1
|
Sahu RK, Singh S, Tomar RS. The ATP-dependent SWI/SNF and RSC chromatin remodelers cooperatively induce unfolded protein response genes during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194748. [PMID: 34454103 DOI: 10.1016/j.bbagrm.2021.194748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023]
Abstract
The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their function has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement in other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies the promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes induction of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sakshi Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
2
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol 2019; 134:109485. [PMID: 32044032 DOI: 10.1016/j.enzmictec.2019.109485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Increasing the metabolic flux of the mevalonate pathway, reducing the metabolic flux of competing pathway and utilizing the diauxie-inducible system constructed by GAL promoters are strategies commonly used in yeast metabolic engineering for the production of terpenoids. Using these strategies, we constructed a series of yeast strains with a strengthened mevalonate pathway and finally produced 336.5 mg/L nerolidol in a shake flask. The spliced HAC1 mRNA assay indicated that the unfolded protein response (UPR) occurred in the strains that we constructed. UPR strains exhibited the low transcriptional activities of GAL1 promoter. HAC1-overexpressing strain exhibited dramatically enhanced transcriptional activity of GAL1 promoter at 72 h of fermentation in flasks. HAC1 overexpression also increased the nerolidol titer by 47.7 %, reaching 497.0 mg/L and increased cell vitality. RNA-seq showed that the genes whose transcription responded to HAC1-overexpression were involved in the regulation of monocarboxylic acid metabolic processes and cellular amino acid biosynthetic process, indicating that the metabolic regulation may be part of the reason of the improved nerolidol synthesis. Our findings enrich the knowledge of the relationship between the construction of sesquiterpene-producing cell factories and UPR regulation. This study provides an effective strategy for sesquiterpene production in yeast.
Collapse
|
4
|
Adulcikas J, Sonda S, Norouzi S, Sohal SS, Myers S. Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes. Nutrients 2019; 11:nu11020408. [PMID: 30781350 PMCID: PMC6412268 DOI: 10.3390/nu11020408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/13/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease associated with dysfunctional metabolic processes that lead to abnormally high levels of blood glucose. Preceding the development of T2DM is insulin resistance (IR), a disorder associated with suppressed or delayed responses to insulin. The effects of this response are predominately mediated through aberrant cell signalling processes and compromised glucose uptake into peripheral tissue including adipose, liver and skeletal muscle. Moreover, a major factor considered to be the cause of IR is endoplasmic reticulum (ER) stress. This subcellular organelle plays a pivotal role in protein folding and processes that increase ER stress, leads to maladaptive responses that result in cell death. Recently, zinc and the proteins that transport this metal ion have been implicated in the ER stress response. Specifically, the ER-specific zinc transporter ZIP7, coined the "gate-keeper" of zinc release from the ER into the cytosol, was shown to be essential for maintaining ER homeostasis in intestinal epithelium and myeloid leukaemia cells. Moreover, ZIP7 controls essential cell signalling pathways similar to insulin and activates glucose uptake in skeletal muscle. Accordingly, ZIP7 may be essential for the control of ER localized zinc and mechanisms that disrupt this process may lead to ER-stress and contribute to IR. Accordingly, understanding the mechanisms of ZIP7 action in the context of IR may provide opportunities to develop novel therapeutic options to target this transporter in the treatment of IR and subsequent T2DM.
Collapse
Affiliation(s)
- John Adulcikas
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sabrina Sonda
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Shaghayegh Norouzi
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sukhwinder Singh Sohal
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| |
Collapse
|
5
|
Endoplasmic Reticulum Homeostasis Is Modulated by the Forkhead Transcription Factor FKH-9 During Infection of Caenorhabditis elegans. Genetics 2018; 210:1329-1337. [PMID: 30287474 DOI: 10.1534/genetics.118.301450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
Animals have evolved critical mechanisms to maintain cellular and organismal proteostasis during development, disease, and exposure to environmental stressors. The Unfolded Protein Response (UPR) is a conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen. We have previously demonstrated that the IRE-1-XBP-1 branch of the UPR is required to maintain Caenorhabditis elegans ER homeostasis during larval development in the presence of pathogenic Pseudomonas aeruginosa In this study, we identify loss-of-function mutations in four conserved transcriptional regulators that suppress the larval lethality of xbp-1 mutant animals caused by immune activation in response to infection by pathogenic bacteria: FKH-9, a forkhead family transcription factor; ARID-1, an ARID/Bright domain-containing transcription factor; HCF-1, a transcriptional regulator that associates with histone modifying enzymes; and SIN-3, a subunit of a histone deacetylase complex. Further characterization of FKH-9 suggests that loss of FKH-9 enhances resistance to the ER toxin tunicamycin and results in enhanced ER-associated degradation (ERAD). Increased ERAD activity of fkh-9 loss-of-function mutants is accompanied by a diminished capacity to degrade cytosolic proteasomal substrates and a corresponding increased sensitivity to the proteasomal inhibitor bortezomib. Our data underscore how the balance between ER and cytosolic proteostasis can be influenced by compensatory activation of ERAD during the physiological ER stress of infection and immune activation.
Collapse
|
6
|
Kliewe F, Engelhardt M, Aref R, Schüller HJ. Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae. Curr Genet 2017; 63:739-750. [PMID: 28175933 DOI: 10.1007/s00294-017-0677-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
It is generally assumed that pathway-specific transcriptional activators recruit pleiotropic coactivators (such as chromatin-modifying complexes or general transcription factors), while specific repressors contact pleiotropic corepressors creating an inaccessible chromatin by the action of histone deacetylases. We have previously shown that the negative regulator Opi1 of yeast phospholipid biosynthesis inhibits transcription by recruiting corepressors Sin3 and Cyc8 in the presence of precursor molecules inositol and choline. To get access to its target genes, Opi1 physically contacts and counteracts DNA-bound activator Ino2. By using chromatin immunoprecipitation, we show that Sin3 and Cyc8 can be detected at Opi1 target promoters INO1 and CHO2 under repressing and derepressing conditions and that corepressor binding is effective even in the absence of Opi1, while Ino2 is absolutely required. Thus, corepressors may be recruited not only by repressors but also by activators such as Ino2. Indeed, we could demonstrate direct interaction of Ino2 with Sin3 and Cyc8. The Opi1 repressor interaction domain within Ino2 is also able to contact Sin3 and Cyc8. Recruitment of corepressors by an activator is not a regulatory exception as we could show that activators Pho4 and Hac1 also contain domains being able to interact with Sin3 and Cyc8.
Collapse
Affiliation(s)
- Felix Kliewe
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Maike Engelhardt
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Rasha Aref
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany.
| |
Collapse
|
7
|
Unique roles of the unfolded protein response pathway in fungal development and differentiation. Sci Rep 2016; 6:33413. [PMID: 27629591 PMCID: PMC5024300 DOI: 10.1038/srep33413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023] Open
Abstract
Cryptococcus neoformans, a global fungal meningitis pathogen, employs the unfolded protein response pathway. This pathway, which consists of an evolutionarily conserved Ire1 kinase/endoribonuclease and a unique transcription factor (Hxl1), modulates the endoplasmic reticulum stress response and pathogenicity. Here, we report that the unfolded protein response pathway governs sexual and unisexual differentiation of C. neoformans in an Ire1-dependent but Hxl1-independent manner. The ire1∆ mutants showed defects in sexual mating, with reduced cell fusion and pheromone-mediated formation of the conjugation tube. Unexpectedly, these mating defects did not result from defective pheromone production because expression of the mating pheromone gene (MFα1) was strongly induced in the ire1∆ mutant. Ire1 controls sexual differentiation by modulating the function of the molecular chaperone Kar2 and by regulating mating-induced localisation of mating pheromone transporter (Ste6) and receptor (Ste3/Cprα). Deletion of IRE1, but not HXL1, also caused significant defects in unisexual differentiation in a Kar2-independent manner. Moreover, we showed that Rim101 is a novel downstream factor of Ire1 for production of the capsule, which is a unique structural determinant of C. neoformans virulence. Therefore, Ire1 uniquely regulates fungal development and differentiation in an Hxl1-independent manner.
Collapse
|
8
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
9
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Role of the unfolded protein response in regulating the mucin-dependent filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2015; 35:1414-32. [PMID: 25666509 DOI: 10.1128/mcb.01501-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.
Collapse
|
11
|
Heimel K. Unfolded protein response in filamentous fungi-implications in biotechnology. Appl Microbiol Biotechnol 2014; 99:121-32. [PMID: 25384707 DOI: 10.1007/s00253-014-6192-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/16/2023]
Abstract
The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
Collapse
Affiliation(s)
- Kai Heimel
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, Grisebachstr. 8, 37077, Göttingen, Germany,
| |
Collapse
|
12
|
Endoplasmic Reticulum Stress Response, the Future of Cancer Research and a New Designated Journal. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014. [DOI: 10.2478/ersc-2012-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
14
|
Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 2011; 438:447-55. [PMID: 21675960 DOI: 10.1042/bj20110500] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sil1 functions as a NEF (nucleotide-exchange factor) for the ER (endoplasmic reticulum) Hsp70 (heat-shock protein of 70 kDa) Bip in eukaryotic cells. Sil1 may catalyse the ADP release from Bip by interacting directly with the ATPase domain of Bip. In the present study we show the complex crystal structure of the yeast Bip and the NEF Sil1 at the resolution of 2.3 Å (1 Å=0.1 nm). In the Sil1-Bip complex structure, the Sil1 molecule acts as a 'clamp' which binds lobe IIb of the Bip ATPase domain. The binding of Sil1 causes the rotation of lobe IIb ~ 13.5° away from the ADP-binding pocket. The complex formation also induces lobe Ib to swing in the opposite direction by ~ 3.7°. These conformational changes open up the nucleotide-binding pocket in the Bip ATPase domain and disrupt the hydrogen bonds between Bip and bound ADP, which may catalyse ADP release. Mutation of the Sil1 residues involved in binding the Bip ATPase domain compromise the binding affinity of Sil1 to Bip, and these Sil1 mutants also abolish the ability to stimulate the ATPase activity of Bip.
Collapse
|
15
|
Bergkessel M, Whitworth GB, Guthrie C. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. RNA (NEW YORK, N.Y.) 2011; 17:1461-78. [PMID: 21697354 PMCID: PMC3153971 DOI: 10.1261/rna.2754011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/25/2011] [Indexed: 05/23/2023]
Abstract
Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast.
Collapse
Affiliation(s)
- Megan Bergkessel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 2011; 6:420. [PMID: 20959818 DOI: 10.1038/msb.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/27/2010] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.
Collapse
|
17
|
Jäschke Y, Schwarz J, Clausnitzer D, Müller C, Schüller HJ. Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 285:91-100. [PMID: 21104417 DOI: 10.1007/s00438-010-0589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 01/19/2023]
Abstract
Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1-Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression. Our results also suggested that repression is not executed entirely via Sin3. Indeed, we could show that OSID contacts a second pleiotropic corepressor, Ssn6 (=Cyc8), which together with Tup1 is also able to recruit HDACs. Interestingly, mutations sin3 and ssn6 turned out as synthetically lethal. Our analysis further revealed that OSID not only binds to PAH1 but also interacts with tetratricopeptide repeats (TPR) of Ssn6. This interaction could no longer be observed with Opi1 OSID variants. To trigger gene repression, Opi1 must also interact with activator Ino2, using its activator interaction domain (AID). AID contains a hydrophobic structural motif reminiscent of a leucine zipper. Our mutational analysis of selected positions indeed confirmed that residues L333, L340, V343, V350, L354 and V361 are necessary for repression of Opi1 target genes.
Collapse
Affiliation(s)
- Yvonne Jäschke
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
18
|
Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Mol Cell Biol 2010; 30:5514-30. [PMID: 20876298 DOI: 10.1128/mcb.00390-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudohyphal growth and meiosis are two differentiation responses to nitrogen starvation of diploid Saccharomyces cerevisiae. Nitrogen starvation in the presence of fermentable carbon sources is thought to induce pseudohyphal growth, whereas nitrogen and sugar starvation induces meiosis. In contrast to the genetic background routinely used to study pseudohyphal growth (Σ1278b), nonfermentable carbon sources stimulate pseudohyphal growth in the efficiently sporulating strain SK1. Pseudohyphal SK1 cells can exit pseudohyphal growth to complete meiosis. Two stimulators of meiosis, Ime1 and Ime2, are required for pseudohyphal growth of SK1 cells in the presence of nonfermentable carbon sources. Epistasis analysis suggests that Ime1 and Ime2 act in the same order in pseudohyphal growth as in meiosis. The different behaviors of strains SK1 and Σ1278b are in part attributable to differences in cyclic AMP (cAMP) signaling. In contrast to Σ1278b cells, hyperactivation of cAMP signaling using constitutively active Ras2(G19V) inhibited pseudohyphal growth in SK1 cells. Our data identify the SK1 genetic background as an alternative genetic background for the study of pseudohyphal growth and suggest an overlap between signaling pathways controlling pseudohyphal growth and meiosis. Based on these findings, we propose to include exit from pseudohyphal growth and entry into meiosis in the life cycle of S. cerevisiae.
Collapse
|
19
|
Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 2010; 11:411-8. [PMID: 20351694 PMCID: PMC3113706 DOI: 10.1038/ni.1857] [Citation(s) in RCA: 815] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
Abstract
Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
Collapse
Affiliation(s)
- Fabio Martinon
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Xi Chen
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Ann-Hwee Lee
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
- Dept of Medicine, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
| | - Laurie H. Glimcher
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
- Dept of Medicine, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
20
|
Drew RE, Rodnick KJ, Settles M, Wacyk J, Churchill E, Powell MS, Hardy RW, Murdoch GK, Hill RA, Robison BD. Effect of starvation on transcriptomes of brain and liver in adult female zebrafish (Danio rerio). Physiol Genomics 2008; 35:283-95. [PMID: 18728227 DOI: 10.1152/physiolgenomics.90213.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used microarray and quantitative real-time PCR (qRT-PCR) analyses in adult female zebrafish (Danio rerio) to identify metabolic pathways regulated by starvation in the liver and brain. The transcriptome of whole zebrafish brain showed little response to 21 days of starvation. Only agouti-related protein 1 (agrp1) significantly responded, with increased expression in brains of starved fish. In contrast, a 21-day period of starvation significantly downregulated 466 and upregulated 108 transcripts in the liver, indicating an overall decrease in metabolic activity, reduced lipid metabolism, protein biosynthesis, proteolysis, and cellular respiration, and increased gluconeogenesis. Starvation also regulated expression of many components of the unfolded protein response, the first such report in a species other than yeast (Saccharomyces cerevisiae) and mice (Mus musculus). The response of the zebrafish hepatic transcriptome to starvation was strikingly similar to that of rainbow trout (Oncorhynchus mykiss) and less similar to mouse, while the response of common carp (Cyprinus carpio) differed considerably from the other three species.
Collapse
Affiliation(s)
- Robert E Drew
- Department of Biological Sciences and Initiative for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 2008; 38:541-50. [PMID: 18079489 DOI: 10.1165/rcmb.2007-0221oc] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.
Collapse
Affiliation(s)
- Steven G Kelsen
- Department of Biochemistry, Temple University Hospital, 3401 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Cytoplasmic splicing is one of the major regulatory mechanisms of the unfolded protein response (UPR). The molecular mechanism of cytoplasmic splicing is unique and completely different from that of conventional nuclear splicing. The mammalian substrate of cytoplasmic splicing is XBP1 pre-mRNA, which is converted to spliced mRNA in response to UPR, leading to the production of an active transcription factor [pXBP1(S)] responsible for UPR. Interestingly, XBP1 pre-mRNA is also translated into a functional protein [pXBP1(U)] that negatively regulates the UPR. Thus, mammalian cells can quickly adapt to a change in conditions in the endoplasmic reticulum by switching proteins encoded in the mRNA from a negative regulator to an activator. This elaborate system contributes to various cellular functions, including plasma cell differentiation, viral infections, and carcinogenesis. In this short review, I briefly summarize research on cytoplasmic splicing and focus on current hot topics.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan., PRESTO-SORST, Japan Science and Technology Agency, Kyoto, Japan.
| |
Collapse
|
23
|
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, England
| | - Kenji Kohno
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara, Japan
| |
Collapse
|
24
|
Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 2007; 32:469-76. [DOI: 10.1016/j.tibs.2007.09.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 07/20/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
|
25
|
Ho MSP, Tsang KY, Lo RLK, Susic M, Mäkitie O, Chan TWY, Ng VCW, Sillence DO, Boot-Handford RP, Gibson G, Cheung KMC, Cole WG, Cheah KSE, Chan D. COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet 2007; 16:1201-15. [PMID: 17403716 DOI: 10.1093/hmg/ddm067] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Missense, nonsense and frame-shift mutations in the collagen X gene (COL10A1) result in metaphyseal chondrodysplasia type Schmid (MCDS). Complete degradation of mutant COL10A1 mRNA by nonsense-mediated decay in human MCDS cartilage implicates haploinsufficiency in the pathogenesis for nonsense mutations in vivo. However, the mechanism is unclear in situations where the mutant mRNA persist. We show that nonsense/frame-shift mutations can elicit a gain-of-function effect, affecting chondrocyte differentiation in the growth plate. In an MCDS proband, heterozygous for a p.Y663X nonsense mutation, the growth plate cartilage contained 64% wild-type and 36% mutant mRNA and the hypertrophic zone was disorganized and expanded. The in vitro translated mutant collagen X chains, which are truncated, were misfolded, unable to assemble into trimers and interfered with the assembly of normal alpha1(X) chains into trimers. Unlike Col10a1 null mutants, transgenic mice (FCdel) bearing the mouse equivalent of a human MCDS p.P620fsX621 mutation, displayed typical characteristics of MCDS with disproportionate shortening of limbs and early onset coxa vara. In FCdel mice, the degree of expansion of the hypertrophic zones was transgene-dosage dependent, being most severe in mice homozygous for the transgene. Chondrocytes in the lower region of the expanded hypertrophic zone expressed markers uncharacteristic of hypertrophic chondrocytes, indicating that differentiation was disrupted. Misfolded FCdel alpha1(X) chains were retained within the endoplasmic reticulum of hypertrophic chondrocytes, activating the unfolded protein response. Our findings provide strong in vivo evidence for a gain-of-function effect that is linked to the activation of endoplasmic reticulum-stress response and altered chondrocyte differentiation, as a possible molecular pathogenesis for MCDS.
Collapse
Affiliation(s)
- Matthew S P Ho
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Schröder M. The unfolded protein response. Mol Biotechnol 2007; 34:279-90. [PMID: 17172673 DOI: 10.1385/mb:34:2:279] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The unfolded protein response (UPR) is a signal transduction network activated by inhibition of protein folding in the endoplasmic reticulum (ER). The UPR coordinates adaptive responses to this stress situation, including induction of ER resident molecular chaperone and protein foldase expression to increase the protein folding capacity of the ER, induction of phospholipid synthesis, attenuation of general translation, and upregulation of ER-associated degradation to decrease the unfolded protein load of the ER, and an antioxidant response. Upon severe or prolonged ER stress the UPR induces apoptosis to eliminate unhealthy cells from an organism or a population. In this review, I will summarize our current knowledge about signal transduction pathways involved in transducing the unfolded protein signal from the ER to the nucleus or the cytosol.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
28
|
Inai T, Yukawa M, Tsuchiya E. Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis. Mol Cell Biol 2007; 27:1254-63. [PMID: 17158929 PMCID: PMC1800723 DOI: 10.1128/mcb.01661-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/04/2006] [Accepted: 11/30/2006] [Indexed: 11/20/2022] Open
Abstract
The IME2 gene is one of the key regulators of the initiation of meiosis in budding yeast. This gene is repressed during mitosis through the repressive chromatin structure at the promoter, which is maintained by the Rpd3-Sin3 histone deacetylase (HDAC) complex. IME2 expression in meiosis requires Gcn5/histone acetyltransferase, the transcriptional activator Ime1, and the chromatin remodeler RSC; however, the molecular basis of IME2 activation had not been previously defined. We found that, during mitotic growth, a nucleosome masked the TATA element of IME2, and this positioning depended on HDAC. This chromatin structure was remodeled at meiosis by RSC that was recruited to TATA by Ime1. Stable tethering of Ime1 to the promoter required the presence of Gcn5. Interestingly, Ime1 binding to the promoter was kept at low levels during the very early stages in meiosis, even when the levels of Ime1 and histone H3 acetylation at the promoter were at their highest, making a 4- to 6-h delay of the IME2 expression from that of IME1. HDAC was continuously present at the promoter regardless of the transcriptional condition of IME2, and deletion of RPD3 allowed the IME2 expression shortly after the expression of IME1, suggesting that HDAC plays a role in regulating the timing of IME2 expression.
Collapse
Affiliation(s)
- Tomomi Inai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | |
Collapse
|
29
|
Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006; 18:444-52. [PMID: 16781856 DOI: 10.1016/j.ceb.2006.06.005] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/06/2006] [Indexed: 12/21/2022]
Abstract
Unfolded proteins and other conditions affecting endoplasmic reticulum (ER) homeostasis cause ER stress. The cell reacts to ER stress by activation of the unfolded protein response (UPR), which induces profound changes in cellular metabolism including general translation attenuation, transcriptional upregulation of molecular chaperone genes, and activation of ER-associated degradation. However, prolonged or acute ER stress results in cell death. Recent progress suggests that ER stress and UPR play key roles in the immune response, diabetes, tumor growth under hypoxic conditions, and in some neurodegenerative diseases. Further research on ER stress and UPR will greatly enhance the understanding of these physiological and pathological processes, and provide novel avenues to potential therapies.
Collapse
Affiliation(s)
- Lihong Zhao
- Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
30
|
Chen M, Hancock LC, Lopes JM. Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:310-21. [PMID: 16854618 DOI: 10.1016/j.bbalip.2006.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 12/26/2022]
Abstract
The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
31
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
32
|
Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol 2005; 25:6990-7004. [PMID: 16055712 PMCID: PMC1190252 DOI: 10.1128/mcb.25.16.6990-7004.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corepressor mSin3A is the core component of a chromatin-modifying complex that is recruited by multiple gene-specific transcriptional repressors. In order to understand the role of mSin3A during development, we generated constitutive germ line as well as conditional msin3A deletions. msin3A deletion in the developing mouse embryo results in lethality at the postimplantation stage, demonstrating that it is an essential gene. Blastocysts derived from preimplantation msin3A null embryos and mouse embryo fibroblasts (MEFs) lacking msin3A display a significant reduction in cell division. msin3A null MEFs also show mislocalization of the heterochromatin protein, HP1alpha, without alterations in global histone acetylation. Heterozygous msin3A(+/-) mice with a systemic twofold decrease in mSin3A protein develop splenomegaly as well as kidney disease indicative of a disruption of lymphocyte homeostasis. Conditional deletion of msin3A from developing T cells results in reduced thymic cellularity and a fivefold decrease in the number of cytotoxic (CD8) T cells, while helper (CD4) T cells are unaffected. We show that CD8 development is dependent on mSin3A at a step downstream of T-cell receptor signaling and that loss of mSin3A specifically decreases survival of double-positive and CD8 T cells. Thus, msin3A is a pleiotropic gene which, in addition to its role in cell cycle progression, is required for the development and homeostasis of cells in the lymphoid lineage.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blastocyst
- Blotting, Western
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Cell Cycle
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/metabolism
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/metabolism
- Exons
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Flow Cytometry
- Gene Deletion
- Gene Expression Regulation, Developmental
- Genotype
- Glomerulonephritis, Membranous
- Heterochromatin/metabolism
- Heterozygote
- Mice
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Recombination, Genetic
- Repressor Proteins/physiology
- Sin3 Histone Deacetylase and Corepressor Complex
- Splenomegaly
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- Thymus Gland/cytology
- Time Factors
Collapse
Affiliation(s)
- Shaun M Cowley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Back SH, Schröder M, Lee K, Zhang K, Kaufman RJ. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 2005; 35:395-416. [PMID: 15804613 DOI: 10.1016/j.ymeth.2005.03.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 01/22/2023] Open
Abstract
The endoplasmic reticulum (ER) serves many specialized functions in the cell including calcium storage and gated release, biosynthesis of membrane and secretory proteins, and production of lipids and sterols. Therefore, the ER integrates many internal and external signals to coordinate downstream responses, although the mechanism(s) that maintain homeostasis are largely unknown. When misfolded or unfolded proteins accumulate in the ER, an intracellular signaling pathway termed the unfolded protein response (UPR) is activated. Identification of IRE1 in the yeast Saccharomyces cerevisiae as a proximal sensor in the UPR pathway was a milestone in understanding how the ER responds to the accumulation of unfolded protein and signals transcriptional activation through regulated nonconventional splicing of its substrate mRNA encoding the transcription factor Hac1p. Subsequent studies identified IRE1 and HAC1 homologues in mammalian cells. Here, we summarize various approaches to study the IRE1-Hac1 pathway in yeast and the homologous IRE1-XBP1 pathway in mammalian cells. We present microbiological growth assays for the UPR, reporter assays for UPR signaling, direct techniques to measure UPR activation in vivo, methods to study translation of HAC1 mRNA, and in vitro cleavage and ligation of HAC1 and XBP1 mRNA. Especially we think the newly developed quantitative and qualitative methods to detect IRE1 activity-dependent XBP1 mRNA splicing will be fast and accurate tools to show the activation of the UPR.
Collapse
Affiliation(s)
- Sung Hoon Back
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | |
Collapse
|