1
|
Kanai Y, Shibai A, Yokoi N, Tsuru S, Furusawa C. Laboratory evolution of the bacterial genome structure through insertion sequence activation. Nucleic Acids Res 2025; 53:gkaf331. [PMID: 40347137 PMCID: PMC12065110 DOI: 10.1093/nar/gkaf331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/12/2025] Open
Abstract
The genome structure fundamentally shapes bacterial physiology, ecology, and evolution. Though insertion sequences (IS) are known drivers of drastic evolutionary changes in the genome structure, the process is typically slow and challenging to observe in the laboratory. Here, we developed a system to accelerate IS-mediated genome structure evolution by introducing multiple copies of a high-activity IS in Escherichia coli. We evolved the bacteria under relaxed neutral conditions, simulating those leading to IS expansion in host-restricted endosymbionts and pathogens. Strains accumulated a median of 24.5 IS insertions and underwent over 5% genome size changes within ten weeks, comparable to decades-long evolution in wild-type strains. The detected interplay of frequent small deletions and rare large duplications updates the view of genome reduction under relaxed selection from a simple consequence of the deletion bias to a nuanced picture including transient expansions. The high IS activity resulted in structural variants of IS and the emergence of composite transposons, illuminating potential evolutionary pathways for ISs and composite transposons. The extensive genome rearrangements we observed establish a baseline for assessing the fitness effects of IS insertions, genome size changes, and rearrangements, advancing our understanding of how mobile elements shape bacterial genomes.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| | - Atsushi Shibai
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
| | - Naomi Yokoi
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
| | - Saburo Tsuru
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| |
Collapse
|
2
|
Ngan WY, Parab L, Bertels F, Gallie J. A more significant role for insertion sequences in large-scale rearrangements in bacterial genomes. mBio 2025; 16:e0305224. [PMID: 39636122 PMCID: PMC11708052 DOI: 10.1128/mbio.03052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Insertion sequences (ISs) are mobile pieces of DNA that are widespread in bacterial genomes. IS movements typically involve (i) excision of the IS element, (ii) cutting of target site DNA, and (iii) IS element insertion. This process generates a new copy of the IS element and a short duplication at the target site. It has been noted that, for some extant IS copies, no target site duplications (TSDs) are readily identifiable. TSD absence has been attributed to degeneration of the TSD after the insertion event, recombination between identical ISs, or adjacent deletions. Indeed, the latter two-recombination between ISs and adjacent deletions-are frequent causes for the absence of TSDs, which we demonstrate here in an analysis of genome sequence data from the Lenski long-term evolution experiment. Furthermore, we propose that some IS movements-namely, those that occur in association with large-scale genomic rearrangements-do not generate TSDs, and occur without evidence for recombination between ISs or adjacent deletions. In support of this hypothesis, we provide two direct, empirical observations of such IS transposition events: an IS5 movement plus a large deletion in Escherichia coli C, and an IS481 movement occurring with a large duplication in Pseudomonas fluorescens SBW25. Although unlikely, it is possible that the observed deletion and associated IS movement occurred in two successive events in one overnight culture. However, an IS at the center of a large-scale duplication is not readily explained, suggesting that IS element activity may promote both large-scale deletions and duplications. IMPORTANCE Insertion sequences are the most common mobile genetic elements found in bacterial genomes, and hence they significantly impact bacterial evolution. We observe insertion sequence movement at the center of large-scale deletions and duplications that occurred during laboratory evolution experiments with Escherichia coli and Pseudomonas fluorescens, involving three distinct types of transposase. We raise the possibility that the transposase does not mediate DNA cleavage but instead inserts into existing DNA breaks. Our research highlights the importance of insertion sequences for the generation of large-scale genomic rearrangements and raises questions concerning the mechanistic basis of these mutations.
Collapse
Affiliation(s)
- Wing Y. Ngan
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
Refaya AK, Vetrivel U, Palaniyandi K. Genomic Characterization of IS 6110 Insertions in Mycobacterium orygis. Evol Bioinform Online 2024; 20:11769343241240558. [PMID: 38586439 PMCID: PMC10996354 DOI: 10.1177/11769343241240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mycobacterium orygis, a subspecies of the Mycobacterium tuberculosis complex (MTBC), has emerged as a significant concern in the context of One Health, with implications for zoonosis or zooanthroponosis or both. MTBC strains are characterized by the unique insertion element IS6110, which is widely used as a diagnostic marker. IS6110 transposition drives genetic modifications in MTBC, imparting genome plasticity and profound biological consequences. While IS6110 insertions are customarily found in the MTBC genomes, the evolutionary trajectory of strains seems to correlate with the number of IS6110 copies, indicating enhanced adaptability with increasing copy numbers. Here, we present a comprehensive analysis of IS6110 insertions in the M. orygis genome, utilizing ISMapper, and elucidate their genetic consequences in promoting successful host adaptation. Our study encompasses a panel of 67 paired-end reads, comprising 11 isolates from our laboratory and 56 sequences downloaded from public databases. Among these sequences, 91% exhibited high-copy, 4.5% low-copy, and 4.5% lacked IS6110 insertions. We identified 255 insertion loci, including 141 intragenic and 114 intergenic insertions. Most of these loci were either unique or shared among a limited number of isolates, potentially influencing strain behavior. Furthermore, we conducted gene ontology and pathway analysis, using eggNOG-mapper 5.0, on the protein sequences disrupted by IS6110 insertions, revealing 63 genes involved in diverse functions of Gene Ontology and 45 genes participating in various KEGG pathways. Our findings offer novel insights into IS6110 insertions, their preferential insertion regions, and their impact on metabolic processes and pathways, providing valuable knowledge on the genetic changes underpinning IS6110 transposition in M. orygis.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Umashankar Vetrivel
- Department of Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
4
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Shkumatov AV, Aryanpour N, Oger CA, Goossens G, Hallet BF, Efremov RG. Structural insight into Tn3 family transposition mechanism. Nat Commun 2022; 13:6155. [PMID: 36257990 PMCID: PMC9579193 DOI: 10.1038/s41467-022-33871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Transposons are diverse mobile genetic elements that play the critical role as genome architects in all domains of life. Tn3 is a widespread family and among the first identified bacterial transposons famed for their contribution to the dissemination of antibiotic resistance. Transposition within this family is mediated by a large TnpA transposase, which facilitates both transposition and target immunity. Howtever, a structural framework required for understanding the mechanism of TnpA transposition is lacking. Here, we describe the cryo-EM structures of TnpA from Tn4430 in the apo form and paired with transposon ends before and after DNA cleavage and strand transfer. We show that TnpA has an unusual architecture and exhibits a family specific regulatory mechanism involving metamorphic refolding of the RNase H-like catalytic domain. The TnpA structure, constrained by a double dimerization interface, creates a peculiar topology that suggests a specific role for the target DNA in transpososome assembly and activation.
Collapse
Affiliation(s)
- Alexander V. Shkumatov
- grid.11486.3a0000000104788040Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium ,Present Address: Confo Therapeutics, Brussels, Belgium
| | - Nicolas Aryanpour
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Cédric A. Oger
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Gérôme Goossens
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium ,Present Address: Thermo Fisher Scientific, Seneffe, Belgium
| | - Bernard F. Hallet
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Rouslan G. Efremov
- grid.11486.3a0000000104788040Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Olasz F, Szabó M, Veress A, Bibó M, Kiss J. The dynamic network of IS30 transposition pathways. PLoS One 2022; 17:e0271414. [PMID: 35901099 PMCID: PMC9333248 DOI: 10.1371/journal.pone.0271414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
The E. coli element IS30 has adopted the copy-out-paste-in transposition mechanism that is prevalent in a number of IS-families. As an initial step, IS30 forms free circular transposition intermediates like IS minicircles or tandem IS-dimers by joining the inverted repeats of a single element or two, sometimes distantly positioned IS copies, respectively. Then, the active IR-IR junction of these intermediates reacts with the target DNA, which generates insertions, deletions, inversions or cointegrates. The element shows dual target specificity as it can insert into hot spot sequences or next to its inverted repeats. In this study the pathways of rearrangements of transposition-derived cointegrate-like structures were examined. The results showed that the probability of further rearrangements in these structures depends on whether the IS elements are flanked by hot spot sequences or take part in an IR-IR junction. The variability of the deriving products increases with the number of simultaneously available IRs and IR-IR joints in the cointegrates or the chromosome. Under certain conditions, the parental structures whose transposition formed the cointegrates are restored and persist among the rearranged products. Based on these findings, a novel dynamic model has been proposed for IS30, which possibly fits to other elements that have adopted the same transposition mechanism. The model integrates the known transposition pathways and the downstream rearrangements occurring after the formation of different cointegrate-like structures into a complex network. Important feature of this network is the presence of “feedback loops” and reversible transposition rearrangements that can explain how IS30 generates variability and preserves the original genetic constitution in the bacterial population, which contributes to the adaptability and evolution of host bacteria.
Collapse
Affiliation(s)
- Ferenc Olasz
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Mónika Szabó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Alexandra Veress
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Márton Bibó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Kiss
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
- * E-mail:
| |
Collapse
|
7
|
Evolution in Long-Term Stationary-Phase Batch Culture: Emergence of Divergent Escherichia coli Lineages over 1,200 Days. mBio 2021; 12:mBio.03337-20. [PMID: 33500336 PMCID: PMC7858067 DOI: 10.1128/mbio.03337-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria have remarkable metabolic capabilities and adaptive plasticity, enabling them to survive in changing environments. In nature, bacteria spend a majority of their time in a state of slow growth or maintenance, scavenging nutrients for survival. In natural environments, bacteria survive conditions of starvation and stress. Long-term batch cultures are an excellent laboratory system to study adaptation during nutrient stress because cells can incubate for months to years without the addition of nutrients. During long-term batch culture, cells adapt to acquire energy from cellular detritus, creating a complex and dynamic environment for mutants of increased relative fitness to exploit. Here, we analyzed the genomes of 1,117 clones isolated from a single long-term batch culture incubated for 1,200 days. A total of 679 mutations included single nucleotide polymorphisms, indels, mobile genetic element movement, large deletions up to 64 kbp, and amplifications up to ∼500 kbp. During the 3.3-year incubation, two main lineages diverged, evolving continuously. At least twice, a previously fixed mutation reverted back to the wild-type allele, suggesting beneficial mutations may later become maladaptive due to the dynamic environment and changing selective pressures. Most of the mutated genes encode proteins involved in metabolism, transport, or transcriptional regulation. Clones from the two lineages are physiologically distinct, based on outgrowth in fresh medium and competition against the parental strain. Similar population dynamics and mutations in hfq, rpoS, paaX, lrp, sdhB, and dtpA were detected in three additional parallel populations sequenced through day 60, providing evidence for positive selection. These data provide new insight into the population structure and mutations that may be beneficial during periods of starvation in evolving bacterial communities.
Collapse
|
8
|
Kosek D, Hickman AB, Ghirlando R, He S, Dyda F. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition. EMBO J 2021; 40:e105666. [PMID: 33006208 PMCID: PMC7780238 DOI: 10.15252/embj.2020105666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
Copy-out/paste-in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy-out/paste-in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X-ray structures of ISCth4 transposase, a member of the IS256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N-terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA-binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.
Collapse
Affiliation(s)
- Dalibor Kosek
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Alison B Hickman
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Susu He
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
- Present address:
State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Fred Dyda
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
9
|
Liu YJ, Qi K, Zhang J, Chen C, Cui Q, Feng Y. Firmicutes-enriched IS 1447 represents a group of IS 3-family insertion sequences exhibiting unique + 1 transcriptional slippage. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:300. [PMID: 30410575 PMCID: PMC6211511 DOI: 10.1186/s13068-018-1304-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/27/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bacterial insertion sequences (ISs) are ubiquitous mobile genetic elements that play important roles in genome plasticity, cell adaptability, and function evolution. ISs of various families and subgroups contain significantly diverse molecular features and functional mechanisms that are not fully understood. RESULTS IS1447 is a member of the widespread IS3 family and was previously detected to have transposing activity in a typical thermophilic and cellulolytic microorganism Clostridium thermocellum. Phylogenetic analysis showed that IS1447-like elements are widely distributed in Firmicutes and possess unique features in the IS3 family. Therefore, IS1447 may represent a novel subgroup of the IS3 family. Unlike other well-known IS3 subgroups performing programmed - 1 translational frameshifting for the expression of the transposase, IS1447 exhibits transcriptional slippage in both the + 1 and - 1 directions, each with a frequency of ~ 16%, and only + 1 slippage results in full-length and functional transposase. The slippage-prone region of IS1447 contains a run of nine A nucleotides following a stem-loop structure in mRNA, but mutagenesis analysis indicated that seven of them are sufficient for the observed slippage. Western blot analysis indicated that IS1447 produces three types of transposases with alternative initiations. Furthermore, the IS1447-subgroup elements are abundant in the genomes of several cellulolytic bacteria. CONCLUSION Our result indicated that IS1447 represents a new Firmicutes-enriched subgroup of the IS3 family. The characterization of the novel IS3-family member will enrich our understanding of the transposition behavior of IS elements and may provide insight into developing IS-based mutagenesis tools for thermophiles.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
| | - Kuan Qi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Present Address: Department of Biosystems Engineering, Auburn University, Auburn, AL 36849 USA
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Dalian, China
| |
Collapse
|
10
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
|
12
|
Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A, Lampreave C, Cebollada A, Otal I, Samper S, Martín C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages. PLoS Genet 2018; 14:e1007282. [PMID: 29649213 PMCID: PMC5896891 DOI: 10.1371/journal.pgen.1007282] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
The insertion Sequence IS6110, only present in the pathogens of the Mycobacterium tuberculosis Complex (MTBC), has been the gold-standard epidemiological marker for TB for more than 25 years, but biological implications of IS6110 transposition during MTBC adaptation to humans remain elusive. By studying 2,236 clinical isolates typed by IS6110-RFLP and covering the MTBC, we remarked a lineage-specific content of IS6110 being higher in modern globally distributed strains. Once observed the IS6110 distribution in the MTBC, we selected representative isolates and found a correlation between the normalized expression of IS6110 and its abundance in MTBC chromosomes. We also studied the molecular regulation of IS6110 transposition and we found a synergistic action of two post-transcriptional mechanisms: a -1 ribosomal frameshift and a RNA pseudoknot which interferes translation. The construction of a transcriptionally active transposase resulted in 20-fold increase of the transposition frequency. Finally, we examined transposition in M. bovis and M. tuberculosis during laboratory starvation and in a mouse infection model of TB. Our results shown a higher transposition in M. tuberculosis, that preferably happens during TB infection in mice and after one year of laboratory culture, suggesting that IS6110 transposition is dynamically adapted to the host and to adverse growth conditions. Since the pioneering discovery of transposition by Barbara McClintock in eukaryotes and later in prokaryotes by Robert W. Hedges and Alan E. Jacob, it has become clear the key role of mobile genetics elements in chromosome remodelling, microbial evolution and host adaptation. The insertion sequence IS6110 is widely recognized for its utility in TB diagnosis and epidemiology because it is only present in the M. tuberculosis Complex (MTBC) and its transposition provides an excellent chromosomal polymorphic variability allowing the study of recent TB transmission. This inherent feature of IS6110 leads us to hypothesize that IS6110 plays a crucial role during the TB infectious cycle. However, the biological significance of IS6110 has been hindered by its almost exclusive use as an epidemiological marker. Here, we study the regulatory mechanisms and the distribution of IS6110 in the different MTBC lineages. We discuss the potential biological implications of IS6110, that is much more than an excellent TB epidemiological tool. Since IS6110 could play an important role in the adaptation of MTBC to the host, this study opens new avenues to decipher the biological roles of IS6110 in TB pathogenesis.
Collapse
Affiliation(s)
- Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Zaragoza, Spain
- * E-mail: (JGA); (CM)
| | - Irene Pérez
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Picó
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Lampreave
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Cebollada
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Translacional, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón. Zaragoza, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
- * E-mail: (JGA); (CM)
| |
Collapse
|
13
|
Snesrud E, McGann P, Chandler M. The Birth and Demise of the IS Apl1- mcr-1-IS Apl1 Composite Transposon: the Vehicle for Transferable Colistin Resistance. mBio 2018; 9:e02381-17. [PMID: 29440577 PMCID: PMC5821093 DOI: 10.1128/mbio.02381-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
The origin and mobilization of the ~2,609-bp DNA segment containing the mobile colistin resistance gene mcr-1 continue to be sources of uncertainty, but recent evidence suggests that the gene originated in Moraxella species. Moreover mcr-1 can be mobilized as an ISApl1-flanked composite transposon (Tn6330), but many sequences have been identified without ISApl1 or with just a single copy (single ended). To further clarify the origins and mobilization of mcr-1, we employed the Geneious R8 software suite to comprehensively analyze the genetic environment of every complete mcr-1 structure deposited in GenBank as of this writing (September 2017) both with and without associated ISApl1 (n = 273). This revealed that the 2,609-bp mcr-1 structure was likely mobilized from a close relative of a novel species of Moraxella containing a chromosomal region sharing >96% nucleotide identity with the canonical sequence. This chromosomal region is bounded by AT and CG dinucleotides, which have been described on the inside ends (IE) of all intact Tn6330 described to date and represent the ancestral 2-bp target site duplications (TSDs) generated by ISApl1 transposition. We further demonstrate that all mcr-1 structures with just one ISApl1 copy or with no ISApl1 copies were formed by deletion of ISApl1 from the ancestral Tn6330, likely by a process related to the "copy-out-paste-in" transposition mechanism. Finally, we show that only the rare examples of single-ended structures that have retained a portion of the excised downstream ISApl1 including the entire inverted right repeat might be capable of mobilization.IMPORTANCE A comprehensive analysis of all intact mcr-1 sequences in GenBank was used to identify a region on the chromosome of a novel Moraxella species with remarkable homology to the canonical mcr-1 structure and that likely represents the origin of this important gene. These data also demonstrate that all mcr-1 structures lacking one or both flanking ISApl1 were formed from ancestral composite transposons that subsequently lost the insertion sequences by a process of abortive transposition. This observation conclusively shows that mobilization of mcr-1 occurs as part of a composite transposon and that structures lacking the downstream ISApl1 are not capable of mobilization.
Collapse
Affiliation(s)
- Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Genetique Moleculaires, Centre National de la Recherche Scientifique, Toulouse, France
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
14
|
Lavatine L, He S, Caumont-Sarcos A, Guynet C, Marty B, Chandler M, Ton-Hoang B. Single strand transposition at the host replication fork. Nucleic Acids Res 2016; 44:7866-83. [PMID: 27466393 PMCID: PMC5027513 DOI: 10.1093/nar/gkw661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Members of the IS200/IS605 insertion sequence family differ fundamentally from classical IS essentially by their specific single-strand (ss) transposition mechanism, orchestrated by the Y1 transposase, TnpA, a small HuH enzyme which recognizes and processes ss DNA substrates. Transposition occurs by the 'peel and paste' pathway composed of two steps: precise excision of the top strand as a circular ss DNA intermediate; and subsequent integration into a specific ssDNA target. Transposition of family members was experimentally shown or suggested by in silico high-throughput analysis to be intimately coupled to the lagging strand template of the replication fork. In this study, we investigated factors involved in replication fork targeting and analysed DNA-binding properties of the transposase which can assist localization of ss DNA substrates on the replication fork. We showed that TnpA interacts with the β sliding clamp, DnaN and recognizes DNA which mimics replication fork structures. We also showed that dsDNA can facilitate TnpA targeting ssDNA substrates. We analysed the effect of Ssb and RecA proteins on TnpA activity in vitro and showed that while RecA does not show a notable effect, Ssb inhibits integration. Finally we discuss the way(s) in which integration may be directed into ssDNA at the replication fork.
Collapse
Affiliation(s)
- Laure Lavatine
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Susu He
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Brigitte Marty
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Mick Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, CBI, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| |
Collapse
|
15
|
Schoeniger JS, Hudson CM, Bent ZW, Sinha A, Williams KP. Experimental single-strain mobilomics reveals events that shape pathogen emergence. Nucleic Acids Res 2016; 44:6830-9. [PMID: 27378783 PMCID: PMC5001619 DOI: 10.1093/nar/gkw601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens.
Collapse
Affiliation(s)
- Joseph S Schoeniger
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Corey M Hudson
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Zachary W Bent
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Anupama Sinha
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Kelly P Williams
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| |
Collapse
|
16
|
Abstract
IS911 has provided a powerful model for studying the transposition of members of a large class of transposable element: the IS3 family of bacterial Insertion Sequences (IS). These transpose by a Copy-out-Paste-in mechanism in which a double-strand IS circle transposition intermediate is generated from the donor site by replication and proceeds to integrate into a suitable double strand DNA target. This is perhaps one of the most common transposition mechanisms known to date. Copy-out-Paste-in transposition has been adopted by members of at least eight large IS families. This chapter details the different steps of the Copy-out-Paste-in mechanism involved in IS911 transposition. At a more biological level it also describes various aspects of regulation of the transposition process. These include transposase production by programmed translational frameshifting, transposase expression from the circular intermediate using a specialized promoter assembled at the circle junction and binding of the nascent transposase while it remains attached to the ribosome during translation (co-translational binding). This co-translational binding of the transposase to neighboring IS ends provides an explanation for the longstanding observation that transposases show a cis-preference for their activities.
Collapse
|
17
|
Simultaneous Presence of Insertion Sequence Excision Enhancer and Insertion Sequence IS629 Correlates with Increased Diversity and Virulence in Shiga Toxin-Producing Escherichia coli. J Clin Microbiol 2015; 53:3466-73. [PMID: 26292302 DOI: 10.1128/jcm.01349-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
Although new serotypes of enterohemorrhagic Escherichia coli (EHEC) emerge constantly, the mechanisms by which these new pathogens arise and the reasons emerging serotypes tend to carry more virulence genes than other E. coli are not understood. An insertion sequence (IS) excision enhancer (IEE) was discovered in EHEC O157:H7 that promoted the excision of IS3 family members and generating various genomic deletions. One IS3 family member, IS629, actively transposes and proliferates in EHEC O157:H7 and enterotoxigenic E. coli (ETEC) O139 and O149. The simultaneous presence of the IEE and IS629 (and other IS3 family members) may be part of a system promoting not only adaptation and genome diversification in E. coli O157:H7 but also contributing to the development of pathogenicity among predominant serotypes. Prevalence comparisons of these elements in 461 strains, representing 72 different serotypes and 5 preassigned seropathotypes (SPT) A to E, showed that the presence of these two elements simultaneously was serotype specific and associated with highly pathogenic serotypes (O157 and top non-O157 Shiga toxin-producing Escherichia coli [STEC]) implicated in outbreaks and sporadic cases of human illness (SPT A and B). Serotypes lacking one or both elements were less likely to have been isolated from clinical cases. Our comparisons of IEE sequences showed sequence variations that could be divided into at least three clusters. Interestingly, the IEE sequences from O157 and the top 10 non-O157 STEC serotypes fell into clusters I and II, while less commonly isolated serotypes O5 and O174 fell into cluster III. These results suggest that IS629 and IEE elements may be acting synergistically to promote genome plasticity and genetic diversity among STEC strains, enhancing their abilities to adapt to hostile environments and rapidly take up virulence factors.
Collapse
|
18
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci 2015; 1341:41-53. [PMID: 25675979 DOI: 10.1111/nyas.12675] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-stranded DNA (ssDNA) viruses are widespread in the environment and include economically, medically, and ecologically important pathogens. Recently, it has been discovered that ssDNA virus genomes are also prevalent in the chromosomes of their bacterial, archaeal, and eukaryotic hosts. Sequences originating from viruses of the families Parvoviridae, Circoviridae, and Geminiviridae are particularly widespread in the genomes of eukaryotes, where they are often fossilized as endogenous viral elements. ssDNA viruses have evolved diverse mechanisms to invade cellular genomes, and these principally vary between viruses infecting bacteria/archaea and eukaryotes. Filamentous bacteriophages (Inoviridae) use at least three major mechanisms of integration. Some of these phages encode integrases of serine or tyrosine recombinase superfamilies, while others utilize DDE transposases of the IS3, IS30, or IS110/IS492 families, whereas some inoviruses, and possibly certain members of the Microviridae, hijack the host XerCD recombination machinery. By contrast, eukaryotic viruses for integration rely on the endonuclease activity of their rolling-circle replication-initiation proteins, mimicking the mechanisms used by some bacterial transposons. Certain bacterial and eukaryotic ssDNA viruses have embraced a transposon-like means of propagation, with occasionally dramatic effects on host genome evolution. Here, we review the diversity of experimentally verified and hypothetical mechanisms of genome integration employed by ssDNA viruses, and consider the evolutionary implications of these processes, particularly in the emergence of novel virus groups.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | | |
Collapse
|
20
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
21
|
Genome instability mediates the loss of key traits by Acinetobacter baylyi ADP1 during laboratory evolution. J Bacteriol 2014; 197:872-81. [PMID: 25512307 DOI: 10.1128/jb.02263-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baylyi ADP1 has the potential to be a versatile bacterial host for synthetic biology because it is naturally transformable. To examine the genetic reliability of this desirable trait and to understand the potential stability of other engineered capabilities, we propagated ADP1 for 1,000 generations of growth in rich nutrient broth and analyzed the genetic changes that evolved by whole-genome sequencing. Substantially reduced transformability and increased cellular aggregation evolved during the experiment. New insertions of IS1236 transposable elements and IS1236-mediated deletions led to these phenotypes in most cases and were common overall among the selected mutations. We also observed a 49-kb deletion of a prophage region that removed an integration site, which has been used for genome engineering, from every evolved genome. The comparatively low rates of these three classes of mutations in lineages that were propagated with reduced selection for 7,500 generations indicate that they increase ADP1 fitness under common laboratory growth conditions. Our results suggest that eliminating transposable elements and other genetic failure modes that affect key organismal traits is essential for improving the reliability of metabolic engineering and genome editing in undomesticated microbial hosts, such as Acinetobacter baylyi ADP1.
Collapse
|
22
|
Analysis of IS1236-mediated gene amplification events in Acinetobacter baylyi ADP1. J Bacteriol 2012; 194:4395-405. [PMID: 22707704 DOI: 10.1128/jb.00783-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination between insertion sequence copies can cause genetic deletion, inversion, or duplication. However, it is difficult to assess the fraction of all genomic rearrangements that involve insertion sequences. In previous gene duplication and amplification studies of Acinetobacter baylyi ADP1, an insertion sequence was evident in approximately 2% of the characterized duplication sites. Gene amplification occurs frequently in all organisms and has a significant impact on evolution, adaptation, drug resistance, cancer, and various disorders. To understand the molecular details of this important process, a previously developed system was used to analyze gene amplification in selected mutants. The current study focused on amplification events in two chromosomal regions that are near one of six copies of the only transposable element in ADP1, IS1236 (an IS3 family member). Twenty-one independent mutants were analyzed, and in contrast to previous studies of a different chromosomal region, IS1236 was involved in 86% of these events. IS1236-mediated amplification could occur through homologous recombination between insertion sequences on both sides of a duplicated region. However, this mechanism presupposes that transposition generates an appropriately positioned additional copy of IS1236. To evaluate this possibility, PCR and Southern hybridization were used to determine the chromosomal configurations of amplification mutants involving IS1236. Surprisingly, the genomic patterns were inconsistent with the hypothesis that intramolecular homologous recombination occurred between insertion sequences following an initial transposition event. These results raise a novel possibility that the gene amplification events near the IS1236 elements arise from illegitimate recombination involving transposase-mediated DNA cleavage.
Collapse
|
23
|
Development of an efficient in vivo system (Pjunc-TpaseIS1223) for random transposon mutagenesis of Lactobacillus casei. Appl Environ Microbiol 2012; 78:5417-23. [PMID: 22610425 DOI: 10.1128/aem.00531-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The random transposon mutagenesis system P(junc)-TpaseIS(1223) is composed of plasmids pVI129, expressing IS1223 transposase, and pVI110, a suicide transposon plasmid carrying the P(junc) sequence, the substrate of the IS1223 transposase. This system is particularly efficient in Lactobacillus casei, as more than 10,000 stable, random mutants were routinely obtained via electroporation.
Collapse
|
24
|
Toussaint A, Chandler M. Prokaryote genome fluidity: toward a system approach of the mobilome. Methods Mol Biol 2012; 804:57-80. [PMID: 22144148 DOI: 10.1007/978-1-61779-361-5_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by "classical" phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.
Collapse
Affiliation(s)
- Ariane Toussaint
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, Bruxelles, Belgium.
| | | |
Collapse
|
25
|
Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J, Oliveira PH, Monteiro GA, Prazeres DM. Protein-DNA interactions define the mechanistic aspects of circle formation and insertion reactions in IS2 transposition. Mob DNA 2012; 3:1. [PMID: 22277150 PMCID: PMC3299598 DOI: 10.1186/1759-8753-3-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. RESULTS In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. CONCLUSIONS Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang C, Anderson AJ. Polycyclic aromatic hydrocarbon degrading gene islands in five pyrene-degrading Mycobacterium isolates from different geographic locations. Can J Microbiol 2011; 58:102-11. [PMID: 22188370 DOI: 10.1139/w11-093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycobacterium sp. strain KMS utilizes pyrene, a high-molecular weight polycyclic aromatic hydrocarbon (PAH), as a sole carbon source. Bioinformatic analysis of the genome of isolate KMS predicted 25 genes with the potential to encode 17 pyrene-induced proteins identified by proteomics; these genes were clustered on both the chromosome and a circular plasmid. RT-PCR analysis of total RNA isolated from KMS cells grown with or without pyrene showed that the presence of pyrene increased the transcript accumulation of 20 of the predicted chromosome- and plasmid-located genes encoding pyrene-induced proteins. The transcribed genes from both the chromosome and a circular plasmid were within larger regions containing genes required for PAH degradation constituting PAH-degrading gene islands. Genes encoding integrases and transposases were found within and outside the PAH-degrading gene islands. The lower GC content of the genes within the gene island (61%-64%) compared with the average genome content (68%) suggested that these mycobacteria initially acquired these genes by horizontal gene transfer. Synteny was detected for the PAH-degrading islands in the genomes of two additional Mycobacterium isolates from the same PAH-polluted site and of two other pyrene-degrading Mycobacterium from different sites in the United States of America. Consequently, the gene islands have been conserved from a common ancestral strain.
Collapse
Affiliation(s)
- Chun Zhang
- Biology Department, Utah State University, Logan, Utah 84322-5305, USA
| | | |
Collapse
|
27
|
Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Soluble expression, purification and characterization of the full length IS2 Transposase. Mob DNA 2011; 2:14. [PMID: 22032517 PMCID: PMC3219604 DOI: 10.1186/1759-8753-2-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The two-step transposition pathway of insertion sequences of the IS3 family, and several other families, involves first the formation of a branched figure-of-eight (F-8) structure by an asymmetric single strand cleavage at one optional donor end and joining to the flanking host DNA near the target end. Its conversion to a double stranded minicircle precedes the second insertional step, where both ends function as donors. In IS2, the left end which lacks donor function in Step I acquires it in Step II. The assembly of two intrinsically different protein-DNA complexes in these F-8 generating elements has been intuitively proposed, but a barrier to testing this hypothesis has been the difficulty of isolating a full length, soluble and active transposase that creates fully formed synaptic complexes in vitro with protein bound to both binding and catalytic domains of the ends. We address here a solution to expressing, purifying and structurally analyzing such a protein. RESULTS A soluble and active IS2 transposase derivative with GFP fused to its C-terminus functions as efficiently as the native protein in in vivo transposition assays. In vitro electrophoretic mobility shift assay data show that the partially purified protein prepared under native conditions binds very efficiently to cognate DNA, utilizing both N- and C-terminal residues. As a precursor to biophysical analyses of these complexes, a fluorescence-based random mutagenesis protocol was developed that enabled a structure-function analysis of the protein with good resolution at the secondary structure level. The results extend previous structure-function work on IS3 family transposases, identifying the binding domain as a three helix H + HTH bundle and explaining the function of an atypical leucine zipper-like motif in IS2. In addition gain- and loss-of-function mutations in the catalytic active site define its role in regional and global binding and identify functional signatures that are common to the three dimensional catalytic core motif of the retroviral integrase superfamily. CONCLUSIONS Intractably insoluble transposases, such as the IS2 transposase, prepared by solubilization protocols are often refractory to whole protein structure-function studies. The results described here have validated the use of GFP-tagging and fluorescence-based random mutagenesis in overcoming this limitation at the secondary structure level.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate Center, City University of New York, New York, New York 11016, USA
| | - Mekbib Astatke
- Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Peter T Umekubo
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Accera Inc, Broomfield, CO 80021, USA
| | - Shaheen Alvi
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Ross Medical School, Roseau, Dominica
| | - Robert Saby
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Department of Occupational Therapy, York College of the City University of New York, Jamaica, New York, 11451, USA
| | - Jehan Afrose
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, 10016, USA
| |
Collapse
|
28
|
Different IS629 transposition frequencies exhibited by Escherichia coli O157:H7 strains in the stepwise evolutionary model. Appl Environ Microbiol 2011; 77:5030-3. [PMID: 21622790 DOI: 10.1128/aem.00249-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insertion sequence IS629, which is highly prevalent in Escherichia coli O157:H7 genomes, was found to be absent in O157:H- strains, which are on a divergent pathway in the emergence of O157:H7. Although O157:H- is deficient in IS629, it permits IS629 transposition, with an excision frequency higher than that of ancestral O55:H7 strains but significantly lower than that of pathogenic O157:H7 strains.
Collapse
|
29
|
Insertion sequence-excision enhancer removes transposable elements from bacterial genomes and induces various genomic deletions. Nat Commun 2011; 2:152. [DOI: 10.1038/ncomms1152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022] Open
|
30
|
Toruño TY, Musić MS, Simi S, Nicolaisen M, Hogenhout SA. Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Mol Microbiol 2010; 77:1406-15. [PMID: 20662777 DOI: 10.1111/j.1365-2958.2010.07296.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytoplasmas replicate intracellularly in plants and insects and are dependent on both hosts for dissemination in nature. Phytoplasmas have small genomes lacking genes for major metabolic pathways. Nevertheless, their genomes harbour multicopy gene clusters that were named potential mobile units (PMUs). PMU1 is the largest most complete repeat among the PMUs in the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB). PMU1 is c. 20 kb in size and contains 21 genes encoding DNA replication and predicted membrane-targeted proteins. Here we show that AY-WB has a chromosomal linear PMU1 (L-PMU1) and an extrachromosomal circular PMU1 (C-PMU1). The C-PMU1 copy number was consistently higher by in average approximately fivefold in insects compared with plants and PMU1 gene expression levels were also considerably higher in insects indicating that C-PMU1 synthesis and expression are regulated. We found that the majority of AY-WB virulence genes lie on chromosomal PMU regions that have similar gene content and organization as PMU1 providing evidence that PMUs contribute to phytoplasma host adaptation and have integrated into the AY-WB chromosome.
Collapse
Affiliation(s)
- Tania Y Toruño
- Department of Entomology, The Ohio State University-Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
31
|
Hoang BT, Pasternak C, Siguier P, Guynet C, Hickman AB, Dyda F, Sommer S, Chandler M. Single-stranded DNA transposition is coupled to host replication. Cell 2010; 142:398-408. [PMID: 20691900 PMCID: PMC2919506 DOI: 10.1016/j.cell.2010.06.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/03/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
DNA transposition has contributed significantly to evolution of eukaryotes and prokaryotes. Insertion sequences (ISs) are the simplest prokaryotic transposons and are divided into families on the basis of their organization and transposition mechanism. Here, we describe a link between transposition of IS608 and ISDra2, both members of the IS200/IS605 family, which uses obligatory single-stranded DNA intermediates, and the host replication fork. Replication direction through the IS plays a crucial role in excision: activity is maximal when the "top" IS strand is located on the lagging-strand template. Excision is stimulated upon transient inactivation of replicative helicase function or inhibition of Okazaki fragment synthesis. IS608 insertions also exhibit an orientation preference for the lagging-strand template and insertion can be specifically directed to stalled replication forks. An in silico genomic approach provides evidence that dissemination of other IS200/IS605 family members is also linked to host replication.
Collapse
Affiliation(s)
- Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Cécile Pasternak
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD., USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD., USA
| | - Suzanne Sommer
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| |
Collapse
|
32
|
Abstract
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.
Collapse
|
33
|
Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2009; 138:473-84. [PMID: 19649713 DOI: 10.1007/s10709-009-9391-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
34
|
Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, Watanabe H, Hayashi T. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009; 19:1809-16. [PMID: 19564451 DOI: 10.1101/gr.089615.108] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements play important roles in the evolution and diversification of bacterial genomes. In enterohemorrhagic Escherichia coli O157, a major factor that affects genomic diversity is prophages, which generate most of the large-size structural polymorphisms (LSSPs) observed in O157 genomes. Here, we describe the results of a systematic analysis of numerous small-size structural polymorphisms (SSSPs) that were detected by comparing the genomes of eight clinical isolates with a sequenced strain, O157 Sakai. Most of the SSSPs were generated by genetic events associated with only two insertion sequence (IS) elements, IS629 and ISEc8, and a number of genes that were inactivated or deleted by these events were identified. Simple excisions of IS629 and small deletions (footprints) formed by the excision of IS629, both of which are rarely described in bacteria, were also detected. In addition, the distribution of IS elements was highly biased toward prophages, prophage-like integrative elements, and plasmids. Based on these and our previous results, we conclude that, in addition to prophages, these two IS elements are major contributors to the genomic diversification of O157 strains and that LSSPs have been generated mainly by bacteriophages and SSSPs by IS elements. We also suggest that IS elements possibly play a role in the inactivation and immobilization of incoming phages and plasmids. Taken together, our results reveal the true impact of IS elements on the diversification of bacterial genomes and highlight their novel role in genome evolution.
Collapse
Affiliation(s)
- Tadasuke Ooka
- Department of Infectious Diseases, University of Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Brochet M, Da Cunha V, Couvé E, Rusniok C, Trieu-Cuot P, Glaser P. Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol 2008; 71:948-59. [PMID: 19183283 DOI: 10.1111/j.1365-2958.2008.06579.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe in Streptococcus agalactiae an atypical family of conjugative transposons named TnGBSs which associates DDE transposition and conjugation. We present evidence that the transposition of TnGBS2, the prototype of this family, is catalysed by a new class of DDE transposases that are widespread in Gram-positive bacteria. Remarkably, transposition occurs in intergenic regions, 15 or 16 bp upstream the -35 sequence of promoters, minimizing the burden on the host cell and suggesting an association between transcription and transposition. Transposition catalyses the formation of a circular intermediate that is substrate for subsequent conjugative intercellular transfer. Conjugation is initiated at an origin of transfer by a transposon-encoded relaxase. Whereas all integrative and conjugative elements described so far encode a phage-related integrase, TnGBS2 is the first example of conjugative transposon whose recombination is mediated by a DDE transposase. The combination of DDE transposition with conjugation implies recombination constraints linked to the physical separation of donor and recipient molecules.
Collapse
Affiliation(s)
- Mathieu Brochet
- Institut Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, France
| | | | | | | | | | | |
Collapse
|
36
|
Conjugative interaction induces transposition of ISPst9 in Pseudomonas stutzeri AN10. J Bacteriol 2008; 191:1239-47. [PMID: 19060139 DOI: 10.1128/jb.01071-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ISPst9 is an ISL3-like insertion sequence (IS) that was recently described in the naphthalene-degrading organism Pseudomonas stutzeri strain AN10. In this paper we describe a novel strong IS regulation stimulus; transposition of ISPst9 is induced in all P. stutzeri AN10 cells after conjugative interaction with Escherichia coli. Thus, we observed that in all P. stutzeri AN10 cells that received genetic material by conjugation the ISPst9 genomic dose and/or distribution was changed. Furthermore, ISPst9 transposition was also observed when P. stutzeri AN10 cells were put in contact with the plasmidless conjugative strain E. coli S17-1lambda(pir), but not when they were put in contact with E. coli DH5alpha (a nonconjugative strain). The mechanism of ISPst9 transposition was analyzed, and transposition was shown to proceed by excision from the donor DNA using a conservative mechanism, which generated 3- to 10-bp deletions of the flanking DNA. Our results indicate that ISPst9 transposes, forming double-stranded DNA circular intermediates consisting of the IS and a 5-bp intervening DNA sequence probably derived from the ISPst9 flanking regions. The kinetics of IS circle formation are also described.
Collapse
|
37
|
Bias between the left and right inverted repeats during IS911 targeted insertion. J Bacteriol 2008; 190:6111-8. [PMID: 18586933 DOI: 10.1128/jb.00452-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3'-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.
Collapse
|
38
|
A family of insertion sequences that impacts integrons by specific targeting of gene cassette recombination sites, the IS1111-attC Group. J Bacteriol 2008; 190:4959-70. [PMID: 18487340 DOI: 10.1128/jb.00229-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons facilitate the evolution of complex phenotypes by physical and transcriptional linkage of genes. They can be categorized as chromosomal integrons (CIs) or mobile resistance integrons (MRIs). The significance of MRIs for the problem of multiple antibiotic resistance is well established. CIs are more widespread, but their only demonstrated significance is as a reservoir of gene cassettes for MRIs. In characterizing CIs associated with Pseudomonas, we discovered a subfamily of insertion sequences, termed the IS1111-attC group, that insert into the recombination sites of gene cassettes (attC site) by site-specific recombination. IS1111-attC elements appear to have recently spread from Pseudomonas species to clinical class 1 integrons. Such elements are expected to significantly impact integrons. To explore this further, we examined CIs in 24 strains representing multiple levels of evolutionary divergence within the genus Pseudomonas. Cassette arrays frequently had a degenerated "footprint" of an IS1111-attC group element at their terminus and in three cases were occupied by multiple functional IS1111-attC elements. Within Pseudomonas spp. the IS-integron interaction appears to follow an evolutionarily rapid cycle of infection, expansion, and extinction. The final outcome is extinction of the IS element and modification of the right-hand boundary of the integron. This system represents an unusual example of convergent evolution whereby heterologous families of site-specific recombinases of distinct genetic elements have adopted the same target site. The interactions described here represent a model for evolutionary processes that offer insights to a number of aspects of the biology of integrons and other mosaic genetic elements.
Collapse
|
39
|
Gradman RJ, Ptacin JL, Bhasin A, Reznikoff WS, Goryshin IY. A bifunctional DNA binding region in Tn5 transposase. Mol Microbiol 2007; 67:528-40. [PMID: 18086215 PMCID: PMC2229646 DOI: 10.1111/j.1365-2958.2007.06056.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tn5 transposition is a complicated process that requires the formation of a highly ordered protein-DNA structure, a synaptic complex, to catalyse the movement of a sequence of DNA (transposon) into a target DNA. Much is known about the structure of the synaptic complex and the positioning of protein-DNA contacts, although many protein-DNA contacts remain largely unstudied. In particular, there is little evidence for the positioning of donor DNA and target DNA. In this communication, we describe the isolation and analysis of mutant transposases that have, for the first time, provided genetic and biochemical evidence for the stage-specific positioning of both donor and target DNAs within the synaptic complex. Furthermore, we have provided evidence that some of the amino acids that contact donor DNA also contact target DNA, and therefore suggest that these amino acids help define a bifunctional DNA binding region responsible for these two transposase-DNA binding events.
Collapse
Affiliation(s)
- Richard J Gradman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973-82. [PMID: 17984973 DOI: 10.1038/nrg2165] [Citation(s) in RCA: 1898] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zaghloul L, Tang C, Chin HY, Bek EJ, Lan R, Tanaka MM. The distribution of insertion sequences in the genome ofShigella flexneristrain 2457T. FEMS Microbiol Lett 2007; 277:197-204. [DOI: 10.1111/j.1574-6968.2007.00957.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Szabó M, Kiss J, Nagy Z, Chandler M, Olasz F. Sub-terminal sequences modulating IS30 transposition in vivo and in vitro. J Mol Biol 2007; 375:337-52. [PMID: 18022196 DOI: 10.1016/j.jmb.2007.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022]
Abstract
Inverted repeats of insertion sequences (ISs) are indispensable for transposition. We demonstrate that sub-terminal sequences adjacent to the inverted repeats of IS30 are also required for optimal transposition activity. We have developed a cell-free recombination system and showed that the transposase catalyses formation of a figure-of-eight transposition intermediate, where a 2 bp long single strand bridge holds the inverted repeat sequences (IRs) together. This is the first demonstration of the figure-of-eight structure in a non-IS3 family element, suggesting that this mechanism is likely more widely adopted among IS families. We show that the absence of sub-terminal IS30 sequences negatively influences figure-of-eight production both in vivo and in vitro. These regions enhance IR-IR junction formation and IR-targeting events in vivo. Enhancer elements have been identified within 51 bp internal to IRL and 17 bp internal to IRR. In the right end, a decanucleotide, 5'-GAGATAATTG-3', is responsible for wild-type activity, while in the left end, a complex assembly of repetitive elements is required. Functioning of the 10 bp element in the right end is position-dependent and the repetitive elements in the left end act cooperatively and may influence bendability of the end. In vitro kinetic experiments suggest that the sub-terminal enhancers may, at least partly, be transposase-dependent. Such enhancers may reflect a subtle regulatory mechanism for IS30 transposition.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell-Free System
- DNA Mutational Analysis
- DNA Primers
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Circular/genetics
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Escherichia coli/genetics
- Genes, Bacterial
- In Vitro Techniques
- Kinetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- Open Reading Frames
- Plasmids
- Point Mutation
- Polymerase Chain Reaction
- Recombination, Genetic
- Salmonella typhimurium/genetics
- Terminal Repeat Sequences
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- Mónika Szabó
- Agricultural Biotechnology Center, 4 Szent-Györgyi Albert str., H-2100, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
43
|
Abstract
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Collapse
Affiliation(s)
- J Filée
- Laboratoire de Microbiologie et Génétique Moléculaires (UMR5100 CNRS), Campus Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | |
Collapse
|
44
|
Rousseau P, Loot C, Guynet C, Ah-Seng Y, Ton-Hoang B, Chandler M. Control of IS911 target selection: how OrfA may ensure IS dispersion. Mol Microbiol 2007; 63:1701-9. [PMID: 17367389 DOI: 10.1111/j.1365-2958.2007.05615.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IS911 transposition involves a closed circular insertion sequence intermediate (IS-circle) and two IS-encoded proteins: the transposase OrfAB and OrfA which regulates IS911 insertion. OrfAB alone promotes insertion preferentially next to DNA sequences resembling IS911 ends while the addition of OrfA strongly stimulates insertion principally into DNA targets devoid of the IS911 end sequences. OrfAB shares its N-terminal region with OrfA. This includes a helix-turn-helix (HTH) motif and the first three of four heptads of a leucine zipper (LZ). OrfAB binds specifically to IS911 ends via its HTH whereas OrfA does not. We show here: that OrfA binds DNA non-specifically and that this requires the HTH; that OrfA LZ is required for its multimerization; and that both motifs are essential for OrfA activity. We propose that these OrfA properties are required to assemble a nucleoprotein complex committed to random IS911 insertion. This control of IS911 insertion activity by OrfA in this way would assure its dispersion.
Collapse
Affiliation(s)
- Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR 5100 CNRS - U.Toulouse-3), 118 rte. de Narbonne, Bât. IBCG, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
45
|
Gueguen E, Rousseau P, Duval-Valentin G, Chandler M. Truncated forms of IS911 transposase downregulate transposition. Mol Microbiol 2007; 62:1102-16. [PMID: 17078817 DOI: 10.1111/j.1365-2958.2006.05424.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IS911 naturally produces transposase (OrfAB) derivatives truncated at the C-terminal end (OrfAB-CTF) and devoid of the catalytic domain. A majority species, OrfAB*, was produced at higher levels at 42 degrees C than at 30 degrees C suggesting that it is at least partly responsible for the innate reduction in IS911 transposition activity at higher temperatures. An engineered equivalent of similar length, OrfAB[1-149], inhibited transposition activity in vivo or in vitro when produced along with full-length transposase. We isolated several point mutants showing higher activity than the wild-type IS911 at 42 degrees C. These fall into two regions of the transposase. One, located in the N-terminal segment of OrfAB, lies between or within two regions involved in protein multimerization. The other is located within the C-terminal catalytic domain. The N-terminal mutations resulted in reduced levels of OrfAB* while the C-terminal mutation alone appeared not to affect OrfAB* levels. Combination of N- and C-terminal mutations greatly reduced OrfAB* levels and transposition was concomitantly high even at 42 degrees C. The mechanism by which truncated transposase species are generated and how they intervene to reduce transposition activity is discussed. While transposition activity of these multiply mutated derivatives in vivo was resistant to temperature, the purified OrfAB derivatives retained an inherent temperature-sensitive phenotype in vitro. This clearly demonstrates that temperature sensitivity of IS911 transposition is a complex phenomenon with several mechanistic components. These results have important implications for the several other transposons and insertion sequences whose transposition has also been shown to be temperature-sensitive.
Collapse
Affiliation(s)
- Erwan Gueguen
- Laboratoire de Microbiologie et de Génétique Moléculaire, UMR 5100 CNRS (Campus Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | | | | | | |
Collapse
|
46
|
Abstract
Agrobacterium T-DNAs were used to deliver transposable Dissociation (Ds) elements into the nuclei of potato (Solanum tuberosum) cells. A double-selection system was applied to enrich for plants that only contained a transposed Ds element. This system consisted of a positive selection for the neomycin phosphotransferase (nptII) gene positioned within Ds followed by a negative selection against stable integration of the cytosine deaminase (codA) gene-containing T-DNA. Sixteen of 29 transgenic plants were found to contain a transposed element while lacking any superfluous T-DNA sequences. The occurrence of this genotype indicates that Ds elements can transpose from relatively short extrachromosomal DNA molecules into the plant genome. The frequency of single-copy Ds transformation was determined at 0.3%, which is only about 2.5-fold lower than the potato transformation frequency for backbone-free and single-copy T-DNAs. Because of the generally high expression levels of genes positioned within transposed elements, the new transformation method may find broad applicability to crops that are accessible to Agrobacterium T-DNA transfer.
Collapse
Affiliation(s)
- Hua Yan
- Simplot Plant Sciences, J.R. Simplot Company, Boise, Idaho 83706, USA
| | | |
Collapse
|
47
|
Pouget N, Turlan C, Destainville N, Salomé L, Chandler M. IS911 transpososome assembly as analysed by tethered particle motion. Nucleic Acids Res 2006; 34:4313-23. [PMID: 16923775 PMCID: PMC1636345 DOI: 10.1093/nar/gkl420] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).
Collapse
Affiliation(s)
- N. Pouget
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - C. Turlan
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
| | - N. Destainville
- Laboratoire de Physique Théorique (UMR CNRS 5152), IRSAMC, Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex, France
| | - L. Salomé
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - M. Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- To whom correspondence should be addressed. Tel: +33 5 61 33 58 61; Fax: +33 5 61 33 58 58.
| |
Collapse
|
48
|
Prosseda G, Latella MC, Casalino M, Nicoletti M, Michienzi S, Colonna B. Plasticity of the P junc promoter of ISEc11, a new insertion sequence of the IS1111 family. J Bacteriol 2006; 188:4681-9. [PMID: 16788177 PMCID: PMC1483014 DOI: 10.1128/jb.00332-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe identification and functional characterization of ISEc11, a new insertion sequence that is widespread in enteroinvasive E. coli (EIEC), in which it is always present on the virulence plasmid (pINV) and very frequently also present on the chromosome. ISEc11 is flanked by subterminal 13-bp inverted repeats (IRs) and is bounded by 3-bp terminal sequences, and it transposes with target specificity without generating duplication of the target site. ISEc11 is characterized by an atypical transposase containing the DEDD motif of the Piv/MooV family of DNA recombinases, and it is closely related to the IS1111 family. Transposition occurs by formation of minicircles through joining of the abutted ends and results in assembly of a junction promoter (P juncC) containing a -10 box in the interstitial sequence and a -35 box upstream of the right IR. A natural variant of ISEc11 (ISEc11p), found on EIEC pINV plasmids, contains a perfect duplication of the outermost 39 bp of the right end. Upon circularization, ISEc11p forms a junction promoter (P juncP) which, despite carrying -10 and -35 boxes identical to those of P juncC, exhibits 30-fold-greater strength in vivo. The discovery of only one starting point in primer extension experiments rules out the possibility that there are alternative promoter sites within the 39-bp duplication. Analysis of in vitro-generated transcripts confirmed that at limiting RNA polymerase concentrations, the activity of P juncP is 20-fold higher than the activity of P juncC. These observations suggest that the 39-bp duplication might host cis-acting elements that facilitate the binding of RNA polymerase to the promoter.
Collapse
Affiliation(s)
- Gianni Prosseda
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Via dei Sardi 70, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711-21. [PMID: 16138099 DOI: 10.1038/nrmicro1234] [Citation(s) in RCA: 1289] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|