a wide variety of receptors, the NF-κB2 pathway is typically only activated by a subset of receptor and ligand pairs belonging to the tumor necrosis factor (TNF) family. Amongst these is B cell activating factor of the TNF family (BAFF) and its receptor BAFFR. Whilst BAFF is produced by many cell types throughout the body, BAFFR expression appears to be restricted to the hematopoietic lineage and B cells in particular. For this reason, the main physiological outcomes of BAFF mediated NF-κB2 activation are confined to B cells. Indeed BAFF mediated NF-κB2 signaling contributes to peripheral B cell survival and maturation as well as playing a role in antibody responses and long term maintenance plasma cells. Thus the importance BAFF and NF-κB2 permeates the entire B cell lifespan and impacts on this important component of the immune system in a variety of ways.
Collapse
Affiliation(s)
- Sandra Gardam
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St. Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia
| |
Collapse
|
47
|
Abstract
Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
48
|
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013; 12:86. [PMID: 23915189 PMCID: PMC3750319 DOI: 10.1186/1476-4598-12-86] [Citation(s) in RCA: 2489] [Impact Index Per Article: 207.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.
Collapse
Affiliation(s)
- Bastian Hoesel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
49
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
50
|
Workman LM, Habelhah H. TNFR1 signaling kinetics: spatiotemporal control of three phases of IKK activation by posttranslational modification. Cell Signal 2013; 25:1654-64. [PMID: 23612498 DOI: 10.1016/j.cellsig.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022]
Abstract
TNFα is a pleotropic cytokine that plays a central role in the inflammatory response by activating the NF-κB signaling pathway, and is targeted in a range of chronic inflammatory diseases, underscoring the therapeutic importance of understanding its underlying molecular mechanisms. Although K63-linked ubiquitination of RIP1 by TRAF2/5 and cIAP1/2 was thought to serve as a scaffold to activate the NF-κB pathway, the recent accumulation of conflicting results has challenged the necessity of these proteins in NF-κB activation. In addition, several serine/threonine kinases have been implicated in TNFα-induced IKK activation; however, the targeted disruption of these kinases had no effect on transient IKK activation. The recent discovery of RIP1-dependent and -independent activation of the early and delayed phases of IKK and TRAF2 phosphorylation-dependent activation of the prolonged phase of IKK offers a reconciliatory model for the interpretation of contradictory results in the field. Notably, the TNFα-induced inflammatory response is not exclusively controlled by the NF-κB pathway but is subject to regulatory crosstalk between NF-κB and other context-dependent pathways. Thus further elucidation of these spatiotemporally-coordinated signaling mechanisms has the potential to provide novel molecular targets and therapeutic strategies for NF-κB intervention.
Collapse
Affiliation(s)
- Lauren M Workman
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|