1
|
Wang X, Xue Y, Li L, Song J, Jia L, Li X, Fan M, Lu L, Su W, Han J, Lin D, Liu R, Gao X, Guo Y, Xiang Z, Chen C, Wan L, Chong H, He Y, Wang F, Yao K, Zhou Q, Yu D. PRMT3 reverses HIV-1 latency by increasing chromatin accessibility to form a TEAD4-P-TEFb-containing transcriptional hub. Nat Commun 2025; 16:4529. [PMID: 40374607 PMCID: PMC12081701 DOI: 10.1038/s41467-025-59578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
Latent HIV-1 presents a formidable challenge for viral eradication. HIV-1 transcription and latency reversal require interactions between the viral promoter and host proteins. Here, we perform the dCas9-targeted locus-specific protein analysis and discover the interaction of human arginine methyltransferase 3 (PRMT3) with the HIV-1 promoter. This interaction reverses latency in cell line models and primary cells from latently infected persons by increasing the levels of H4R3Me2a and transcription factor P-TEFb at the viral promoter. PRMT3 is found to promote chromatin accessibility and transcription of HIV-1 and a small subset of host genes in regions harboring the classical recognition motif for another transcription factor TEAD4. This motif attracts TEAD4 and PRMT3 to the viral promoter to synergistically activate transcription. Physical interactions among PRMT3, P-TEFb, and TEAD4 exist, which may help form a transcriptional hub at the viral promoter. Our study reveals the potential of targeting these hub proteins to eradicate latent HIV-1.
Collapse
Affiliation(s)
- Xinyu Wang
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Yuhua Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xu Li
- Department of Dermatology, The First Hospital of Hohhot, Hohhot, China
| | - Miao Fan
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Lu Lu
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Wen Su
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dandan Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rongdiao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Yafei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Zixun Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Chunjing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Linyu Wan
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fusheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kaihu Yao
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China.
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China.
| | - Dan Yu
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
2
|
Fakih Z, Germain H. Implication of ribosomal protein in abiotic and biotic stress. PLANTA 2025; 261:85. [PMID: 40067484 DOI: 10.1007/s00425-025-04665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION This review article explores the intricate role, and regulation of ribosomal protein in response to stress, particularly emphasizing their pivotal role to ameliorate abiotic and biotic stress conditions in crop plants. Plants must coordinate ribosomes production to balance cellular protein synthesis in response to environmental variations and pathogens invasion. Over the past decade, research has revealed ribosome subgroups respond to adverse conditions, suggesting that this tight coordination may be grounded in the induction of ribosome variants resulting in differential translation outcomes. Furthermore, an increasing snumber of studies on plant ribosomes have made it possible to explore the stress-regulated expression pattern of ribosomal protein large subunit (RPL) and ribosomal protein small subunit (RPS) genes. In this perspective, we reviewed the literature linking ribosome heterogeneity to plants' abiotic and biotic stress responses to offer an overview on the expression and biological function of ribosomal components including specialized translation of individual transcripts and its implications for the regulation and expression of important gene regulatory networks, along with phenotypic analysis in ribosomal gene mutations in physiologic and pathologic processes. We also highlight recent advances in understanding the molecular mechanisms behind the transcriptional regulation of ribosomal genes linked to stress events. This review may serve as the foundation of novel strategies to customize cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada.
| |
Collapse
|
3
|
Huang J, Qiao B, Yuan Y, Xie Y, Xia X, Li F, Wang L. PRMT3 and CARM1: Emerging Epigenetic Targets in Cancer. J Cell Mol Med 2025; 29:e70386. [PMID: 39964832 PMCID: PMC11834966 DOI: 10.1111/jcmm.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
The family of protein arginine methyltransferases (PRMTs) occupies an important position in biology, especially during the initiation and development of cancer. PRMT3 and CARM1(also known as PRMT4), being type I protein arginine methyltransferases, are key in controlling tumour progression by catalysing the mono-methylation and asymmetric di-methylation of both histone and non-histone substrates. This paper reviews the functions and potential therapeutic target value of PRMT3 and CARM1 in a variety of cancers. Studies have identified abnormal expressions of PRMT3 and CARM1 in several malignancies, closely linked to cancer progression, advancement, and resistance to treatment. Such as hepatocellular carcinoma, colorectal cancer, ovarian cancer, and endometrial cancer. These findings offer new strategies and directions for cancer treatment, especially in enhancing the effectiveness of conventional treatment methods.
Collapse
Affiliation(s)
- Jiezuo Huang
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Beining Qiao
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yixin Yuan
- Xiangya College of Public HealthCentral South UniversityChangshaChina
| | - Yuxuan Xie
- Hunan Normal University School of MedicineChangshaChina
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fenghe Li
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical ScienceCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Gupta S, Verma M, Kadumuri RV, Chutani N, Khan MIK, Chavali S, Dhayalan A. The uncharacterized protein ZNF200 interacts with PRMT3 and aids its stability and nuclear translocation. Biochem J 2024; 481:1723-1740. [PMID: 39513743 DOI: 10.1042/bcj20240476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Protein arginine methyltransferase 3 (PRMT3), a type I arginine methyltransferase is localized predominantly in the cytoplasm and regulates different cellular functions. Nevertheless, PRMT3 also exhibits regulatory functions in the nucleus by interacting with the liver X receptor alpha (LXRα) and catalyzes asymmetric dimethylation modifications at arginine 3 of histone 4 (H4R3me2a). However, very little is known about the regulation of the versatile global regulator PRMT3 and how PRMT3 is translocated to the nucleus. In this study, we identified ZNF200, a hitherto uncharacterized protein, as a potential binding partner of PRMT3 through yeast two-hybrid screening. We confirmed the interaction of PRMT3 with ZNF200 using immunoprecipitation and in vitro pull-down experiments. GST pull-down experiments and molecular docking studies revealed that the N-terminal zinc finger domain of PRMT3 binds to the C-terminal zinc finger regions of ZNF200. Furthermore, the evolutionary conservation of the Znf domain of PRMT3 correlates with the emergence of ZNF200 in mammals. We found that ZNF200 stabilizes PRMT3 by inhibiting its proteasomal degradation. ZNF200, a nuclear-predominant protein, promotes the nuclear translocation of PRMT3, leading to the global increase of H4R3me2a modifications. These findings imply that ZNF200 is a critical regulator of the steady-state levels and nuclear and epigenetic functions of PRMT3.
Collapse
Affiliation(s)
- Somlee Gupta
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Namita Chutani
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
5
|
Zhang B, Guan Y, Zeng D, Wang R. Arginine methylation and respiratory disease. Transl Res 2024; 272:140-150. [PMID: 38453053 DOI: 10.1016/j.trsl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. This review begins with an exploration of the biochemical underpinnings of arginine methylation, shedding light on the intricate molecular regulatory mechanisms governed by PRMTs. It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Youhong Guan
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei 230001, Anhui Province, PR China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, Jiangsu Province, PR China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| |
Collapse
|
6
|
Barré-Villeneuve C, Azevedo-Favory J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. Int J Mol Sci 2024; 25:9937. [PMID: 39337424 PMCID: PMC11432338 DOI: 10.3390/ijms25189937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Collapse
Affiliation(s)
- Clément Barré-Villeneuve
- Crop Biotechnics, Department of Biosystems, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3000 Leuven, Belgium
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, UMR 5096, 66860 Perpignan, France
| |
Collapse
|
7
|
Zhou G, Zhang C, Peng H, Su X, Huang Q, Zhao Z, Zhao G. PRMT3 methylates HIF-1α to enhance the vascular calcification induced by chronic kidney disease. Mol Med 2024; 30:8. [PMID: 38200452 PMCID: PMC10782741 DOI: 10.1186/s10020-023-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medial vascular calcification is commonly identified in chronic kidney disease (CKD) patients and seriously affects the health and life quality of patients. This study aimed to investigate the effects of protein arginine methyltransferase 3 (PRMT3) on vascular calcification induced by CKD. METHODS A mice model of CKD was established with a two-step diet containing high levels of calcium and phosphorus. Vascular smooth muscle cells (VSMCs) were subjected to β-glycerophosphate (β-GP) treatment to induce the osteogenic differentiation as an in vitro CKD model. RESULTS PRMT3 was upregulated in VSMCs of medial artery of CKD mice and β-GP-induced VSMCs. The inhibitor of PRMT3 (SGC707) alleviated the vascular calcification and inhibited the glycolysis of CKD mice. Knockdown of PRMT3 alleviated the β-GP-induced osteogenic transfomation of VSMCs by the repression of glycolysis. Next, PRMT3 interacted with hypoxia-induced factor 1α (HIF-1α), and the knockdown of PRMT3 downregulated the protein expression of HIF-1α by weakening its methylation. Gain of HIF-1α reversed the PRMT3 depletion-induced suppression of osteogenic differentiation and glycolysis of VSMCs. CONCLUSION The inhibitory role of PRMT3 depletion was at least mediated by the regulation of glycolysis upon repressing the methylation of HIF-1α.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Hui Peng
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Guangyi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
8
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
9
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Zhu J, Li X, Cai X, Zhou Z, Liao Q, Liu X, Wang J, Xiao W. Asymmetric arginine dimethylation of cytosolic RNA and DNA sensors by PRMT3 attenuates antiviral innate immunity. Proc Natl Acad Sci U S A 2023; 120:e2214956120. [PMID: 37639603 PMCID: PMC10483634 DOI: 10.1073/pnas.2214956120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
The cytosolic RNA and DNA sensors initiate type I interferon signaling when binding to RNA or DNA. To effectively protect the host against virus infection and concomitantly avoid excessive interferonopathy at resting states, these sensors must be tightly regulated. However, the key molecular mechanisms regulating these sensors' activation remain elusive. Here, we identify PRMT3, a type I protein arginine methyltransferase, as a negative regulator of cytosolic RNA and DNA sensors. PRMT3 interacts with RIG-I, MDA5, and cGAS and catalyzes asymmetric dimethylation of R730 on RIG-I, R822 on MDA5, and R111 on cGAS. These modifications reduce RNA-binding ability of RIG-I and MDA5 as well as DNA-binding ability and oligomerization of cGAS, leading to the inhibition of downstream type I interferon production. Furthermore, mice with loss of one copy of Prmt3 or in vivo treatment of the PRMT3 inhibitor, SGC707, are more resistant to RNA and DNA virus infection. Our findings reveal an essential role of PRMT3 in the regulation of antiviral innate immunity and give insights into the molecular regulation of cytosolic RNA and DNA sensors' activation.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| |
Collapse
|
11
|
Zhao S, Mo LX, Li WT, Jiang LL, Meng YY, Ou JF, Liao LS, Yan YS, Luo XM, Feng JX. Arginine methyltransferases PRMT2 and PRMT3 are essential for biosynthesis of plant-polysaccharide-degrading enzymes in Penicillium oxalicum. PLoS Genet 2023; 19:e1010867. [PMID: 37523410 PMCID: PMC10414604 DOI: 10.1371/journal.pgen.1010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Li-Xiang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lian-Li Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yi-Yuan Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jian-Feng Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
12
|
Zheng J, Li B, Wu Y, Wu X, Wang Y. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies. J Med Chem 2023. [PMID: 37366223 DOI: 10.1021/acs.jmedchem.3c00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a predominant type II protein arginine methyltransferase, PRMT5 plays critical roles in various normal cellular processes by catalyzing the mono- and symmetrical dimethylation of a wide range of histone and nonhistone substrates. Clinical studies have revealed that high expression of PRMT5 is observed in different solid tumors and hematological malignancies and is closely associated with cancer initiation and progression. Accordingly, PRMT5 is becoming a promising anticancer target and has received great attention in both the pharmaceutical industry and the academic community. In this Perspective, we comprehensively summarize recent advances in the development of first-generation PRMT5 enzymatic inhibitors and highlight novel strategies targeting PRMT5 in the past 5 years. We also discuss the challenges and opportunities of PRMT5 inhibition, with the aim of shedding light on future PRMT5 drug discovery.
Collapse
Affiliation(s)
- Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqi Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoshuang Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal Protein uS5 and Friends: Protein-Protein Interactions Involved in Ribosome Assembly and Beyond. Biomolecules 2023; 13:biom13050853. [PMID: 37238722 DOI: 10.3390/biom13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal proteins are fundamental components of the ribosomes in all living cells. The ribosomal protein uS5 (Rps2) is a stable component of the small ribosomal subunit within all three domains of life. In addition to its interactions with proximal ribosomal proteins and rRNA inside the ribosome, uS5 has a surprisingly complex network of evolutionarily conserved non-ribosome-associated proteins. In this review, we focus on a set of four conserved uS5-associated proteins: the protein arginine methyltransferase 3 (PRMT3), the programmed cell death 2 (PDCD2) and its PDCD2-like (PDCD2L) paralog, and the zinc finger protein, ZNF277. We discuss recent work that presents PDCD2 and homologs as a dedicated uS5 chaperone and PDCD2L as a potential adaptor protein for the nuclear export of pre-40S subunits. Although the functional significance of the PRMT3-uS5 and ZNF277-uS5 interactions remain elusive, we reflect on the potential roles of uS5 arginine methylation by PRMT3 and on data indicating that ZNF277 and PRMT3 compete for uS5 binding. Together, these discussions highlight the complex and conserved regulatory network responsible for monitoring the availability and the folding of uS5 for the formation of 40S ribosomal subunits and/or the role of uS5 in potential extra-ribosomal functions.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Zabih Mir Hassani
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mariano Avino
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
14
|
Hsu SH, Hung WC. Protein arginine methyltransferase 3: A crucial regulator in metabolic reprogramming and gene expression in cancers. Cancer Lett 2023; 554:216008. [PMID: 36400311 DOI: 10.1016/j.canlet.2022.216008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-translational modification (PTM) of proteins increases proteome diversity, which is critical for maintaining cellular homeostasis. The importance of protein methylation in the regulation of diverse biological processes has been highlighted in the past decades. Methylation of the arginine residue on proteins is catalyzed by members of the protein arginine methyltransferase (PRMT) family. PRMTs play indispensable roles in various pathways that regulate cancer development, progression, and drug response. In this review, we discuss the role of PRMT3, a member of the PRMT family, in controlling oncogenic processes. Additionally, the effects of PRMT3 on the methylation of regulatory proteins involved in transcription, post-transcriptional control, ribosomal maturation, translation, biological synthesis, and metabolic signaling are summarized. Moreover, recent progresses in the development of PRMT3 inhibitors are introduced. Overall, this review highlights the importance of PRMT3 in tumorigenesis and discusses the underlying mechanisms by which PRMT3 modulates cellular metabolism and gene expression. These results also provide a molecular basis for therapeutic modalities by targeting PRMT3.
Collapse
Affiliation(s)
- Shih-Han Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 802, Taiwan.
| |
Collapse
|
15
|
Liao Y, Luo Z, Lin Y, Chen H, Chen T, Xu L, Orgurek S, Berry K, Dzieciatkowska M, Reisz JA, D’Alessandro A, Zhou W, Lu QR. PRMT3 drives glioblastoma progression by enhancing HIF1A and glycolytic metabolism. Cell Death Dis 2022; 13:943. [PMID: 36351894 PMCID: PMC9646854 DOI: 10.1038/s41419-022-05389-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor, but the mechanisms underlying tumor growth and progression remain unclear. The protein arginine methyltransferases (PRMTs) regulate a variety of biological processes, however, their roles in GBM growth and progression are not fully understood. In this study, our functional analysis of gene expression networks revealed that among the PRMT family expression of PRMT3 was most significantly enriched in both GBM and low-grade gliomas. Higher PRMT3 expression predicted poorer overall survival rate in patients with gliomas. Knockdown of PRMT3 markedly reduced the proliferation and migration of GBM cell lines and patient-derived glioblastoma stem cells (GSC) in cell culture, while its over-expression increased the proliferative capacity of GSC cells by promoting cell cycle progression. Consistently, stable PRMT3 knockdown strongly inhibited tumor growth in xenograft mouse models, along with a significant decrease in cell proliferation as well as an increase in apoptosis. We further found that PRMT3 reprogrammed metabolic pathways to promote GSC growth via increasing glycolysis and its critical transcriptional regulator HIF1α. In addition, pharmacological inhibition of PRMT3 with a PRMT3-specific inhibitor SGC707 impaired the growth of GBM cells. Thus, our study demonstrates that PRMT3 promotes GBM progression by enhancing HIF1A-mediated glycolysis and metabolic rewiring, presenting a point of metabolic vulnerability for therapeutic targeting in malignant gliomas.
Collapse
Affiliation(s)
- Yunfei Liao
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Zaili Luo
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yifeng Lin
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiyao Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lingli Xu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Sean Orgurek
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kalen Berry
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Monika Dzieciatkowska
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Julie A. Reisz
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Angelo D’Alessandro
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Wenhao Zhou
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Q. Richard Lu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| |
Collapse
|
16
|
Wang Y, Wu M, Yang F, Lin J, Zhang L, Yuan M, Chen D, Tan B, Huang D, Ye C. Protein arginine methyltransferase 3 inhibits renal tubulointerstitial fibrosis through asymmetric dimethylarginine. Front Med (Lausanne) 2022; 9:995917. [PMID: 36177327 PMCID: PMC9513028 DOI: 10.3389/fmed.2022.995917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian protein arginine methyltransferase 3 (PRMT3) catalyzes the monomethylation and dimethylation of the arginine residues of proteins. The role of PRMT3 in renal fibrosis is currently unknown. We aimed to study the role of PRMT3 in renal fibrosis and explored its underlying mechanisms. Quantitative PCR analysis and Western blotting analysis showed that the expression of PRMT3 was up-regulated in unilateral ureteral obstruction (UUO) mouse kidneys. Knockout of Prmt3 gene enhanced interstitial fibrosis in UUO kidneys as shown by Masson staining and Western blotting analysis the expression of pro-fibrotic markers. The production of asymmetric dimethylarginine (ADMA) was increased in wide type UUO kidneys but not further increased in Prmt3 knockout UUO kidneys. Administration of exogeneous ADMA in UUO kidneys blocked the enhanced renal interstitial fibrosis in Prmt3 mutant mice. Moreover, genetic deletion of Prmt3 gene increased blood urea nitrogen levels and renal deposition of collagen in folic acid injected mice. We conclude that PRMT3 inhibits renal tubulointerstitial fibrosis through elevating renal ADMA levels.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Chaoyang Ye,
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Junyan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Li Zhang
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meijie Yuan
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongping Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Ming Wu,
| |
Collapse
|
17
|
Brobbey C, Liu L, Yin S, Gan W. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23179780. [PMID: 36077176 PMCID: PMC9456308 DOI: 10.3390/ijms23179780] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
In response to DNA damage, cells have developed a sophisticated signaling pathway, consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair of damaged DNA. During this process, posttranslational modifications (PTMs) are central events that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs) either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities, and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway inhibitors, providing insight into the significance of arginine methylation in the maintenance of genome integrity and cancer therapies.
Collapse
|
18
|
Zhang X, Wang K, Feng X, Wang J, Chu Y, Jia C, He Q, Chen C. PRMT3 promotes tumorigenesis by methylating and stabilizing HIF1α in colorectal cancer. Cell Death Dis 2021; 12:1066. [PMID: 34753906 PMCID: PMC8578369 DOI: 10.1038/s41419-021-04352-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Abnormal angiogenesis occurs during the growth of solid tumors resulting in increased vascular permeability to fluids and metastatic cancer cells. Anti-angiogenesis therapy for solid tumors is effective in the treatment of cancer patients. However, the efficacy of anti-angiogenesis therapy is limited by drug resistance. The findings of the current study showed that HIF1α R282 is methylated by PRMT3, which is necessary for its stabilization and oncogene function. Analysis showed that PRMT3-mediated tumorigenesis is HIF1α methylation-dependent. A novel therapeutic molecule (MPG-peptide) was used to inhibit HIF1α expression. These findings provided information on PRMT3 signaling pathway and HIF1/VEGFA signaling pathway and offer a novel therapeutic strategy for colorectal cancer, mainly for treatment of anti-angiogenesis resistance patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China
| | - Xingbo Feng
- Department of General Surgery, Central Hospital of Zaozhuang Coal Mining Group, Shandong Province, Zaozhuang, China
| | - Jian Wang
- Department of General Surgery, Jinan integrative medicine hospital, 8 east Wenyuan street, Jian, China
| | - Yali Chu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China
| | - Chunmeng Jia
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, China.
| |
Collapse
|
19
|
Chen L, Zhang M, Fang L, Yang X, Cao N, Xu L, Shi L, Cao Y. Coordinated regulation of the ribosome and proteasome by PRMT1 in the maintenance of neural stemness in cancer cells and neural stem cells. J Biol Chem 2021; 297:101275. [PMID: 34619150 PMCID: PMC8546425 DOI: 10.1016/j.jbc.2021.101275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that cancer cells resemble neural stem/progenitor cells in regulatory network, tumorigenicity, and differentiation potential, and that neural stemness might represent the ground or basal state of differentiation and tumorigenicity. The neural ground state is reflected in the upregulation and enrichment of basic cell machineries and developmental programs, such as cell cycle, ribosomes, proteasomes, and epigenetic factors, in cancers and in embryonic neural or neural stem cells. However, how these machineries are concertedly regulated is unclear. Here, we show that loss of neural stemness in cancer or neural stem cells via muscle-like differentiation or neuronal differentiation, respectively, caused downregulation of ribosome and proteasome components and major epigenetic factors, including PRMT1, EZH2, and LSD1. Furthermore, inhibition of PRMT1, an oncoprotein that is enriched in neural cells during embryogenesis, caused neuronal-like differentiation, downregulation of a similar set of proteins downregulated by differentiation, and alteration of subcellular distribution of ribosome and proteasome components. By contrast, PRMT1 overexpression led to an upregulation of these proteins. PRMT1 interacted with these components and protected them from degradation via recruitment of the deubiquitinase USP7, also known to promote cancer and enriched in embryonic neural cells, thereby maintaining a high level of epigenetic factors that maintain neural stemness, such as EZH2 and LSD1. Taken together, our data indicate that PRMT1 inhibition resulted in repression of cell tumorigenicity. We conclude that PRMT1 coordinates ribosome and proteasome activity to match the needs for high production and homeostasis of proteins that maintain stemness in cancer and neural stem cells.
Collapse
Affiliation(s)
- Lu Chen
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Min Zhang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Xiaoli Yang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ning Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Liyang Xu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lihua Shi
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Hu Y, Su Y, He Y, Liu W, Xiao B. Arginine methyltransferase PRMT3 promote tumorigenesis through regulating c-MYC stabilization in colorectal cancer. Gene 2021; 791:145718. [PMID: 33991650 DOI: 10.1016/j.gene.2021.145718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
The incidence rates of colorectal cancer have been increasing in the last decades, yet the overall survival rate is still not ideal. There is a need to further investigate detailed mechanism for colorectal cancer tumorigenesis. The biological function of protein arginine methyltransferases 3 (PRMT3) is seldom studied in tumorigenesis. Here, we attempted to elucidate the link between PRMT3 and tumorigenesis in colorectal cancer. Results revealed that PRMT3 was upregulated in colorectal cancer. Besides, PRMT3 overexpression promoted colorectal cancer cell proliferation, migration, and invasion. Regarding mechanism for colorectal cancer tumorigenesis, PRMT3 stabilized C-MYC and the pro-tumorigenesis function of PRMT3 was dependent on C-MYC. Clinically, these findings might provide a novel therapeutical treatment strategy for colorectal cancer.
Collapse
Affiliation(s)
- Yongbo Hu
- Department of General Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei, China
| | - Yu Su
- Department of General Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei, China
| | - Yiming He
- Department of General Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei, China
| | - Wei Liu
- Department of General Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei, China
| | - Bin Xiao
- Department of General Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei, China.
| |
Collapse
|
21
|
The methyltransferase PRMT1 regulates γ-globin translation. J Biol Chem 2021; 296:100417. [PMID: 33587951 PMCID: PMC7966866 DOI: 10.1016/j.jbc.2021.100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
Induction of fetal hemoglobin to overcome adult β-globin gene deficiency is an effective therapeutic strategy to ameliorate human β-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for β-hemoglobinopathies.
Collapse
|
22
|
Hang R, Wang Z, Yang C, Luo L, Mo B, Chen X, Sun J, Liu C, Cao X. Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis. MOLECULAR PLANT 2021; 14:223-236. [PMID: 33069875 DOI: 10.1016/j.molp.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Medina-Gómez C, Bolaños J, Borbolla-Vázquez J, Munguía-Robledo S, Orozco E, Rodríguez MA. The atypical protein arginine methyltrasferase of Entamoeba histolytica (EhPRMTA) is involved in cell proliferation, heat shock response and in vitro virulence. Exp Parasitol 2021; 222:108077. [PMID: 33465379 DOI: 10.1016/j.exppara.2021.108077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8). The protozoa parasite Entamoeba histolytica has four PRMTs related to type I; three of them are similar to PRMT1, but the other one does not show significant homology to be grouped in any known PRMT family, thus we called it as atypical PRMT (EhPRMTA). Here, we showed that EhPRMTA does not contain several of the canonical amino acid residues of type I PRMTs, confirming that it is an atypical PRMT. A specific antibody against EhPRMTA localized this protein in cytoplasm. The recombinant EhPRMTA displayed catalytic activity on commercial histones and the native enzyme modified its expression level during heat shock and erythrophagocytosis. Besides, the knockdown of EhPRMTA produced an increment in cell growth, and phagocytosis, but decreases cell migration and the survival of trophozoites submitted to heat shock, suggesting that this protein is involved in regulate negatively or positively these events, respectively. Thus, results suggest that this methyltransferase regulates some cellular functions related to virulence and cell surviving.
Collapse
Affiliation(s)
- Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | - Susana Munguía-Robledo
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Landry-Voyer AM, Bergeron D, Yague-Sanz C, Baker B, Bachand F. PDCD2 functions as an evolutionarily conserved chaperone dedicated for the 40S ribosomal protein uS5 (RPS2). Nucleic Acids Res 2020; 48:12900-12916. [PMID: 33245768 PMCID: PMC7736825 DOI: 10.1093/nar/gkaa1108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carlo Yague-Sanz
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Breac Baker
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Francois Bachand
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
25
|
Zhu J, Liu X, Cai X, Ouyang G, Zha H, Zhou Z, Liao Q, Wang J, Xiao W. Zebrafish prmt3 negatively regulates antiviral responses. FASEB J 2020; 34:10212-10227. [PMID: 32643209 DOI: 10.1096/fj.201902569r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/06/2024]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in histone and nonhistone proteins, which regulates many cellular functions. Protein arginine methyltransferase 3 (prmt3), a type I arginine methyltransferase, has been shown to carry out the formation of stable monomethylarginine as an intermediate before the establishment of asymmetric dimethylarginine. To date, however, the role of PRMT3 in antiviral innate immunity has not been elucidated. This study showed that zebrafish prmt3 was upregulated by virus infection and that the overexpression of prmt3 suppressed cellular antiviral response. The PRMT3 inhibitor, SGC707, enhanced antiviral capability. Consistently, prmt3-null zebrafish were more resistant to Spring Viremia of Carp Virus (SVCV) and Grass Carp Reovirus (GCRV) infection. Further assays showed that the overexpression of prmt3 diminished the phosphorylation of irf3 and prmt3 interacted with rig-i. In addition, both zinc-finger domain and catalytic domain of prmt3 were required for the suppressive function of prmt3 on IFN activation. Our findings suggested that zebrafish prmt3 negatively regulated the antiviral responses, implicating the vital role of prmt3-or even arginine methylation-in antiviral innate immunity.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- Dalian Ocean University, Dalian, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
26
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
27
|
You ST, Jhou YT, Kao CF, Leu JY. Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. PLoS Biol 2019; 17:e3000433. [PMID: 31613873 PMCID: PMC6814240 DOI: 10.1371/journal.pbio.3000433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/25/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Cell-to-cell heterogeneity within an isogenic population has been observed in prokaryotic and eukaryotic cells. Such heterogeneity often manifests at the level of individual protein abundance and may have evolutionary benefits, especially for organisms in fluctuating environments. Although general features and the origins of cellular noise have been revealed, details of the molecular pathways underlying noise regulation remain elusive. Here, we used experimental evolution of Saccharomyces cerevisiae to select for mutations that increase reporter protein noise. By combining bulk segregant analysis and CRISPR/Cas9-based reconstitution, we identified the methyltransferase Hmt1 as a general regulator of noise buffering. Hmt1 methylation activity is critical for the evolved phenotype, and we also show that two of the Hmt1 methylation targets can suppress noise. Hmt1 functions as an environmental sensor to adjust noise levels in response to environmental cues. Moreover, Hmt1-mediated noise buffering is conserved in an evolutionarily distant yeast species, suggesting broad significance of noise regulation. Experimental evolution in yeast reveals that the methyltransferase Hmt1 functions as a mediator connecting environmental stimuli to cellular noise; Hmt1-mediated noise buffering is conserved in an evolutionarily distant yeast.
Collapse
Affiliation(s)
- Shu-Ting You
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis 2019; 10:581. [PMID: 31378783 PMCID: PMC6680051 DOI: 10.1038/s41419-019-1815-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
Histone arginine methylation, which is catalyzed by protein arginine methyltransferases (PRMTs), plays a key regulatory role in various biological processes. Several PRMTs are involved in skeletal development; however, their role in the osteogenic differentiation of mesenchymal stem cells (MSCs) is not completely clear. In this study, we aimed to elucidate the function of PRMT3, a type-I PRMT that catalyzes the formation of ω-mono- or asymmetric dimethyl arginine, in MSCs osteogenesis. We found that PRMT3 promoted MSCs osteogenic commitment and bone remodeling. PRMT3 activated the expression of miR-3648 by enhancing histone H4 arginine 3 asymmetric dimethylation (H4R3me2a) levels at promoter region of the gene. Overexpression of miR-3648 rescued impaired osteogenesis in PRMT3-deficient cells. Moreover, administration of Prmt3 shRNA or a chemical inhibitor of PRMT3 (SGC707) caused an osteopenia phenotype in mice. These results indicate that PRMT3 is a potential therapeutic target for the treatment of bone regeneration and osteopenia disorders.
Collapse
|
29
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
30
|
The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 2019; 20:642-657. [PMID: 31350521 DOI: 10.1038/s41580-019-0155-x] [Citation(s) in RCA: 404] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Methylation of arginine residues by protein arginine methyltransferases (PRMTs) is involved in the regulation of fundamental cellular processes, including transcription, RNA processing, signal transduction cascades, the DNA damage response and liquid-liquid phase separation. Recent studies have provided considerable advances in the development of experimental tools and the identification of clinically relevant PRMT inhibitors. In this review, we discuss the regulation of PRMTs, their various cellular roles and the clinical relevance of PRMT inhibitors for the therapy of neurodegenerative diseases and cancer.
Collapse
|
31
|
Hsu MC, Tsai YL, Lin CH, Pan MR, Shan YS, Cheng TY, Cheng SHC, Chen LT, Hung WC. Protein arginine methyltransferase 3-induced metabolic reprogramming is a vulnerable target of pancreatic cancer. J Hematol Oncol 2019; 12:79. [PMID: 31324208 PMCID: PMC6642535 DOI: 10.1186/s13045-019-0769-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The biological function of protein arginine methyltransferase 3 (PRMT3) is not well known because very few physiological substrates of this methyltransferase have been identified to date. METHODS The clinical significance of PRMT3 in pancreatic cancer was studied by database analysis. The PRMT3 protein level of human pancreatic tumors was detected by immunoblotting and immunohistochemical staining. PRMT3-associated proteins and the methylation sites on the proteins were investigated using mass spectrometry. Seahorse Bioscience analyzed the metabolic reprogramming. Combination index analysis and xenograft animal model were conducted to explore the effects of combination of inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and oxidative phosphorylation on tumor growth. RESULTS We found that the expression of PRMT3 is upregulated in pancreatic cancer, and its expression is associated with poor survival. We identified GAPDH as a PRMT3-binding protein and demonstrated that GAPDH is methylated at R248 by PRMT3 in vivo. The methylation of GAPDH by PRMT3 enhanced its catalytic activity while the mutation of R248 abolished the effect. In cells, PRMT3 overexpression triggered metabolic reprogramming and enhanced glycolysis and mitochondrial respiration simultaneously in a GAPDH-dependent manner. PRMT3-overexpressing cancer cells were addicted to GAPDH-mediated metabolism and sensitive to the inhibition of GAPDH and mitochondrial respiration. The combination of inhibitors of GAPDH and oxidative phosphorylation induced a synergistic inhibition on cellular growth in vitro and in vivo. CONCLUSION Our results suggest that PRMT3 mediates metabolic reprogramming and cellular proliferation through methylating R248 of GAPDH, and double blockade of GAPDH and mitochondrial respiration could be a novel strategy for the treatment of PRMT3-overexpressing pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan
| | - Chia-Hsien Lin
- National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Surgery, National Cheng Kung University Hospital, Tainan, 704, Taiwan
| | - Tsung-Yen Cheng
- Department of Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, 112, Taiwan
| | - Skye Hung-Chun Cheng
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, 112, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 704, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
32
|
Bauer I, Lechner L, Pidroni A, Petrone AM, Merschak P, Lindner H, Kremser L, Graessle S, Golderer G, Allipour S, Brosch G. Type I and II PRMTs regulate catabolic as well as detoxifying processes in Aspergillus nidulans. Fungal Genet Biol 2019; 129:86-100. [PMID: 31145992 DOI: 10.1016/j.fgb.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022]
Abstract
In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines. We generated a double type I mutant (ΔrmtA/rmtB) and a combined type I and type II mutant (ΔrmtB/rmtC) to perform genome-wide comparison of their effects on gene expression, but also to monitor putative overlapping activities and reciprocal regulations of type I and type II PRMTs in Aspergillus. Our study demonstrates, that rmtA and rmtC as type I and type II representatives act together as repressors of proteins that are secreted into the extracellular region as the majority of up-regulated genes are mainly involved in catabolic pathways that constitute the secretome of Aspergillus. In addition to a strong up-regulation of secretory genes we found a significant enrichment of down-regulated genes involved in processes related to oxidation-reduction, transmembrane transport and secondary metabolite biosynthesis. Strikingly, nearly 50% of down-regulated genes in both double mutants correspond to redox reaction/oxidoreductase processes, a remarkable finding in light of our recently observed oxidative stress phenotypes of ΔrmtA and ΔrmtC. Finally, analysis of nuclear and cytoplasmic extracts for mono-methylated proteins revealed the presence of both, common and specific substrates of RmtA and RmtC. Thus, our data indicate that type I and II PRMTs in Aspergillus seem to co-regulate the same biological processes but also specifically affect other pathways in a non-redundant fashion.
Collapse
Affiliation(s)
- Ingo Bauer
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Lechner
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angelo Pidroni
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Petrone
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Merschak
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Graessle
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Shadab Allipour
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Gerald Brosch
- Division of Molecular Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
33
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Lily A Maxham
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| |
Collapse
|
34
|
Adamopoulos PG, Mavrogiannis AV, Kontos CK, Scorilas A. Novel alternative splice variants of the human protein arginine methyltransferase 1 (PRMT1) gene, discovered using next-generation sequencing. Gene 2019; 699:135-144. [PMID: 30849541 DOI: 10.1016/j.gene.2019.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technology is highly expected to help researchers disclose the complexity of alternative splicing and understand its association with carcinogenesis. Alternative splicing alterations are firmly associated with multiple malignancies, in terms of functional roles in malignant transformation, motility, and/or metastasis of cancer cells. One perfect example illustrating the connection between alternative splicing and cancer is the human protein arginine methyltransferase 1 (PRMT1) gene, previously cloned from members of our research group and involved in a variety of processes including transcription, DNA repair, and signal transduction. Two splice variants of PRMT1 (variants v.1 and v.2) are downregulated in breast cancer. In addition, PRMT1 v.2 promotes the survival and invasiveness of breast cancer cells, while it could serve as a biomarker of unfavorable prognosis in colon cancer patients. The aim of this study was the molecular cloning of novel alternative splice variants of PRMT1 with the use of 3' RACE coupled with NGS technology. Extensive bioinformatics and computational analysis revealed a significant number of 19 novel alternative splicing events between annotated exons of PRMT1 as well as one novel exon, resulting in the discovery of multiple PRMT1 transcripts. In order to validate the full sequence of the novel transcripts, RT-PCR was carried out with the use of variant-specific primers. As a result, 58 novel PRMT1 transcripts were identified, 34 of which are mRNAs encoding new protein isoforms, whereas the rest 24 transcripts are candidates for nonsense-mediated mRNA decay (NMD).
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Adamantios V Mavrogiannis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
35
|
Larochelle M, Bergeron D, Arcand B, Bachand F. Proximity-dependent biotinylation by TurboID to identify protein-protein interaction networks in yeast. J Cell Sci 2019; 132:jcs.232249. [DOI: 10.1242/jcs.232249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023] Open
Abstract
The use of proximity-dependent biotinylation assays coupled to mass spectrometry (PDB-MS) has changed the field of protein-protein interaction studies. Yet, despite the recurrent and successful use of BioID-based protein-protein interactions screening in mammalian cells, the implementation of PDB-MS in yeast has not been effective. Here we report a simple and rapid approach in yeast to effectively screen for proximal and interacting proteins in their natural cellular environment by using TurboID, a recently described version of the BirA biotin ligase. Using the protein arginine methyltransferase Rmt3 and the RNA exosome subunits, Rrp6 and Dis3, the application of PDB-MS in yeast by using TurboID was able to recover protein-protein interactions previously identified using other biochemical approaches and provided new complementary information for a given protein bait. The development of a rapid and effective PDB assay that can systematically analyze protein-protein interactions in living yeast cells opens the way for large-scale proteomics studies in this powerful model organism.
Collapse
Affiliation(s)
- Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Bruno Arcand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| |
Collapse
|
36
|
Dionne KL, Bergeron D, Landry-Voyer AM, Bachand F. The 40S ribosomal protein uS5 (RPS2) assembles into an extraribosomal complex with human ZNF277 that competes with the PRMT3-uS5 interaction. J Biol Chem 2018; 294:1944-1955. [PMID: 30530495 DOI: 10.1074/jbc.ra118.004928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ribosomal (r)-proteins are generally viewed as ubiquitous, constitutive proteins that simply function to maintain ribosome integrity. However, findings in the past decade have led to the idea that r-proteins have evolved specialized functions beyond the ribosome. For example, the 40S ribosomal protein uS5 (RPS2) is known to form an extraribosomal complex with the protein arginine methyltransferase PRMT3 that is conserved from fission yeast to humans. However, the full scope of uS5's extraribosomal functions, including whether uS5 interacts with any other proteins, is not known. In this study, we identify the conserved zinc finger protein 277 (ZNF277) as a new uS5-associated protein by using quantitative proteomics approaches in human cells. As previously shown for PRMT3, we found that ZNF277 uses a C2H2-type zinc finger domain to recognize uS5. Analysis of protein-protein interactions in living cells indicated that the ZNF277-uS5 complex is found in the cytoplasm and the nucleolus. Furthermore, we show that ZNF277 and PRMT3 compete for uS5 binding, because overexpression of PRMT3 inhibited the formation of the ZNF277-uS5 complex, whereas depletion of cellular ZNF277 resulted in increased levels of uS5-PRMT3. Notably, our results reveal that ZNF277 recognizes nascent uS5 in the course of mRNA translation, suggesting cotranslational assembly of the ZNF277-uS5 complex. Our findings thus unveil an intricate network of evolutionarily conserved protein-protein interactions involving extraribosomal uS5, suggesting a key role for uS5 beyond the ribosome.
Collapse
Affiliation(s)
- Kiersten L Dionne
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Danny Bergeron
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Anne-Marie Landry-Voyer
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François Bachand
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
37
|
Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51. [PMID: 30240645 PMCID: PMC6123894 DOI: 10.1016/j.isci.2018.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1). Levels of S-adenosylmethionine and methylated histone H3 were greatly diminished in sam1 mutants. sam1 mutants stopped proliferating in vegetative culture and arrested specifically in G2 phase without cell elongation. Furthermore, sam1 mutants lost viability during nitrogen starvation-induced G0 phase quiescence. After release from the G0 state, sam1 mutants could neither increase in cell size nor re-initiate DNA replication in the rich medium. Sam1 is thus required for cell growth and proliferation, and maintenance of and exit from quiescence. sam1 mutants lead to broad cellular and drug response defects, as expected, since S. pombe contains more than 90 S-adenosylmethionine-dependent methyltransferases.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Romanas Chaleckis
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Susumu Morigasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
38
|
Obata F, Tsuda-Sakurai K, Yamazaki T, Nishio R, Nishimura K, Kimura M, Funakoshi M, Miura M. Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine. Dev Cell 2018; 44:741-751.e3. [PMID: 29587144 DOI: 10.1016/j.devcel.2018.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 02/01/2023]
Abstract
The intestine has direct contact with nutritional information. The mechanisms by which particular dietary molecules affect intestinal homeostasis are not fully understood. In this study, we identified S-adenosylmethionine (SAM), a universal methyl donor synthesized from dietary methionine, as a critical molecule that regulates stem cell division in Drosophila midgut. Depletion of either dietary methionine or SAM synthesis reduces division rate of intestinal stem cells. Genetic screening for putative SAM-dependent methyltransferases has identified protein synthesis as a regulator of the stem cells, partially through a unique diphthamide modification on eukaryotic elongation factor 2. In contrast, SAM in nutrient-absorptive enterocytes controls the interleukin-6-like protein Unpaired 3, which is required for rapid division of the stem cells after refeeding. Our study sheds light upon a link between diet and intestinal homeostasis and highlights the key metabolite SAM as a mediator of cell-type-specific starvation response.
Collapse
Affiliation(s)
- Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kayoko Tsuda-Sakurai
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Yamazaki
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Nishio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Kimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masabumi Funakoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
39
|
Kaniskan HÜ, Eram MS, Zhao K, Szewczyk MM, Yang X, Schmidt K, Luo X, Xiao S, Dai M, He F, Zang I, Lin Y, Li F, Dobrovetsky E, Smil D, Min SJ, Lin-Jones J, Schapira M, Atadja P, Li E, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Liu F, Yu Z, Vedadi M, Jin J. Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3). J Med Chem 2018; 61:1204-1217. [PMID: 29244490 PMCID: PMC5808361 DOI: 10.1021/acs.jmedchem.7b01674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is crucial for maturation of ribosomes and has been implicated in several diseases. We recently disclosed a highly potent, selective, and cell-active allosteric inhibitor of PRMT3, compound 4. Here, we report comprehensive structure-activity relationship studies that target the allosteric binding site of PRMT3. We conducted design, synthesis, and evaluation of novel compounds in biochemical, selectivity, and cellular assays that culminated in the discovery of 4 and other highly potent (IC50 values: ∼10-36 nM), selective, and cell-active allosteric inhibitors of PRMT3 (compounds 29, 30, 36, and 37). In addition, we generated compounds that are very close analogs of these potent inhibitors but displayed drastically reduced potency as negative controls (compounds 49-51). These inhibitors and negative controls are valuable chemical tools for the biomedical community to further investigate biological functions and disease associations of PRMT3.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Kehao Zhao
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Xiaobao Yang
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Keith Schmidt
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Xiao Luo
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Sean Xiao
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Miao Dai
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Feng He
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Irene Zang
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Ying Lin
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Elena Dobrovetsky
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Sun-Joon Min
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | | | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Peter Atadja
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - En Li
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre , 101 College Street, MaRS South Tower, Suite 707, Toronto, ON M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhengtian Yu
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
40
|
Abstract
Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.
Collapse
Affiliation(s)
- Jo Ann Wise
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4906
| | - Olaf Nielsen
- Department of Biology, Functional Genomics Division, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
42
|
Human PDCD2L Is an Export Substrate of CRM1 That Associates with 40S Ribosomal Subunit Precursors. Mol Cell Biol 2016; 36:3019-3032. [PMID: 27697862 DOI: 10.1128/mcb.00303-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023] Open
Abstract
Protein arginine methyltransferase 3 (PRMT3) forms a stable complex with 40S ribosomal protein S2 (RPS2) and contributes to ribosome biogenesis. However, the molecular mechanism by which PRMT3 influences ribosome biogenesis and/or function still remains unclear. Using quantitative proteomics, we identified human programmed cell death 2-like (PDCD2L) as a novel PRMT3-associated protein. Our data suggest that RPS2 promotes the formation of a conserved extraribosomal complex with PRMT3 and PDCD2L. We also show that PDCD2L associates with 40S subunit precursors that contain a 3'-extended form of the 18S rRNA (18S-E pre-rRNA) and several pre-40S maturation factors. PDCD2L shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner using a leucine-rich nuclear export signal that is sufficient to direct the export of a reporter protein. Although PDCD2L is not required for the biogenesis and export of 40S ribosomal subunits, we found that PDCD2L-null cells accumulate free 60S ribosomal subunits, which is indicative of a deficiency in 40S subunit availability. Our data also indicate that PDCD2L and its paralog, PDCD2, function redundantly in 40S ribosomal subunit production. Our findings uncover the existence of an extraribosomal complex consisting of PDCD2L, RPS2, and PRMT3 and support a role for PDCD2L in the late maturation of 40S ribosomal subunits.
Collapse
|
43
|
Abstract
The plasma concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is the resultant of many processes at cellular and organ levels. Post-translational methylation of arginine residues of pro teins plays a crucial role in the regulation of their functions, which include processes such as transcription, translation and RNA splicing. Because protein methylation is irreversible, the methylation signal can be turned off only by proteolysis of the entire protein. Consequently, most methylated proteins have high turnover rates. Free ADMA, which is formed during proteolysis, is actively degraded by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH). Some ADMA escapes degradation and leaves the cell via cationic amino acid transporters. These trans porters also mediate uptake of ADMA by neighboring cells or distant organs, thereby facilitating active interorgan transport. Clearance of ADMA from the plasma occurs in small part by urinary excretion, but the bulk of ADMA is degraded by intracellular DDAH, after uptake from the circulation. This review discusses the various processes involved in ADMA metabolism: protein methylation, proteolysis of methylated proteins, metabolism by DDAH, and interorgan transport. In addition, the role of the kidney and the liver in the clearance of ADMA is highlighted.
Collapse
Affiliation(s)
- Tom Teerlink
- 1Department of Clinical Chemistry, VU University Medical
Center, Amsterdam, The Netherland
| |
Collapse
|
44
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
45
|
Toxoplasma gondii Arginine Methyltransferase 1 (PRMT1) Is Necessary for Centrosome Dynamics during Tachyzoite Cell Division. mBio 2016; 7:e02094-15. [PMID: 26838719 PMCID: PMC4742710 DOI: 10.1128/mbio.02094-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The arginine methyltransferase family (PRMT) has been implicated in a variety of cellular processes, including signal transduction, epigenetic regulation, and DNA repair pathways. PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. To further define the biological function of the PRMT family, we generated T. gondii mutants lacking PRMT1 (Δprmt1) by deletion of the PRMT1 gene. Δprmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the Δprmt::PRMT1mRFP complemented strain. Tagged PRMT1 localizes primarily in the cytoplasm with enrichment at the pericentriolar material, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, Δprmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole-genome expression profiling demonstrated differences in expression of cell-cycle-regulated genes in the Δprmt1 strain relative to the complemented Δprmt1::PRMT1mRFP and parental wild-type strains, but these changes do not correlate with a specific block in cell cycle. Although PRMT1’s primary biological function was previously proposed to be methylation of histones, our studies suggest that PRMT1 plays an important role within the centrosome to ensure the proper replication of the parasite. Apicomplexan parasites include several important pathogens, including Toxoplasma gondii, a major cause of opportunistic infections and congenital birth defects. These parasites divide using a unique form of cell division called endodyogeny that is different from those of most eukaryotes. PRMT1 is a conserved arginine methyltransferase that was thought to regulate gene expression of T. gondii by modifying histone methylation. Using genetic techniques, we show that disruption of PRMT1 affects the parasite’s ability to perform accurate cell division. Our studies reveal an unexpected role for arginine methylation in centrosome biology and regulation of parasite replication.
Collapse
|
46
|
Minakhina S, Naryshkina T, Changela N, Tan W, Steward R. Zfrp8/PDCD2 Interacts with RpS2 Connecting Ribosome Maturation and Gene-Specific Translation. PLoS One 2016; 11:e0147631. [PMID: 26807849 PMCID: PMC4726551 DOI: 10.1371/journal.pone.0147631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 11/28/2022] Open
Abstract
Zfrp8/PDCD2 is a highly conserved protein essential for stem cell maintenance in both flies and mammals. It is also required in fast proliferating cells such as cancer cells. Our previous studies suggested that Zfrp8 functions in the formation of mRNP (mRNA ribonucleoprotein) complexes and also controls RNA of select Transposable Elements (TEs). Here we show that in Zfrp8/PDCD2 knock down (KD) ovaries, specific mRNAs and TE transcripts show increased nuclear accumulation. We also show that Zfrp8/PDCD2 interacts with the (40S) small ribosomal subunit through direct interaction with RpS2 (uS5). By studying the distribution of endogenous and transgenic fluorescently tagged ribosomal proteins we demonstrate that Zfrp8/PDCD2 regulates the cytoplasmic levels of components of the small (40S) ribosomal subunit, but does not control nuclear/nucleolar localization of ribosomal proteins. Our results suggest that Zfrp8/PDCD2 functions at late stages of ribosome assembly and may regulate the binding of specific mRNA-RNPs to the small ribosomal subunit ultimately controlling their cytoplasmic localization and translation.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (SM); (RS)
| | - Tatyana Naryshkina
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - William Tan
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Ruth Steward
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (SM); (RS)
| |
Collapse
|
47
|
Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. A Polyadenylation-Dependent 3' End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep 2015; 13:2244-57. [PMID: 26628368 DOI: 10.1016/j.celrep.2015.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Telomere maintenance by the telomerase reverse transcriptase requires a noncoding RNA subunit that acts as a template for the synthesis of telomeric repeats. In humans, the telomerase RNA (hTR) is a non-polyadenylated transcript produced from an independent transcriptional unit. As yet, the mechanism and factors responsible for hTR 3' end processing have remained largely unknown. Here, we show that hTR is matured via a polyadenylation-dependent pathway that relies on the nuclear poly(A)-binding protein PABPN1 and the poly(A)-specific RNase PARN. Depletion of PABPN1 and PARN results in telomerase RNA deficiency and the accumulation of polyadenylated precursors. Accordingly, a deficiency in PABPN1 leads to impaired telomerase activity and telomere shortening. In contrast, we find that hTRAMP-dependent polyadenylation and exosome-mediated degradation function antagonistically to hTR maturation, thereby limiting telomerase RNA accumulation. Our findings unveil a critical requirement for RNA polyadenylation in telomerase RNA biogenesis, providing alternative approaches for telomerase inhibition in cancer.
Collapse
Affiliation(s)
- Duy Nguyen
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
48
|
Thandapani P, Song J, Gandin V, Cai Y, Rouleau SG, Garant JM, Boisvert FM, Yu Z, Perreault JP, Topisirovic I, Richard S. Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. eLife 2015; 4. [PMID: 26267306 PMCID: PMC4561382 DOI: 10.7554/elife.06234] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are extremely stable secondary structures forming stacks of guanine tetrads. DNA G4 structures have been extensively studied, however, less is known about G4 motifs in mRNAs, especially in their coding sequences. Herein, we show that Aven stimulates the mRNA translation of the mixed lineage leukemia (MLL) proto-oncogene in an arginine methylation-dependent manner. The Aven RGG/RG motif bound G4 structures within the coding regions of the MLL1 and MLL4 mRNAs increasing their polysomal association and translation, resulting in the induction of transcription of leukemic genes. The DHX36 RNA helicase associated with the Aven complex and was required for optimal translation of G4 mRNAs. Depletion of Aven led to a decrease in synthesis of MLL1 and MLL4 proteins resulting in reduced proliferation of leukemic cells. These findings identify an Aven-centered complex that stimulates the translation of G4 harboring mRNAs, thereby promoting survival of leukemic cells. DOI:http://dx.doi.org/10.7554/eLife.06234.001 To make a protein, the DNA sequence that encodes it is first copied to make a molecule of messenger RNA (or mRNA for short). The mRNA is then used as a set of instructions to assemble a protein in a process called translation. Both DNA and RNA molecules can fold into particular shapes. One such structure is known as a G-quartet and involves the DNA or RNA folding back on itself to form a highly stable planar structure. Stacks of G-quartets can form structures known as G-quadruplexes, but little is known about the G-quadruplexes that form in mRNA molecules. Leukemia affects cells in the bone marrow and causes blood cells to develop abnormally. A protein called Aven is often found in increased amounts in certain types of leukemic cells, but it was not clear how Aven affects how leukemia develops. Thandapani, Song et al. have now found that in leukemic cells, Aven binds to G-quadruplexes found in two mRNA molecules that encode proteins that are linked to leukemia. This binding increases the translation of these mRNAs, with translation occurring most efficiently when a particular enzyme called a helicase—which remodels RNA—also bound to Aven. Reducing the amount of Aven in cells caused fewer of the leukemic proteins to be produced, which also reduced the growth and multiplcation of leukemic cells. These findings raise the possibility that drugs that disrupt how Aven works could form part of treatments for leukemia. The next challenge will be to identify the signaling pathways that communicate with Aven and to define all the G-quadruplex mRNAs that are regulated by Aven. DOI:http://dx.doi.org/10.7554/eLife.06234.002
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Jingwen Song
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Valentina Gandin
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Yutian Cai
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Samuel G Rouleau
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Francois-Michel Boisvert
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Canada
| | - Zhenbao Yu
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| |
Collapse
|
49
|
Yagoub D, Hart-Smith G, Moecking J, Erce MA, Wilkins MR. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p. Proteomics 2015; 15:3209-18. [DOI: 10.1002/pmic.201500075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/08/2015] [Accepted: 06/15/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Daniel Yagoub
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Jonas Moecking
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Melissa A. Erce
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Marc R. Wilkins
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| |
Collapse
|
50
|
Lott K, Mukhopadhyay S, Li J, Wang J, Yao J, Sun Y, Qu J, Read LK. Arginine methylation of DRBD18 differentially impacts its opposing effects on the trypanosome transcriptome. Nucleic Acids Res 2015; 43:5501-23. [PMID: 25940618 PMCID: PMC4477658 DOI: 10.1093/nar/gkv428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a posttranslational modification that impacts wide-ranging cellular functions, including transcription, mRNA splicing and translation. RNA binding proteins (RBPs) represent one of the largest classes of arginine methylated proteins in both mammals and the early diverging parasitic protozoan, Trypanosoma brucei. Here, we report the effects of arginine methylation on the functions of the essential and previously uncharacterized T. brucei RBP, DRBD18. RNAseq analysis shows that DRBD18 depletion causes extensive rearrangement of the T. brucei transcriptome, with increases and decreases in hundreds of mRNAs. DRBD18 contains three methylated arginines, and we used complementation of DRBD18 knockdown cells with methylmimic or hypomethylated DRBD18 to assess the functions of these methylmarks. Methylmimic and hypomethylated DRBD18 associate with different ribonucleoprotein complexes. These altered macromolecular interactions translate into differential impacts on the T. brucei transcriptome. Methylmimic DRBD18 preferentially stabilizes target RNAs, while hypomethylated DRBD18 is more efficient at destabilizing RNA. The protein arginine methyltransferase, TbPRMT1, interacts with DRBD18 and knockdown of TbPRMT1 recapitulates the effects of hypomethylated DRBD18 on mRNA levels. Together, these data support a model in which arginine methylation acts as a switch that regulates T. brucei gene expression.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shreya Mukhopadhyay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Yao
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|