1
|
Mendoza CS, Plowinske CR, Montgomery AC, Quinones GB, Banker G, Bentley M. Kinesin Regulation in the Proximal Axon is Essential for Dendrite-selective Transport. Mol Biol Cell 2024; 35:ar81. [PMID: 38598291 PMCID: PMC11238084 DOI: 10.1091/mbc.e23-11-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3β and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.
Collapse
Affiliation(s)
- Christina S. Mendoza
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Cameron R. Plowinske
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Geraldine B. Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon 97239
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
2
|
Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, Susaki EA, Taira M, Hatakeyama M. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal 2023; 16:eabp9020. [PMID: 37463245 DOI: 10.1126/scisignal.abp9020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.
Collapse
Affiliation(s)
- Atsushi Takahashi-Kanemitsu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mengxue Lu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ippei Kikuchi
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 924-1192, Japan
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Research Center of Microbial Carcinogenesis, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
3
|
Tang EI, Cheng CY. MARK2 and MARK4 Regulate Sertoli Cell BTB Dynamics Through Microtubule and Actin Cytoskeletons. Endocrinology 2022; 163:6667645. [PMID: 35971301 PMCID: PMC10147390 DOI: 10.1210/endocr/bqac130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Microtubule affinity-regulating kinases (MARKs) are nonreceptor Ser/Thr protein kinases known to regulate cell polarity and microtubule dynamics in Caenorhabditis elegans, Drosophila, invertebrates, vertebrates, and mammals. An earlier study has shown that MARK4 is present at the ectoplasmic specialization and blood-testis barrier (BTB) in the seminiferous epithelium of adult rat testes. Here, we report the function of MARK4 and another isoform MARK2 in Sertoli cells at the BTB. Knockdown of MARK2, MARK4, or MARK2 and MARK4 by RNAi using the corresponding siRNA duplexes without apparent off-target effects was shown to impair tight junction (TJ)-permeability barrier at the Sertoli cell BTB. It also disrupted microtubule (MT)- and actin-based cytoskeletal organization within Sertoli cells. Although MARK2 and MARK4 were shown to share sequence homology, they likely regulated the Sertoli cell BTB and MT cytoskeleton differently. Disruption of the TJ-permeability barrier following knockdown of MARK4 was considerably more severe than loss of MARK2, though both perturbed the barrier. Similarly, loss of MARK2 affected MT organization in a different manner than the loss of MARK4. Knockdown of MARK2 caused MT bundles to be arranged around the cell periphery, whereas knockdown of MARK4 caused MTs to retract from the cell edge. These differences in effects on the TJ-permeability barrier are likely from the unique roles of MARK2 and MARK4 in regulating the MT cytoskeleton of the Sertoli cell.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
4
|
Nakayama J, Makinoshima H, Gong Z. Gastrulation Screening to Identify Anti-metastasis Drugs in Zebrafish Embryos. Bio Protoc 2022; 12:e4525. [PMID: 36313195 PMCID: PMC9548519 DOI: 10.21769/bioprotoc.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we present a drug screening protocol utilizing gastrulation of zebrafish embryos for identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through utilizing the molecular mechanisms of gastrulation, we hypothesized that chemicals interrupting zebrafish gastrulation might suppress the metastasis of cancer cells. Thus, we developed a phenotype-based chemical screen that uses epiboly, the first morphogenetic movement in gastrulation, as a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be tested in five hours by observing the epiboly progression of chemical-treated embryos. In the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere stage. The embryos are treated with a test chemical and incubated in the presence of the chemical until vehicle-treated embryos develop to the 90% epiboly stage. Finally, positive 'hit' chemicals that interrupt epiboly progression are selected by comparing epiboly progression of the chemical-treated and vehicle-treated embryos under a stereoscopic microscope. A previous study subjected 1,280 FDA-approved drugs to the screen and identified adrenosterone and pizotifen as epiboly-interrupting drugs. These were validated to suppress metastasis of breast cancer cells in mice models of metastasis. Furthermore, 11β-hydroxysteroid dehydrogenase 1 (HSD11β1) and serotonin receptor 2C (HTR2C), the primary targets of adrenosterone and pizotifen, respectively, promoted metastasis through induction of epithelial-mesenchymal transition (EMT). Therefore, this screen could be converted into a chemical genetic screening platform for identification of metastasis-promoting genes. Graphical abstract.
Collapse
Affiliation(s)
- Joji Nakayama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Shonai Regional Industry Promotion Center, Tsuruoka, Japan
,
Department of Biological Science, National University of Singapore, Singapore
,
*For correspondence:
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, Singapore
| |
Collapse
|
5
|
Nakayama J, Tan L, Li Y, Goh BC, Wang S, Makinoshima H, Gong Z. A zebrafish embryo screen utilizing gastrulation identifies the HTR2C inhibitor pizotifen as a suppressor of EMT-mediated metastasis. eLife 2021; 10:e70151. [PMID: 34919051 PMCID: PMC8824480 DOI: 10.7554/elife.70151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Metastasis is responsible for approximately 90% of cancer-associated mortality but few models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse models of metastasis are too expensive and time consuming to use for rapid and high-throughput screening. Therefore, we created a unique screening concept utilizing conserved mechanisms between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, as a marker and enabled 100 chemicals to be tested in 5 hr. The screen tested 1280 FDA-approved drugs and identified pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-interrupting drug. Pharmacological and genetic inhibition of HTR2C suppressed metastatic progression in a mouse model. Blocking HTR2C with pizotifen restored epithelial properties to metastatic cells through inhibition of Wnt signaling. In contrast, HTR2C induced epithelial-to-mesenchymal transition through activation of Wnt signaling and promoted metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel platform for discovery of anti-metastasis drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
| | - Lora Tan
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Yan Li
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Shu Wang
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Institute of Bioengineering and NanotechnologySingaporeSingapore
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| |
Collapse
|
6
|
New insights into apical-basal polarization in epithelia. Curr Opin Cell Biol 2019; 62:1-8. [PMID: 31505411 DOI: 10.1016/j.ceb.2019.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
The establishment of an apical-basal axis of polarity is essential for the organization and functioning of epithelial cells. Polarization of epithelial cells is orchestrated by a network of conserved polarity regulators that establish opposing cortical domains through mutually antagonistic interactions and positive feedback loops. While our understanding is still far from complete, the molecular details behind these interactions continue to be worked out. Here, we highlight recent findings on the mechanisms that control the activity and localization of apical-basal polarity regulators, including oligomerization and higher-order complex formation, auto-inhibitory interactions, and electrostatic interactions with the plasma membrane.
Collapse
|
7
|
Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Open Biol 2019; 9:180263. [PMID: 31238822 PMCID: PMC6597755 DOI: 10.1098/rsob.180263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue maintenance and development requires a directed plane of cell division. While it is clear that the division plane can be determined by retraction fibres that guide spindle movements, the precise molecular components of retraction fibres that control spindle movements remain unclear. We report MARK2/Par1b kinase as a novel component of actin-rich retraction fibres. A kinase-dead mutant of MARK2 reveals MARK2's ability to monitor subcellular actin status during interphase. During mitosis, MARK2's localization at actin-rich retraction fibres, but not the rest of the cortical membrane or centrosome, is dependent on its activity, highlighting a specialized spatial regulation of MARK2. By subtly perturbing the actin cytoskeleton, we reveal MARK2's role in correcting mitotic spindle off-centring induced by actin disassembly. We propose that MARK2 provides a molecular framework to integrate cortical signals and cytoskeletal changes in mitosis and interphase.
Collapse
Affiliation(s)
- Madeleine Hart
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Ihsan Zulkipli
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | | | - David Dang
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK.,3 Department of Informatics, King's College, London , London , UK
| | - Duccio Conti
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Parveen Gul
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Izabela Kujawiak
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | - Viji M Draviam
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
8
|
Establishment of the PAR-1 cortical gradient by the aPKC-PRBH circuit. Nat Chem Biol 2018; 14:917-927. [PMID: 30177850 DOI: 10.1038/s41589-018-0117-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
Cell polarity is the asymmetric compartmentalization of cellular components. An opposing gradient of partitioning-defective protein kinases, atypical protein kinase C (aPKC) and PAR-1, at the cell cortex guides diverse asymmetries in the structure of metazoan cells, but the mechanism underlying their spatial patterning remains poorly understood. Here, we show in Caenorhabditis elegans zygotes that the cortical PAR-1 gradient is patterned as a consequence of dual mechanisms: stabilization of cortical dynamics and protection from aPKC-mediated cortical exclusion. Dual control of cortical PAR-1 depends on a physical interaction with the PRBH-domain protein PAR-2. Using a reconstitution approach in heterologous cells, we demonstrate that PAR-1, PAR-2, and polarized Cdc42-PAR-6-aPKC comprise the minimal network sufficient for the establishment of an opposing cortical gradient. Our findings delineate the mechanism governing cortical polarity, in which a circuit consisting of aPKC and the PRBH-domain protein ensures the local recruitment of PAR-1 to a well-defined cortical compartment.
Collapse
|
9
|
Sonntag T, Vaughan JM, Montminy M. 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 2018; 285:467-480. [PMID: 29211348 DOI: 10.1111/febs.14351] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
The salt-inducible kinase (SIK) family regulates cellular gene expression via the phosphorylation of cAMP-regulated transcriptional coactivators (CRTCs) and class IIA histone deacetylases, which are sequestered in the cytoplasm by phosphorylation-dependent 14-3-3 interactions. SIK activity toward these substrates is inhibited by increases in cAMP signaling, although the underlying mechanism is unclear. Here, we show that the protein kinase A (PKA)-dependent phosphorylation of SIKs inhibits their catalytic activity by inducing 14-3-3 protein binding. SIK1 and SIK3 contain two functional PKA/14-3-3 sites, while SIK2 has four. In keeping with the dimeric nature of 14-3-3s, the presence of multiple binding sites within target proteins dramatically increases binding affinity. As a result, loss of a single 14-3-3-binding site in SIK1 and SIK3 abolished 14-3-3 association and rendered them insensitive to cAMP. In contrast, mutation of three sites in SIK2 was necessary to fully block cAMP regulation. Superimposed on the effects of PKA phosphorylation and 14-3-3 association, an evolutionary conserved domain in SIK1 and SIK2 (the so called RK-rich region; 595-624 in hSIK2) is also required for the inhibition of SIK2 activity. Collectively, these results point to a dual role for 14-3-3 proteins in repressing a family of Ser/Thr kinases as well as their substrates.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
10
|
Crawford M, Dagnino L. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier. Tissue Barriers 2017; 5:e1341969. [PMID: 28665776 DOI: 10.1080/21688370.2017.1341969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.
Collapse
Affiliation(s)
- Melissa Crawford
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| | - Lina Dagnino
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
11
|
MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 2016; 54:6304-6316. [PMID: 27714636 DOI: 10.1007/s12035-016-0164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Dishevelled (DVL/Dvl) genes play roles in canonical and noncanonical Wnt signaling, both of which are essential in neural tube closing and are involved in balancing neural progenitor growth and differentiation, or neuroepithelial cell polarity, respectively. In mouse Dvl haploinsufficiency leads to neural tube defects (NTDs), which represent the second most common birth defects. However, DVL genes' genetic contributions in human NTDs are modest. We sought to explore the molecular impact on such genes in human NTDs in a Han Chinese cohort. In 47 cases with NTDs and 61 matched controls, in brain tissues, the DVL1/2 mRNA levels were correlated with the levels of a serine/threonine protein kinase MARK2, and in 20 cases with lumbosacral spina bifida, the mRNA levels of DVL1 and MARK2 were significantly decreased; by contrast, only an intronic rare variant was found. Moreover, in an extended population, we found merely three novel rare missense variants in 1 % of individuals with NTDs. In cell-based assays, Mark2 depletion indeed reduces Dvl gene expression and interrupts neural stem cell (NSCs) growth and differentiation, which are likely to be mediated through a decrease in class IIa HDAC phosphorylation and reduced H3K4ac and H3K27ac occupancies at the Dvl1/2 promoters. Finally, the detections of folate concentration in human brain tissue and NSCs and MEF cells indicates that folate deficiency contributes to the observed decreases in Mark2 and Dvl1 expression. Our present study raises a potential common pathogenicity mechanism in human lumbosacral spina bifida about DVL genes rather than their genetic pathogenic role.
Collapse
|
12
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
13
|
Akchurin O, Du Z, Ramkellawan N, Dalal V, Han SH, Pullman J, Müsch A, Susztak K, Reidy KJ. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development. J Am Soc Nephrol 2016; 27:3725-3737. [PMID: 27185860 DOI: 10.1681/asn.2014111124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling.
Collapse
Affiliation(s)
- Oleh Akchurin
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Zhongfang Du
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Nadira Ramkellawan
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Vidhi Dalal
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Bronx, New York; and
| | - Anne Müsch
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York; .,Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Calero-Cuenca FJ, Espinosa-Vázquez JM, Reina-Campos M, Díaz-Meco MT, Moscat J, Sotillos S. Nuclear fallout provides a new link between aPKC and polarized cell trafficking. BMC Biol 2016; 14:32. [PMID: 27089924 PMCID: PMC4836198 DOI: 10.1186/s12915-016-0253-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background Cell polarity, essential for cell physiology and tissue coherence, emerges as a consequence of asymmetric localization of protein complexes and directional trafficking of cellular components. Although molecules required in both processes are well known their relationship is still poorly understood. Results Here we show a molecular link between Nuclear Fallout (Nuf), an adaptor of Rab11-GTPase to the microtubule motor proteins during Recycling Endosome (RE) trafficking, and aPKC, a pivotal kinase in the regulation of cell polarity. We demonstrate that aPKC phosphorylates Nuf modifying its subcellular distribution. Accordingly, in aPKC mutants Nuf and Rab11 accumulate apically indicating altered RE delivery. We show that aPKC localization in the apico-lateral cortex is dynamic. When we block exocytosis, by means of exocyst-sec mutants, aPKC accumulates inside the cells. Moreover, apical aPKC concentration is reduced in nuf mutants, suggesting aPKC levels are maintained by recycling. Conclusions We demonstrate that active aPKC interacts with Nuf, phosphorylating it and, as a result, modifying its subcellular distribution. We propose a regulatory loop by which Nuf promotes aPKC apical recycling until sufficient levels of active aPKC are reached. Thus, we provide a novel link between cell polarity regulation and traffic control in epithelia. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0253-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco J Calero-Cuenca
- CABD, CSIC/JA/UPO, Campus Universidad Pablo de Olavide, Ctra. De Utrera Km. 1, Seville, 41013, Spain
| | | | | | - María T Díaz-Meco
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA
| | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA
| | - Sol Sotillos
- CABD, CSIC/JA/UPO, Campus Universidad Pablo de Olavide, Ctra. De Utrera Km. 1, Seville, 41013, Spain.
| |
Collapse
|
15
|
Moorhouse KS, Gudejko HF, McDougall A, Burgess DR. Influence of cell polarity on early development of the sea urchin embryo. Dev Dyn 2015; 244:1469-84. [PMID: 26293695 PMCID: PMC4715636 DOI: 10.1002/dvdy.24337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Establishment and maintenance of cell polarity is critical for normal embryonic development. Previously, it was thought that the echinoderm embryo remained relatively unpolarized until the first asymmetric division at the 16-cell stage. Here, we analyzed roles of the cell polarity regulators, the PAR complex proteins, and how their disruption in early development affects later developmental milestones. RESULTS We found that PAR6, aPKC, and CDC42 localize to the apical cortex as early as the 2-cell stage and that this localization is retained through the gastrula stage. Of interest, PAR1 also colocalizes with these apical markers through the gastrula stage. Additionally, PAR1 was found to be in complex with aPKC, but not PAR6. PAR6, aPKC, and CDC42 are anchored in the cortical actin cytoskeleton by assembled myosin. Furthermore, assembled myosin was found to be necessary to maintain proper PAR6 localization through subsequent cleavage divisions. Interference with myosin assembly prevented the embryos from reaching the blastula stage, while transient disruptions of either actin or microtubules did not have this effect. CONCLUSIONS These observations suggest that disruptions of the polarity in the early embryo can have a significant impact on the ability of the embryo to reach later critical stages in development.
Collapse
Affiliation(s)
- Kathleen S. Moorhouse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Heather F.M. Gudejko
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Alex McDougall
- UMR 7009, UPMC Sorbonne Universités, Centre National de la Recherche (CNRS), Observatoire Océanologique, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - David R. Burgess
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
16
|
McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 312:169-99. [PMID: 25262242 DOI: 10.1016/b978-0-12-800178-3.00006-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions via noncanonical protein targets. Recent studies have demonstrated that Par-1/MARK proteins are required for the migration of multiple cell types. This review outlines the current evidence for regulation of cell migration by Par-1/MARK through both canonical and noncanonical roles. Par-1/MARK canonical control of microtubules during nonneuronal and neuronal migration is described. Next, regulation of cell polarity by Par-1/MARK and its dynamic effect on the movement of migrating cells are discussed. As examples of recent research that have expanded, the roles of the Par-1/MARK in cell migration, noncanonical functions of Par-1/MARK in Wnt signaling and actomyosin dynamics are described. This review also highlights questions and current challenges to further understanding how the versatile Par-1/MARK proteins function in cell migration during development, homeostatic processes, and cancer.
Collapse
Affiliation(s)
- Jocelyn A McDonald
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
17
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 528] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
18
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
19
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
20
|
Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat Cell Biol 2012; 14:666-76. [PMID: 22634595 DOI: 10.1038/ncb2508] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 02/08/2023]
Abstract
Apically enriched Rab11-positive recycling endosomes (Rab11-REs) are important for establishing and maintaining epithelial polarity. Yet, little is known about the molecules controlling trafficking of Rab11-REs in an epithelium in vivo. Here, we report a genome-wide, image-based RNA interference screen for regulators of Rab11-RE positioning and transport of an apical membrane protein (PEPT-1) in C. elegans intestine. Among the 356 screen hits was the 14-3-3 and partitioning defective protein PAR-5, which we found to be specifically required for Rab11-RE positioning and apicobasal polarity maintenance. Depletion of PAR-5 induced abnormal clustering of Rab11-REs to ectopic sites at the basolateral cortex containing F-actin and other apical domain components. This phenotype required key regulators of F-actin dynamics and polarity, such as Rho GTPases (RHO-1 and the Rac1 orthologue CED-10) and apical PAR proteins. Our data suggest that PAR-5 acts as a regulatory hub for a polarity-maintaining network required for apicobasal asymmetry of F-actin and proper Rab11-RE positioning.
Collapse
|
21
|
Mamidi A, Inui M, Manfrin A, Soligo S, Enzo E, Aragona M, Cordenonsi M, Wessely O, Dupont S, Piccolo S. Signaling crosstalk between TGFβ and Dishevelled/Par1b. Cell Death Differ 2012; 19:1689-97. [PMID: 22576663 PMCID: PMC3438499 DOI: 10.1038/cdd.2012.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Crosstalk of signaling pathways is critical during metazoan development and adult tissue homeostasis. Even though the transforming growth factor-beta (TGFβ) transduction cascade is rather simple, in vivo responsiveness to TGFβ ligands is tightly regulated at several steps. As such, TGFβ represents a paradigm for how the activity of one signaling system is modulated by others. Here, we report an unsuspected regulatory step involving Dishevelled (Dvl) and Par1b (also known as MARK2). Dvl and Par1b cooperate to enable TGFβ/bone morphogenetic protein (BMP) signaling in Xenopus mesoderm development and TGFβ responsiveness in mammalian cells. Mechanistically, the assembly of the Par1b/Dvl3/Smad4 complex is fostered by Wnt5a. The association of Smad4 to Dvl/Par1 prevents its inhibitory ubiquitination by ectodermin (also known as transcriptional intermediary factor 1 gamma or tripartite motif protein 33). We propose that this crosstalk is relevant to coordinate TGFβ responses with Wnt-noncanonical and polarity pathways.
Collapse
Affiliation(s)
- A Mamidi
- Department of Biomedical Sciences, University of Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ossipova O, Sokol SY. Neural crest specification by noncanonical Wnt signaling and PAR-1. Development 2012; 138:5441-50. [PMID: 22110058 DOI: 10.1242/dev.067280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural crest (NC) cells are multipotent progenitors that form at the neural plate border, undergo epithelial-mesenchymal transition and migrate to diverse locations in vertebrate embryos to give rise to many cell types. Multiple signaling factors, including Wnt proteins, operate during early embryonic development to induce the NC cell fate. Whereas the requirement for the Wnt/β-catenin pathway in NC specification has been well established, a similar role for Wnt proteins that do not stabilize β-catenin has remained unclear. Our gain- and loss-of-function experiments implicate Wnt11-like proteins in NC specification in Xenopus embryos. In support of this conclusion, modulation of β-catenin-independent signaling through Dishevelled and Ror2 causes predictable changes in premigratory NC. Morpholino-mediated depletion experiments suggest that Wnt11R, a Wnt protein that is expressed in neuroectoderm adjacent to the NC territory, is required for NC formation. Wnt11-like signals might specify NC by altering the localization and activity of the serine/threonine polarity kinase PAR-1 (also known as microtubule-associated regulatory kinase or MARK), which itself plays an essential role in NC formation. Consistent with this model, PAR-1 RNA rescues NC markers in embryos in which noncanonical Wnt signaling has been blocked. These experiments identify novel roles for Wnt11R and PAR-1 in NC specification and reveal an unexpected connection between morphogenesis and cell fate.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
23
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
24
|
Abstract
Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.
Collapse
|
25
|
Halbsgut N, Linnemannstöns K, Zimmermann LI, Wodarz A. Apical-basal polarity in Drosophila neuroblasts is independent of vesicular trafficking. Mol Biol Cell 2011; 22:4373-9. [PMID: 21937725 PMCID: PMC3216662 DOI: 10.1091/mbc.e11-03-0219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell polarity in epithelia depends on the PAR proteins, which interact with the machinery for exocytic and endocytic vesicular trafficking. Polarity in Drosophila neural stem cells is independent of vesicular trafficking, although it depends on the PAR proteins, revealing different mechanisms of how polarity is controlled. The possession of apical–basal polarity is a common feature of epithelia and neural stem cells, so-called neuroblasts (NBs). In Drosophila, an evolutionarily conserved protein complex consisting of atypical protein kinase C and the scaffolding proteins Bazooka/PAR-3 and PAR-6 controls the polarity of both cell types. The components of this complex localize to the apical junctional region of epithelial cells and form an apical crescent in NBs. In epithelia, the PAR proteins interact with the cellular machinery for polarized exocytosis and endocytosis, both of which are essential for the establishment of plasma membrane polarity. In NBs, many cortical proteins show a strongly polarized subcellular localization, but there is little evidence for the existence of distinct apical and basolateral plasma membrane domains, raising the question of whether vesicular trafficking is required for polarization of NBs. We analyzed the polarity of NBs mutant for essential regulators of the main exocytic and endocytic pathways. Surprisingly, we found that none of these mutations affected NB polarity, demonstrating that NB cortical polarity is independent of plasma membrane polarity and that the PAR proteins function in a cell type–specific manner.
Collapse
Affiliation(s)
- Nils Halbsgut
- Stammzellbiologie, Abteilung Anatomie und Zellbiologie, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
26
|
Dawes AT, Munro EM. PAR-3 oligomerization may provide an actin-independent mechanism to maintain distinct par protein domains in the early Caenorhabditis elegans embryo. Biophys J 2011; 101:1412-22. [PMID: 21943422 DOI: 10.1016/j.bpj.2011.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 06/11/2011] [Accepted: 07/06/2011] [Indexed: 02/06/2023] Open
Abstract
Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism, allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.
Collapse
Affiliation(s)
- Adriana T Dawes
- Department of Mathematical and Statistical Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
27
|
Abstract
Wnt ligands comprise a large family of secreted glycoproteins that control a variety of developmental processes including cell polarization in diverse organisms. Through various receptors present on receiving cells, Wnts initiate intracellular signaling cascades resulting in changes in gene transcription or cytoskeleton reorganization. Recently, several lines of evidence have suggested the role of Wnt signaling in establishing axon-dendrite polarity in developing neurons. In this review, we summarize the recent results related with the role of Wnt signaling in neuronal polarization.
Collapse
Affiliation(s)
- Guo-Ying Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
28
|
Yoshimura Y, Miki H. Dynamic regulation of GEF-H1 localization at microtubules by Par1b/MARK2. Biochem Biophys Res Commun 2011; 408:322-8. [PMID: 21513698 DOI: 10.1016/j.bbrc.2011.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 02/01/2023]
Abstract
Par1b/MARK2 is a serine/threonine kinase that plays key roles in the development of cell polarity, but its precise mechanism of action remains unknown. Here we report that GEF-H1, a guanine nucleotide exchange factor for Rho-family small GTPases, is a novel substrate for Par1b. GEF-H1 directly associates with microtubules via its N-terminal C1 domain, which is known to regulate the activity of GEF-H1. Ectopically expressed GEF-H1 markedly promotes stabilization of microtubules, resulting in acetylation of microtubules. We find that Par1b phosphorylates GEF-H1 at three serine residues conserved in vertebrates and releases GEF-H1 from microtubules, which abrogates stabilization and acetylation of microtubules induced by GEF-H1 overexpression. The alanine mutant for the three phosphorylation sites (3SA) of GEF-H1 strongly induces stabilization and acetylation of microtubules, which was resistant to Par1b. Time-lapse imaging analyses reveal that GFP-fused GEF-H1 dynamically moved on microtubules from one protrusion to another, whereas the 3SA mutant was static. These data suggest that Par1b-phosphorylation regulates turnover of GEF-H1 localization by regulating its interaction with microtubules, which may contribute to cell polarization.
Collapse
Affiliation(s)
- Yuta Yoshimura
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
29
|
Abstract
Cell polarity is essential for cells to divide asymmetrically, form spatially restricted subcellular structures and participate in three-dimensional multicellular organization. PAR proteins are conserved polarity regulators that function by generating cortical landmarks that establish dynamic asymmetries in the distribution of effector proteins. Here, we review recent findings on the role of PAR proteins in cell polarity in C. elegans and Drosophila, and emphasize the links that exist between PAR networks and cytoskeletal proteins that both regulate PAR protein localization and act as downstream effectors to elaborate polarity within the cell.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
30
|
Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, Gereau RW, Piwnica-Worms D, Schmidt RE, Piwnica-Worms H. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol 2010; 30:5043-56. [PMID: 20733003 PMCID: PMC2953066 DOI: 10.1128/mcb.01472-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 12/11/2022] Open
Abstract
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Collapse
Affiliation(s)
- Jochen K. Lennerz
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jonathan B. Hurov
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Lynn S. White
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Katherine T. Lewandowski
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julie L. Prior
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - G. James Planer
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert W. Gereau
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - David Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Helen Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
31
|
Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S, Shabanowitz J, Hunt DF, Macara IG. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 2010; 20:1809-18. [PMID: 20933426 PMCID: PMC2963683 DOI: 10.1016/j.cub.2010.09.032] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND Formation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. When epithelial cysts are grown in 3D cultures, misorientation creates multiple lumens. RESULTS We now show that silencing of the polarity protein Par3 causes spindle misorientation in Madin-Darby canine kidney cell cysts. Silencing of Par3 also disrupts aPKC association with the apical cortex, but expression of an apically tethered aPKC rescues normal lumen formation. During mitosis, Pins is mislocalized to the apical surface in the absence of Par3 or by inhibition of aPKC. Active aPKC increases Pins phosphorylation on Ser401, which recruits 14-3-3 protein. 14-3-3 binding inhibits association of Pins with Gαi, through which Pins attaches to the cortex. A Pins S401A mutant mislocalizes over the cell cortex and causes spindle orientation and lumen defects. CONCLUSIONS The Par3 and aPKC polarity proteins ensure correct spindle pole orientation during epithelial cell division by excluding Pins from the apical cortex. Apical aPKC phosphorylates Pins, which results in the recruitment of 14-3-3 and inhibition of binding to Gαi, so the Pins falls off the cortex. In the absence of a functional exclusion mechanism, astral microtubules can associate with Pins over the entire epithelial cortex, resulting in randomized spindle pole orientation.
Collapse
Affiliation(s)
- Yi Hao
- Ctr for Cell Signaling, University of Virginia, Charlottesville VA 22908
| | - Quansheng Du
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Xinyu Chen
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Zhen Zheng
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | | | - Sushmit Maitra
- Department of Chemistry, University of Virginia, Charlottesville VA 22908
| | | | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville VA 22908
| | - Ian G. Macara
- Ctr for Cell Signaling, University of Virginia, Charlottesville VA 22908
| |
Collapse
|
32
|
McCaffrey LM, Macara IG. Widely conserved signaling pathways in the establishment of cell polarity. Cold Spring Harb Perspect Biol 2010; 1:a001370. [PMID: 20066082 DOI: 10.1101/cshperspect.a001370] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How are the asymmetric distributions of proteins, lipids, and RNAs established and maintained in various cell types? Studies from diverse organisms show that Par proteins, GTPases, kinases, and phosphoinositides participate in conserved signaling pathways to establish and maintain cell polarity.
Collapse
Affiliation(s)
- Luke Martin McCaffrey
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908-5077, USA
| | | |
Collapse
|
33
|
Harumoto T, Ito M, Shimada Y, Kobayashi TJ, Ueda HR, Lu B, Uemura T. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev Cell 2010; 19:389-401. [PMID: 20817616 PMCID: PMC2951474 DOI: 10.1016/j.devcel.2010.08.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 06/04/2010] [Accepted: 08/11/2010] [Indexed: 01/07/2023]
Abstract
How global organ asymmetry and individual cell polarity are connected to each other is a central question in studying planar cell polarity (PCP). In the Drosophila wing, which develops PCP along its proximal-distal (P-D) axis, we previously proposed that the core PCP mediator Frizzled redistributes distally in a microtubule (MT)-dependent manner. Here, we performed organ-wide analysis of MT dynamics by introducing quantitative in vivo imaging. We observed MTs aligning along the P-D axis at the onset of redistribution and a small but significant excess of + ends-distal MTs in the proximal region of the wing. This characteristic alignment and asymmetry of MT growth was controlled by atypical cadherins Dachsous (Ds) and Fat (Ft). Furthermore, the action of Ft was mediated in part by PAR-1. All these data support the idea that the active reorientation of MT growth adjusts cell polarity along the organ axis.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masayoshi Ito
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuko Shimada
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tetsuya J. Kobayashi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroki R. Ueda
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
34
|
Zagórska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR. New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 2010; 3:ra25. [PMID: 20354225 DOI: 10.1126/scisignal.2000616] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The AMPK-related kinases NUAK1 and NUAK2 are activated by the tumor suppressor LKB1. We found that NUAK1 interacts with several myosin phosphatases, including the myosin phosphatase targeting-1 (MYPT1)-protein phosphatase-1beta (PP1beta) complex, through conserved Gly-Ile-Leu-Lys motifs that are direct binding sites for PP1beta. Phosphorylation of Ser(445), Ser(472), and Ser(910) of MYPT1 by NUAK1 promoted the interaction of MYPT1 with 14-3-3 adaptor proteins, thereby suppressing phosphatase activity. Cell detachment induced phosphorylation of endogenous MYPT1 by NUAK1, resulting in 14-3-3 binding to MYPT1 and enhanced phosphorylation of myosin light chain-2. Inhibition of the LKB1-NUAK1 pathway impaired cell detachment. Our data indicate that NUAK1 controls cell adhesion and functions as a regulator of myosin phosphatase complexes. Thus, LKB1 can influence the phosphorylation of targets not only through the AMPK family of kinases but also by controlling phosphatase complexes.
Collapse
Affiliation(s)
- Anna Zagórska
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol 2010; 30:2206-19. [PMID: 20194617 DOI: 10.1128/mcb.01181-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report that Par1b/MARK2 regulates axon formation via phosphorylation of a kinesin superfamily protein GAKIN/KIF13B. Accumulating evidence indicated the importance of the evolutionarily conserved kinase Par1b in the regulation of cell polarity. Using hippocampal neurons in culture, it has been shown that Par1b regulates axon specification, but the underlying mechanism remains uncharacterized. We identify GAKIN/KIF13B as a novel Par1b-binding protein and reveal that GAKIN/KIF13B is a physiological substrate for Par1b, and the phosphorylation sites are conserved from Drosophila. In hippocampal neurons, GAKIN/KIF13B accumulates at the distal part of the microtubules in the tips of axons, but not of dendrites. Overexpression of GAKIN/KIF13B by itself can induce the formation of extra axons, which is inhibited by the coexpression of Par1b in a manner dependent on its kinase activity. In contrast, small interfering RNA (siRNA)-mediated knockdown of GAKIN/KIF13B severely retards neurite extension and promotes the axonless phenotype. The extra axon phenotype caused by Par1b siRNA is suppressed by cointroduction of GAKIN/KIF13B siRNA, thus placing the GAKIN/KIF13B function downstream of Par1b. We also find that GAKIN/KIF13B acts downstream of the phosphatidylinositol 3-kinase (PI3K) signaling via Par1b phosphorylation. These results reveal that GAKIN/KIF13B is a key intermediate linking Par1b to the regulation of axon formation.
Collapse
|
36
|
Kim S, Gailite I, Moussian B, Luschnig S, Goette M, Fricke K, Honemann-Capito M, Grubmüller H, Wodarz A. Kinase-activity-independent functions of atypical protein kinase C in Drosophila. J Cell Sci 2009; 122:3759-71. [PMID: 19789180 DOI: 10.1242/jcs.052514] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polarity of many cell types is controlled by a protein complex consisting of Bazooka/PAR-3 (Baz), PAR-6 and atypical protein kinase C (aPKC). In Drosophila, the Baz-PAR-6-aPKC complex is required for the control of cell polarity in the follicular epithelium, in ectodermal epithelia and neuroblasts. aPKC is the main signaling component of this complex that functions by phosphorylating downstream targets, while the PDZ domain proteins Baz and PAR-6 control the subcellular localization and kinase activity of aPKC. We compared the mutant phenotypes of an aPKC null allele with those of four novel aPKC alleles harboring point mutations that abolish the kinase activity or the binding of aPKC to PAR-6. We show that these point alleles retain full functionality in the control of follicle cell polarity, but produce strong loss-of-function phenotypes in embryonic epithelia and neuroblasts. Our data, combined with molecular dynamics simulations, show that the kinase activity of aPKC and its ability to bind PAR-6 are only required for a subset of its functions during development, revealing tissue-specific differences in the way that aPKC controls cell polarity.
Collapse
Affiliation(s)
- Soya Kim
- Department of Stem Cell Biology, DFG Research Center for Molecular Physiology of the Brain, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi SC, Sokol SY. The involvement of lethal giant larvae and Wnt signaling in bottle cell formation in Xenopus embryos. Dev Biol 2009; 336:68-75. [PMID: 19782678 DOI: 10.1016/j.ydbio.2009.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 12/29/2022]
Abstract
Lethal giant larvae (Lgl) plays a critical role in establishment of cell polarity in epithelial cells. While Frizzled/Dsh signaling has been implicated in the regulation of the localization and activity of Lgl, it remains unclear whether specific Wnt ligands are involved. Here we show that Wnt5a triggers the release of Lgl from the cell cortex into the cytoplasm with the concomitant decrease in Lgl stability. The observed changes in Lgl localization were independent of atypical PKC (aPKC), which is known to influence Lgl distribution. In ectodermal cells, both Wnt5a and Lgl triggered morphological and molecular changes characteristic of apical constriction, whereas depletion of their functions prevented endogenous and ectopic bottle cell formation. Furthermore, Lgl RNA partially rescued bottle cell formation in embryos injected with a dominant negative Wnt5a construct. These results suggest a molecular link between Wnt5a and Lgl that is essential for apical constriction during vertebrate gastrulation.
Collapse
Affiliation(s)
- Sun-Cheol Choi
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
38
|
Ossipova O, Ezan J, Sokol SY. PAR-1 phosphorylates Mind bomb to promote vertebrate neurogenesis. Dev Cell 2009; 17:222-33. [PMID: 19686683 PMCID: PMC2849776 DOI: 10.1016/j.devcel.2009.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/04/2009] [Accepted: 06/17/2009] [Indexed: 12/25/2022]
Abstract
Generation of neurons in the vertebrate central nervous system requires a complex transcriptional regulatory network and signaling processes in polarized neuroepithelial progenitor cells. Here we demonstrate that neurogenesis in the Xenopus neural plate in vivo and mammalian neural progenitors in vitro involves intrinsic antagonistic activities of the polarity proteins PAR-1 and aPKC. Furthermore, we show that Mind bomb (Mib), a ubiquitin ligase that promotes Notch ligand trafficking and activity, is a crucial molecular substrate for PAR-1. The phosphorylation of Mib by PAR-1 results in Mib degradation, repression of Notch signaling, and stimulation of neuronal differentiation. These observations suggest a conserved mechanism for neuronal fate determination that might operate during asymmetric divisions of polarized neural progenitor cells.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
39
|
Abstract
In the past decade, studies of the human tumour suppressor LKB1 have uncovered a novel signalling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine-threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues, such as liver, muscle and adipose tissue. This function has made AMPK a key therapeutic target in patients with diabetes. The connection of AMPK with several tumour suppressors suggests that therapeutic manipulation of this pathway using established diabetes drugs warrants further investigation in patients with cancer.
Collapse
Affiliation(s)
- David B. Shackelford
- Dulbecco Center for Cancer Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
| | - Reuben J. Shaw
- Dulbecco Center for Cancer Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
| |
Collapse
|
40
|
Lin J, Hou KK, Piwnica-Worms H, Shaw AS. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1215-21. [PMID: 19553522 PMCID: PMC2837933 DOI: 10.4049/jimmunol.0803887] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Engagement of a T cell to an APC induces the formation of an immunological synapse as well as reorientation of the microtubule-organizing center (MTOC) toward the APC. How signals emanating from the TCR induce MTOC polarization is not known. One group of proteins known to play a critical role in asymmetric cell division and cell polarization is the partitioning defective (Par) family of proteins. In this study we found that Par1b, a member of the Par family of proteins, was inducibly phosphorylated following TCR stimulation. This phosphorylation resulted in 14-3-3 protein binding and caused the relocalization of Par1b from the membrane into the cytoplasm. Because a dominant-negative form of Par1b blocked TCR-induced MTOC polarization, our data suggest that Par1b functions in the establishment of T cell polarity following engagement to an APC.
Collapse
Affiliation(s)
- Joseph Lin
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
| | - Kirk K. Hou
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
| | - Helen Piwnica-Worms
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
- Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
- Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, MO 63110
| |
Collapse
|
41
|
Masuda-Hirata M, Suzuki A, Amano Y, Yamashita K, Ide M, Yamanaka T, Sakai M, Imamura M, Ohno S. Intracellular polarity protein PAR-1 regulates extracellular laminin assembly by regulating the dystroglycan complex. Genes Cells 2009; 14:835-50. [DOI: 10.1111/j.1365-2443.2009.01315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Matenia D, Mandelkow EM. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 2009; 34:332-42. [PMID: 19559622 DOI: 10.1016/j.tibs.2009.03.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/12/2009] [Accepted: 03/21/2009] [Indexed: 12/21/2022]
Abstract
Microtubule-affinity regulating kinases (MARKs) were originally discovered by their ability to phosphorylate tau protein and related microtubule-associated proteins (MAPs), and thereby to regulate microtubule dynamics in neurons. Members of the MARK (also known as partition-defective [Par]-1 kinase) family were subsequently found to be highly conserved and to have key roles in cell processes such as determination of polarity, cell-cycle control, intracellular signal transduction, transport and cytoskeleton. This is important for neuronal differentiation, but is also prominent in neurodegenerative 'tauopathies' such as Alzheimer's disease. The identified functions of MARK/Par-1 are diverse and require accurate regulation. Recent discoveries including the x-ray structure of human MARKs contributed to an increased understanding of the mechanisms that control the kinase activity and, thus, the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | |
Collapse
|
43
|
Seifert K, Ibrahim H, Stodtmeister T, Winklbauer R, Niessen CM. An adhesion-independent, aPKC-dependent function for cadherins in morphogenetic movements. J Cell Sci 2009; 122:2514-23. [PMID: 19549688 DOI: 10.1242/jcs.042796] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cadherin shedding affects migration and occurs in development and cancer progression. By examining the in vivo biological function of the extracellular cadherin domain (CEC1-5) independently of the shedding process itself, we identified a novel function for cadherins in convergent extension (CE) movements in Xenopus. CEC1-5 interfered with CE movements during gastrulation. Unexpectedly, CEC1-5 did not alter cell aggregation or adhesion to cadherin substrates. Instead, gastrulation defects were rescued by a membrane-anchored cadherin cytoplasmic domain, the polarity protein atypical PKC (aPKC) or constitutive active Rac, indicating that CEC1-5 modulates a cadherin-dependent signalling pathway. We found that the cadherin interacts with aPKC and, more importantly, that the extracellular domain alters this association as well as the phosphorylation status of aPKC. This suggests that CE movements require a dynamic regulation of cadherin-aPKC interaction. Our results show that cadherins play a dual role in CE movements: a previously identified adhesive activity and an adhesion-independent function that requires aPKC and Rac, thereby directly connecting cadherins with polarity. Our results also suggest that increased cadherin shedding, often observed in cancer progression, can regulate migration and invasion by modulating polarity protein activity.
Collapse
Affiliation(s)
- Karla Seifert
- Center for Molecular Medicine Cologne, University of Cologne, 50923 Cologne, Germany
| | | | | | | | | |
Collapse
|
44
|
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis. Recently, 12 AMPK-related kinases (BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) were identified that are closely related by sequence homology to the catalytic domain of AMPK. The protein kinase LKB1 acts as a master upstream kinase activating AMPK and 11 of the AMPK-related kinases by phosphorylation of a conserved threonine residue in their T-loop region. Further sequence analyses have identified the eight-member SNRK kinase family as distant relatives of AMPK. However, only one of these is phosphorylated and activated by LKB1. Although much is known about AMPK, many of the AMPK-related kinases remain largely uncharacterized. This review outlines the general similarities in structure and function of the AMPK-related kinases before examining the specific characteristics of each, including a brief discussion of the SNRK family.
Collapse
Affiliation(s)
- N J Bright
- Cellular Stress Group, MRC Clinical Sciences Centre, London, UK
| | | | | |
Collapse
|
45
|
Abstract
The branch of the Wnt pathway, related to planar cell polarity signaling in Drosophila, is fundamental not only to the establishment of tissue polarity but also to a variety of morphogenetic processes in vertebrates. The genetic pathway has been noted for its similarity as well as divergence of between vertebrates and Drosophila. This review focuses on issues related to the complexity of the output of the planar cell polarity pathway during gastrulation in zebrafish and Xenopus and, to a lesser extent, during gastrulation/neurulation in mice.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
46
|
Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai) 2009; 41:97-107. [PMID: 19204826 DOI: 10.1093/abbs/gmn011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling.
Collapse
Affiliation(s)
- Dahua Fan
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, China
| | | | | |
Collapse
|
47
|
Terabayashi T, Funato Y, Miki H. Dishevelled-induced phosphorylation regulates membrane localization of Par1b. Biochem Biophys Res Commun 2008; 375:660-5. [PMID: 18760999 DOI: 10.1016/j.bbrc.2008.08.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/16/2008] [Indexed: 11/16/2022]
Abstract
Par1b is an evolutionarily conserved kinase that plays crucial roles in cell polarity. Controlling intracellular localization of Par1b is important for its biological activity. We previously reported that Wnt stimulation or expression of Dvl promotes accumulation of Par1b in the membrane (T. Terabayashi, T.J. Itoh, H. Yamaguchi, Y. Yoshimura, Y. Funato, S. Ohno, H. Miki, Polarity-Regulating Kinase Partitioning-Defective 1/Microtubule Affinity-Regulating Kinase 2 Negatively Regulates Development of Dendrites on Hippocampal Neurons, J. Neurosci. 27 (2007) 13098-13107). However, its molecular mechanism remains unclear. Here we show the importance of Par1b phosphorylation in the regulation of membrane localization. We find that Thr-324 is phosphorylated in a Dvl-dependent manner. Interestingly, the conversion of Thr-324 to Glu results in a significant accumulation of Par1b in the membrane, without any effects on the kinase activity. Moreover, the phospho-mimicking Par1b mutant does not antagonistically function against Dvl in microtubule stabilization and neurite extension, although wildtype Par1b does. These results suggest that membrane accumulation of Par1b induced by Dvl is regulated by its phosphorylation status, which is important for Par1b to regulate the microtubule dynamics.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
48
|
Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 2008; 411:249-60. [PMID: 18254724 DOI: 10.1042/bj20080067] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys(29) and/or Lys(33) rather than the more common Lys(48)/Lys(63). We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Abdallah K Al-Hakim
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
49
|
Shiomi K, Yamaguchi M. Expression patterns of three Par-related genes in sea urchin embryos. Gene Expr Patterns 2008; 8:323-30. [PMID: 18316248 DOI: 10.1016/j.gep.2008.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/17/2022]
Abstract
Partitioning-defective (Par) genes were originally identified in Caenorhabditis elegans and are involved in asymmetric divisions of the egg. Recently, the expression and function of Par orthologs have been elucidated in deuterostomes, including vertebrates. In this study, we isolated three Par-related genes, Par-1, Par-6, and atypical protein kinase C (aPKC), from the sea urchin Hemicentrotus pulcherrimus and examined their temporal and spatial expression patterns during embryogenesis up to the pluteus stage. All three transcripts existed maternally in eggs and were uniformly expressed in cleavage-stage embryos. From the blastula to early gastrula stages, HpPar-1 expression was transiently restricted to the vegetal plate, including the primary mesenchyme cells (PMCs); this transient reduction was followed by uniform expression. HpPar-6 was expressed uniformly throughout development. In contrast, HpaPKC expression changed dramatically during development. At the blastula stage, HpaPKC expression was restricted to the vegetal region, including PMCs and the vegetal plate. During gastrulation, expression was maintained in PMCs and the archenteron tip, but expression declined at the late gastrula stage. From the prism stage, two cell types started to express HpaPKC: ectoderm cells interspersed in the ciliary band and skeletogenic cells at the posterior end of the larva. At the pluteus stage, the stomach began to express HpaPKC, in addition to the interspersed ciliary band and skeletogenic cells.
Collapse
Affiliation(s)
- Kosuke Shiomi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | | |
Collapse
|
50
|
Polarity-regulating kinase partitioning-defective 1/microtubule affinity-regulating kinase 2 negatively regulates development of dendrites on hippocampal neurons. J Neurosci 2008; 27:13098-107. [PMID: 18045904 DOI: 10.1523/jneurosci.3986-07.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons are highly polarized cells that possess two morphologically and functionally different types of protrusions, axons and dendrites, that function in the transmission and reception of neural signals, respectively. A great deal of attention has been paid to the specification and guidance of axons, but the mechanism of dendrite development remains mostly unknown. We report here that a polarity-regulating kinase, partitioning-defective 1 (Par1b)/microtubule affinity-regulating kinase 2 (MARK2), specifically regulates development of dendrites in hippocampal neurons. Ectopic expression of Par1b/MARK2 shortens the length and decreases branching of dendrites without significant effects on axons. Knockdown of endogenous Par1b/MARK2 by RNA interference stimulates dendrite development. Wnt stimulation and Dishevelled expression, both of which are known to induce dendrite development, induced recruitment of Par1b/MARK2 to the membrane fraction. Expression of a Par1b/MARK2 mutant, that contains a myristoylation signal and accumulates exclusively in membranes, does not affect dendrite development. In addition, Par1b/MARK2 efficiently phosphorylated MAP2, which is localized mainly in dendrites. These results indicate that Par1b/MARK2 negatively regulates dendrite development through phosphorylation of MAP2.
Collapse
|