1
|
Fer E, Yao T, McGrath KM, Goldman AD, Kaçar B. The origins and evolution of translation factors. Trends Genet 2025:S0168-9525(25)00045-9. [PMID: 40133153 DOI: 10.1016/j.tig.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Translation is an ancient molecular information processing system found in all living organisms. Over the past decade, significant progress has been made in uncovering the origins of early translation. Yet, the evolution of translation factors - key regulators of protein synthesis - remains poorly understood. This review synthesizes recent findings on translation factors, highlighting their structural diversity, evolutionary history, and organism-specific adaptations across the tree of life. We examine conserved translation factors, their coevolution, and their roles in different steps in translation: initiation, elongation, and termination. The early evolution of translation factors serves as a natural link between modern genetics and the origins of life. Traditionally rooted in chemistry and geology, incorporating evolutionary molecular biology into the studies of life's emergence provides a complementary perspective on this complex question.
Collapse
Affiliation(s)
- Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony Yao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaitlyn M McGrath
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Nguy AKL, Ireland KA, Kayrouz CM, Cáceres JC, Greene BL, Davis KM, Seyedsayamdost MR. Non-Canonical Cytochrome P450 Enzymes in Nature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.630014. [PMID: 39763895 PMCID: PMC11703216 DOI: 10.1101/2024.12.22.630014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Cytochrome P450s (CYPs) are a superfamily of thiolate-ligated heme metalloenzymes principally responsible for the hydroxylation of unactivated C-H bonds. The lower-axial cysteine is an obligatory and universally conserved residue for the CYP enzyme class. Herein, we challenge this paradigm by systematically identifying non-canonical CYPs (ncCYPs) that do not harbor a cysteine ligand. Our bioinformatic search reveals 20 distinct ncCYP families with diverse ligands encoded in microbial genomes. We characterize a native serine-ligated CYP with a high-spin ferric resting state. Its crystal structure clearly shows a typical CYP fold and a serine alkoxide as a lower axial heme ligand. In addition, we report the discovery and characterization of the first native selenocysteine-ligated CYP in nature. Our findings radically expand the CYP metalloenzyme family.
Collapse
Affiliation(s)
- Andy K. L. Nguy
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - Kendra A. Ireland
- Department of Chemistry, Emory University, Atlanta, GA, USA
- These authors contributed equally
| | - Chase M. Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - Juan Carlos Cáceres
- Interdepartmental Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brandon L. Greene
- Interdepartmental Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Bose P, Baron N, Pullaiahgari D, Ben-Zvi A, Shapira M. LeishIF3d is a non-canonical cap-binding protein in Leishmania. Front Mol Biosci 2023; 10:1191934. [PMID: 37325473 PMCID: PMC10266417 DOI: 10.3389/fmolb.2023.1191934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the pre-initiation complex at the 5' end of mRNAs driving translation initiation. The genome of Leishmania encodes a large repertoire of cap-binding complexes that fulfill a variety of functions possibly involved in survival along the life cycle. However, most of these complexes function in the promastigote life form that resides in the sand fly vector and decrease their activity in amastigotes, the mammalian life form. Here we examined the possibility that LeishIF3d drives translation in Leishmania using alternative pathways. We describe a non-canonical cap-binding activity of LeishIF3d and examine its potential role in driving translation. LeishIF3d is required for translation, as reducing its expression by a hemizygous deletion reduces the translation activity of the LeishIF3d(+/-) mutant cells. Proteomic analysis of the mutant cells highlights the reduced expression of flagellar and cytoskeletal proteins, as reflected in the morphological changes observed in the mutant cells. Targeted mutations in two predicted alpha helices diminish the cap-binding activity of LeishIF3d. Overall, LeishIF3d could serve as a driving force for alternative translation pathways, although it does not seem to offer an alternative pathway for translation in amastigotes.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Currie F, Twigg MS, Huddleson N, Simons KE, Marchant R, Banat IM. Biogenic propane production by a marine Photobacterium strain isolated from the Western English Channel. Front Microbiol 2022; 13:1000247. [DOI: 10.3389/fmicb.2022.1000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Propane is a major component of liquefied petroleum gas, a major energy source for off-grid communities and industry. The replacement of fossil fuel-derived propane with more sustainably derived propane is of industrial interest. One potential production route is through microbial fermentation. Here we report, for the first time, the isolation of a marine bacterium from sediment capable of natural propane biosynthesis. Propane production, both in mixed microbial cultures generated from marine sediment and in bacterial monocultures was detected and quantified by gas chromatography–flame ionization detection. Using DNA sequencing of multiple reference genes, the bacterium was shown to belong to the genus Photobacterium. We postulate that propane biosynthesis is achieved through inorganic carbonate assimilation systems. The discovery of this strain may facilitate synthetic biology routes for industrial scale production of propane via microbial fermentation.
Collapse
|
5
|
Meng K, Chung CZ, Söll D, Krahn N. Unconventional genetic code systems in archaea. Front Microbiol 2022; 13:1007832. [PMID: 36160229 PMCID: PMC9499178 DOI: 10.3389/fmicb.2022.1007832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Archaea constitute the third domain of life, distinct from bacteria and eukaryotes given their ability to tolerate extreme environments. To survive these harsh conditions, certain archaeal lineages possess unique genetic code systems to encode either selenocysteine or pyrrolysine, rare amino acids not found in all organisms. Furthermore, archaea utilize alternate tRNA-dependent pathways to biosynthesize and incorporate members of the 20 canonical amino acids. Recent discoveries of new archaeal species have revealed the co-occurrence of these genetic code systems within a single lineage. This review discusses the diverse genetic code systems of archaea, while detailing the associated biochemical elements and molecular mechanisms.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Chung CZ, Krahn N. The selenocysteine toolbox: A guide to studying the 21st amino acid. Arch Biochem Biophys 2022; 730:109421. [DOI: 10.1016/j.abb.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
7
|
Hilal T, Killam BY, Grozdanović M, Dobosz-Bartoszek M, Loerke J, Bürger J, Mielke T, Copeland PR, Simonović M, Spahn CMT. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. Science 2022; 376:1338-1343. [PMID: 35709277 PMCID: PMC10064918 DOI: 10.1126/science.abg3875] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The elongation of eukaryotic selenoproteins relies on a poorly understood process of interpreting in-frame UGA stop codons as selenocysteine (Sec). We used cryo-electron microscopy to visualize Sec UGA recoding in mammals. A complex between the noncoding Sec-insertion sequence (SECIS), SECIS-binding protein 2 (SBP2), and 40S ribosomal subunit enables Sec-specific elongation factor eEFSec to deliver Sec. eEFSec and SBP2 do not interact directly but rather deploy their carboxyl-terminal domains to engage with the opposite ends of the SECIS. By using its Lys-rich and carboxyl-terminal segments, the ribosomal protein eS31 simultaneously interacts with Sec-specific transfer RNA (tRNASec) and SBP2, which further stabilizes the assembly. eEFSec is indiscriminate toward l-serine and facilitates its misincorporation at Sec UGA codons. Our results support a fundamentally distinct mechanism of Sec UGA recoding in eukaryotes from that in bacteria.
Collapse
Affiliation(s)
- Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin Y. Killam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Milica Grozdanović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Malgorzata Dobosz-Bartoszek
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Planck Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Paul R. Copeland
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Christian M. T. Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
8
|
Patel A, Mulder DW, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. FRONTIERS IN CATALYSIS 2022; 2. [PMID: 36844461 PMCID: PMC9961374 DOI: 10.3389/fctls.2022.1089176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.
Collapse
Affiliation(s)
- Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Serrão VHB, Fernandes ADF, Basso LGM, Scortecci JF, Crusca Júnior E, Cornélio ML, de Souza BM, Palma MS, de Oliveira Neto M, Thiemann OH. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA Sec Recognition and its Interactions. J Mol Biol 2021; 433:167279. [PMID: 34624294 DOI: 10.1016/j.jmb.2021.167279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Chemistry and Biochemistry, University California - Santa Cruz, 1156 High St., Santa Cruz, CA 95060, United States
| | - Adriano de Freitas Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil
| | - Luis Guilherme Mansor Basso
- Physical Sciences Laboratory, State University of Northern Rio de Janeiro Darcy Ribeiro - UENF, Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Faculty of Science, Philosophy and Letters, University of Sao Paulo, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Jéssica Fernandes Scortecci
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Edson Crusca Júnior
- Department of Physical Chemistry, Chemistry Institute of the São Paulo State University - UNESP, CEP 14800-900 Araraquara, SP, Brazil
| | - Marinônio Lopes Cornélio
- Physics Department, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University - UNESP, São Jose do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mario de Oliveira Neto
- Bioscience Institute of Universidade Estadual Paulista, Rubião Jr., Botucatu, SP CEP 18618-000, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Genetics and Evolution, Federal University of São Carlos - UFSCar, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
11
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
12
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
13
|
Naveenkumar N, Kumar G, Sowdhamini R, Srinivasan N, Vishwanath S. Fold combinations in multi-domain proteins. Bioinformation 2019; 15:342-350. [PMID: 31249437 PMCID: PMC6589474 DOI: 10.6026/97320630015342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Domain-domain interactions in multi-domain proteins play an important role in the combined function of individual domains for the overall biological activity of the protein. The functions of the tethered domains are often coupled and hence, limited numbers of domain architectures with defined folds are known in nature. Therefore, it is of interest to document the available fold-fold combinations and their preference in multi-domain proteins. Hence, we analyzed all multi-domain proteins with known structures in the protein databank and observed that only about 860 fold-fold combinations are present among them. Analyses of multi-domain proteins represented in sequence database result in recognition of 29,860 fold-fold combinations and it accounts for only 2.8% of the theoretically possible 1,036,080 (1439C2) fold-fold combinations. The observed preference for fold-fold combinations in multi-domain proteins is interesting in the context of multiple functions through structural adaptation by gene fusion.
Collapse
Affiliation(s)
- Nagarajan Naveenkumar
- National Center for Biological Science, GKVK Campus, Bengaluru, Karnataka, India - 560065
- Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India - 560012
| | - Gayatri Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India - 560012
| | - Ramanathan Sowdhamini
- National Center for Biological Science, GKVK Campus, Bengaluru, Karnataka, India - 560065
| | | | - Sneha Vishwanath
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India - 560012
| |
Collapse
|
14
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
15
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
16
|
On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2463-2472. [PMID: 29555379 DOI: 10.1016/j.bbagen.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process. SCOPE OF REVIEW Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec. MAJOR CONCLUSIONS eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome. GENERAL SIGNIFICANCE Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled "Selenium research" in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
|
17
|
Fu X, Söll D, Sevostyanova A. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli. RNA Biol 2018; 15:461-470. [PMID: 29447106 DOI: 10.1080/15476286.2018.1440876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
Collapse
Affiliation(s)
- Xian Fu
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Dieter Söll
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA
| | - Anastasia Sevostyanova
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
18
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
19
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
20
|
Fischer N, Neumann P, Bock LV, Maracci C, Wang Z, Paleskava A, Konevega AL, Schröder GF, Grubmüller H, Ficner R, Rodnina MV, Stark H. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 2016; 540:80-85. [PMID: 27842381 DOI: 10.1038/nature20560] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
Abstract
In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.
Collapse
Affiliation(s)
- Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zhe Wang
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alena Paleskava
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L Konevega
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Dubey A, Copeland PR. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation. PLoS One 2016; 11:e0165642. [PMID: 27802322 PMCID: PMC5089774 DOI: 10.1371/journal.pone.0165642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Biochemistry and Molecular Biology, Rutgers—Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Paul R. Copeland
- Department of Biochemistry and Molecular Biology, Rutgers—Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| |
Collapse
|
22
|
Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun 2016; 7:12941. [PMID: 27708257 PMCID: PMC5059743 DOI: 10.1038/ncomms12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.
Collapse
|
23
|
Larburu N, Montellese C, O'Donohue MF, Kutay U, Gleizes PE, Plisson-Chastang C. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing. Nucleic Acids Res 2016; 44:8465-78. [PMID: 27530427 PMCID: PMC5041492 DOI: 10.1093/nar/gkw714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 01/24/2023] Open
Abstract
Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3'-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.
Collapse
MESH Headings
- Conserved Sequence
- Cryoelectron Microscopy
- Cytoplasm/metabolism
- GTP-Binding Proteins/metabolism
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Neoplasm Proteins/metabolism
- Organelle Biogenesis
- Protein Binding
- RNA Processing, Post-Transcriptional/genetics
- RNA, Ribosomal, 18S/genetics
- Receptors for Activated C Kinase
- Receptors, Cell Surface/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Natacha Larburu
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | | | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Ulrike Kutay
- Institut für Biochemie, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
24
|
Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nat Commun 2016; 7:11789. [PMID: 27250689 PMCID: PMC4895721 DOI: 10.1038/ncomms11789] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023] Open
Abstract
Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. Tsr1 is an essential ribosome biogenesis factor that has known similarity to GTPases. Here, the authors report the Tsr1 crystal structure and show that it is similar to GTPases but that active site residues are not conserved; modelling of the structure into the pre-40S maps allows inferences on ribosomal maturation to be drawn.
Collapse
|
25
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Acta Crystallogr D Struct Biol 2016; 72:346-58. [PMID: 26960122 PMCID: PMC4784666 DOI: 10.1107/s2059798315019269] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Struct Biol 2016; 72:359-74. [PMID: 26960123 PMCID: PMC4784667 DOI: 10.1107/s2059798315019403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Liu W, Chen C, Kavaliauskas D, Knudsen CR, Goldman YE, Cooperman BS. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways. Nucleic Acids Res 2015; 43:9519-28. [PMID: 26338772 PMCID: PMC4627077 DOI: 10.1093/nar/gkv856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022] Open
Abstract
The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunlai Chen
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darius Kavaliauskas
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Itoh Y, Sekine SI, Yokoyama S. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB. Nucleic Acids Res 2015; 43:9028-38. [PMID: 26304550 PMCID: PMC4605307 DOI: 10.1093/nar/gkv833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/23/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid in translation, uses its specific tRNA (tRNASec) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNASec (Sec-tRNASec) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1–3), followed by four winged-helix domains (WHD1–4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNASec is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNASec, SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNASec allows SelB to specifically recognize tRNASec and characteristically place it at the ribosomal A-site.
Collapse
Affiliation(s)
- Yuzuru Itoh
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
29
|
Kotini SB, Peske F, Rodnina MV. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res 2015; 43:6426-38. [PMID: 26040702 PMCID: PMC4513850 DOI: 10.1093/nar/gkv558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons.
Collapse
Affiliation(s)
- Suresh Babu Kotini
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
30
|
Gonzalez-Flores JN, Shetty SP, Dubey A, Copeland PR. The molecular biology of selenocysteine. Biomol Concepts 2015; 4:349-65. [PMID: 25436585 DOI: 10.1515/bmc-2013-0007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 01/11/2023] Open
Abstract
Selenium is an essential trace element that is incorporated into 25 human proteins as the amino acid selenocysteine (Sec). The incorporation of this amino acid turns out to be a fascinating problem in molecular biology because Sec is encoded by a stop codon, UGA. Layered on top of the canonical translation elongation machinery is a set of factors that exist solely to incorporate this important amino acid. The mechanism by which this process occurs, put into the context of selenoprotein biology, is the focus of this review.
Collapse
|
31
|
Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:25-41. [PMID: 25618148 PMCID: PMC4329189 DOI: 10.1007/s10969-015-9193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2015] [Indexed: 11/15/2022]
Abstract
The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 μM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Ryohei Ishii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasushi Hikida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuya Fukunaga
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Department of Biochemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, 521A Physiology Bldg., Baltimore, MD 21205 USA
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
32
|
Atkinson GC. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 2015; 16:78. [PMID: 25756599 PMCID: PMC4342817 DOI: 10.1186/s12864-015-1289-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ribosome translates mRNA to protein with the aid of a number of accessory protein factors. Translational GTPases (trGTPases) are an integral part of the 'core set' of essential translational factors, and are some of the most conserved proteins across life. This study takes advantage of the wealth of available genomic data, along with novel functional information that has come to light for a number of trGTPases to address the full evolutionary and functional diversity of this superfamily across all domains of life. RESULTS Through sensitive sequence searching combined with phylogenetic analysis, 57 distinct subfamilies of trGTPases are identified: 14 bacterial, 7 archaeal and 35 eukaryotic (of which 21 are known or predicted to be organellar). The results uncover the functional evolution of trGTPases from before the last common ancestor of life on earth to the current day. CONCLUSIONS While some trGTPases are universal, others are limited to certain taxa, suggesting lineage-specific translational control mechanisms that exist on a base of core factors. These lineage-specific features may give organisms the ability to tune their translation machinery to respond to their environment. Only a fraction of the diversity of the trGTPase superfamily has been subjected to experimental analyses; this comprehensive classification brings to light novel and overlooked translation factors that are worthy of further investigation.
Collapse
|
33
|
Thyer R, Robotham SA, Brodbelt JS, Ellington AD. Evolving tRNA(Sec) for efficient canonical incorporation of selenocysteine. J Am Chem Soc 2014; 137:46-9. [PMID: 25521771 DOI: 10.1021/ja510695g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial selenocysteine incorporation occurs in response to opal stop codons and is dependent on the presence of a selenocysteine insertion sequence (SECIS) element, which recruits the selenocysteine specific elongation factor and tRNA(Sec) needed to reassign the UGA codon. The SECIS element is a stem-loop RNA structure immediately following the UGA codon and forms part of the coding sequence in bacterial selenoproteins. Although the site specific incorporation of selenocysteine is of great interest for protein engineering, the sequence constraints imposed by the adjoining SECIS element severely limit its use. We have evolved an E. coli tRNA(Sec) that is compatible with the canonical translation machinery and can suppress amber stop codons to incorporate selenocysteine with high efficiency. This evolved tRNA(Sec) allows the production of new recombinant selenoproteins containing structural motifs such as selenyl-sulfhydryl and diselenide bonds.
Collapse
Affiliation(s)
- Ross Thyer
- Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
34
|
Zheng A, Yu J, Yamamoto R, Ose T, Tanaka I, Yao M. X-ray structures of eIF5B and the eIF5B-eIF1A complex: the conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. ACTA ACUST UNITED AC 2014; 70:3090-8. [PMID: 25478828 DOI: 10.1107/s1399004714021476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Abstract
eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.
Collapse
Affiliation(s)
- Aiping Zheng
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Jian Yu
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Reo Yamamoto
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Toyoyuki Ose
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
35
|
Kuhle B, Ficner R. A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 2014; 33:2547-63. [PMID: 25225612 DOI: 10.15252/embj.201488517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP-dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high-resolution structural evidence that eIF5B and aEF1A/EF-Tu bound to GTP or GTPγS coordinate a monovalent cation (M(+)) in their active site. Our data reveal that M(+) ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP-bound "on" state. Additionally, the M(+) ion provides a positive charge into the active site analogous to the arginine-finger in the Ras-RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M(+) ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M(+)-dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 887] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Delprato A, Al Kadri Y, Pérébaskine N, Monfoulet C, Henry Y, Henras AK, Fribourg S. Crucial role of the Rcl1p-Bms1p interaction for yeast pre-ribosomal RNA processing. Nucleic Acids Res 2014; 42:10161-72. [PMID: 25064857 PMCID: PMC4150785 DOI: 10.1093/nar/gku682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The essential Rcl1p and Bms1p proteins form a complex required for 40S ribosomal subunit maturation. Bms1p is a GTPase and Rcl1p has been proposed to catalyse the endonucleolytic cleavage at site A2 separating the pre-40S and pre-60S maturation pathways. We determined the 2.0 Å crystal structure of Bms1p associated with Rcl1p. We demonstrate that Rcl1p nuclear import depends on Bms1p and that the two proteins are loaded into pre-ribosomes at a similar stage of the maturation pathway and remain present within pre-ribosomes after cleavage at A2. Importantly, GTP binding to Bms1p is not required for the import in the nucleus nor for the incorporation of Rcl1p into pre-ribosomes, but is essential for early pre-rRNA processing. We propose that GTP binding to Bms1p and/or GTP hydrolysis may induce conformational rearrangements within the Bms1p-Rcl1p complex allowing the interaction of Rcl1p with its RNA substrate.
Collapse
Affiliation(s)
- Anna Delprato
- Institut Européen de Chimie et Biologie, ARNA laboratory, Université de Bordeaux, F-33607 Pessac, France Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Yasmine Al Kadri
- Equipe labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote and Université de Toulouse, UPS, F-31062 Toulouse Cedex 9, France
| | - Natacha Pérébaskine
- Institut Européen de Chimie et Biologie, ARNA laboratory, Université de Bordeaux, F-33607 Pessac, France Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Cécile Monfoulet
- Institut Européen de Chimie et Biologie, ARNA laboratory, Université de Bordeaux, F-33607 Pessac, France Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Yves Henry
- Equipe labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote and Université de Toulouse, UPS, F-31062 Toulouse Cedex 9, France
| | - Anthony K Henras
- Equipe labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote and Université de Toulouse, UPS, F-31062 Toulouse Cedex 9, France
| | - Sébastien Fribourg
- Institut Européen de Chimie et Biologie, ARNA laboratory, Université de Bordeaux, F-33607 Pessac, France Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA laboratory, F-33000 Bordeaux, France
| |
Collapse
|
38
|
Haruna KI, Alkazemi MH, Liu Y, Söll D, Englert M. Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Res 2014; 42:9976-83. [PMID: 25064855 PMCID: PMC4150793 DOI: 10.1093/nar/gku691] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selenocysteine (Sec) is naturally co-translationally incorporated into proteins by recoding the UGA opal codon with a specialized elongation factor (SelB in bacteria) and an RNA structural signal (SECIS element). We have recently developed a SECIS-free selenoprotein synthesis system that site-specifically—using the UAG amber codon—inserts Sec depending on the elongation factor Tu (EF-Tu). Here, we describe the engineering of EF-Tu for improved selenoprotein synthesis. A Sec-specific selection system was established by expression of human protein O6-alkylguanine-DNA alkyltransferase (hAGT), in which the active site cysteine codon has been replaced by the UAG amber codon. The formed hAGT selenoprotein repairs the DNA damage caused by the methylating agent N-methyl-N′-nitro-N-nitrosoguanidine, and thereby enables Escherichia coli to grow in the presence of this mutagen. An EF-Tu library was created in which codons specifying the amino acid binding pocket were randomized. Selection was carried out for enhanced Sec incorporation into hAGT; the resulting EF-Tu variants contained highly conserved amino acid changes within members of the library. The improved UTu-system with EF-Sel1 raises the efficiency of UAG-specific Sec incorporation to >90%, and also doubles the yield of selenoprotein production.
Collapse
Affiliation(s)
- Ken-ichi Haruna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Muhammad H Alkazemi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
39
|
Adamson SW, Browning RE, Budachetri K, Ribeiro JMC, Karim S. Knockdown of selenocysteine-specific elongation factor in Amblyomma maculatum alters the pathogen burden of Rickettsia parkeri with epigenetic control by the Sin3 histone deacetylase corepressor complex. PLoS One 2013; 8:e82012. [PMID: 24282621 PMCID: PMC3840058 DOI: 10.1371/journal.pone.0082012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 01/21/2023] Open
Abstract
Selenocysteine is the 21st naturally-occurring amino acid. Selenoproteins have diverse functions and many remain uncharacterized, but they are typically associated with antioxidant activity. The incorporation of selenocysteine into the nascent polypeptide chain recodes the TGA stop codon and this process depends upon a number of essential factors including the selenocysteine elongation factor (SEF). The transcriptional expression of SEF did not change significantly in tick midguts throughout the blood meal, but decreased in salivary glands to 20% at the end of the fast feeding phase. Since selenoprotein translation requires this specialized elongation factor, we targeted this gene for knockdown by RNAi to gain a global view of the role selenoproteins play in tick physiology. We found no significant differences in tick engorgement and embryogenesis but detected no antioxidant capacity in tick saliva. The transcriptional profile of selenoproteins in R. parkeri-infected Amblyomma maculatum revealed declined activity of selenoprotein M and catalase and increased activity of selenoprotein O, selenoprotein S, and selenoprotein T. Furthermore, the pathogen burden was significantly altered in SEF-knockdowns. We then determined the global impact of SEF-knockdown by RNA-seq, and mapped huge shifts in secretory gene expression that could be the result of downregulation of the Sin3 histone deacetylase corepressor complex.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Khemraj Budachetri
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Selenocysteine, the 21st amino acid, has been found in 25 human selenoproteins and selenoenzymes important for fundamental cellular processes ranging from selenium homeostasis maintenance to the regulation of the overall metabolic rate. In all organisms that contain selenocysteine, both the synthesis of selenocysteine and its incorporation into a selenoprotein requires an elaborate synthetic and translational apparatus, which does not resemble the canonical enzymatic system employed for the 20 standard amino acids. In humans, three synthetic enzymes, a specialized elongation factor, an accessory protein factor, two catabolic enzymes, a tRNA, and a stem-loop structure in the selenoprotein mRNA are critical for ensuring that only selenocysteine is attached to selenocysteine tRNA and that only selenocysteine is inserted into the nascent polypeptide in response to a context-dependent UGA codon. The abnormal selenium homeostasis and mutations in selenoprotein genes have been causatively linked to a variety of human diseases, which, in turn, sparked a renewed interest in utilizing selenium as the dietary supplement to either prevent or remedy pathologic conditions. In contrast, the importance of the components of the selenocysteine-synthetic machinery for human health is less clear. Emerging evidence suggests that enzymes responsible for selenocysteine formation and decoding the selenocysteine UGA codon, which by extension are critical for synthesis of the entire selenoproteome, are essential for the development and health of the human organism.
Collapse
Affiliation(s)
- Rachel L Schmidt
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
41
|
Specialization from synthesis: How ribosome diversity can customize protein function. FEBS Lett 2013; 587:1189-97. [DOI: 10.1016/j.febslet.2013.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
|
42
|
Thyer R, Filipovska A, Rackham O. Engineered rRNA Enhances the Efficiency of Selenocysteine Incorporation during Translation. J Am Chem Soc 2012; 135:2-5. [DOI: 10.1021/ja3069177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ross Thyer
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Aleksandra Filipovska
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Oliver Rackham
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| |
Collapse
|
43
|
Gonzalez-Flores JN, Gupta N, DeMong LW, Copeland PR. The selenocysteine-specific elongation factor contains a novel and multi-functional domain. J Biol Chem 2012; 287:38936-45. [PMID: 22992746 DOI: 10.1074/jbc.m112.415463] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenocysteine (Sec)-specific eukaryotic elongation factor (eEFSec) delivers the aminoacylated selenocysteine-tRNA (Sec-tRNA(Sec)) to the ribosome and suppresses UGA codons that are upstream of Sec insertion sequence (SECIS) elements bound by SECIS-binding protein 2 (SBP2). Multiple studies have highlighted the importance of SBP2 forming a complex with the SECIS element, but it is not clear how this regulates eEFSec during Sec incorporation. Compared with the canonical elongation factor eEF1A, eEFSec has a unique C-terminal extension called Domain IV. To understand the role of Domain IV in Sec incorporation, we examined a series of mutant proteins for all of the known molecular functions for eEFSec: GTP hydrolysis, Sec-tRNA(Sec) binding, and SBP2/SECIS binding. In addition, wild-type and mutant versions of eEFSec were analyzed for Sec incorporation activity in a novel eEFSec-dependent translation extract. We have found that Domain IV is essential for both tRNA and SBP2 binding as well as regulating GTPase activity. We propose a model where the SBP2/SECIS complex activates eEFSec by directing functional interactions between Domain IV and the ribosome to promote Sec-tRNA(Sec) binding and accommodation into the ribosomal A-site.
Collapse
Affiliation(s)
- Jonathan N Gonzalez-Flores
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
44
|
Paleskava A, Konevega AL, Rodnina MV. Thermodynamics of the GTP-GDP-operated conformational switch of selenocysteine-specific translation factor SelB. J Biol Chem 2012; 287:27906-12. [PMID: 22740700 PMCID: PMC3431659 DOI: 10.1074/jbc.m112.366120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.
Collapse
Affiliation(s)
- Alena Paleskava
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L. Konevega
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marina V. Rodnina
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Caban K, Copeland PR. Selenocysteine insertion sequence (SECIS)-binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80 S ribosomes. J Biol Chem 2012; 287:10664-10673. [PMID: 22308032 DOI: 10.1074/jbc.m111.320929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sec-tRNA(Sec) is site-specifically delivered at defined UGA codons in selenoprotein mRNAs. This recoding event is specified by the selenocysteine insertion sequence (SECIS) element and requires the selenocysteine (Sec)-specific elongation factor, eEFSec, and the SECIS binding protein, SBP2. Sec-tRNA(Sec) is delivered to the ribosome by eEFSec-GTP, but this ternary complex is not sufficient for Sec incorporation, indicating that its access to the ribosomal A-site is regulated. SBP2 stably associates with ribosomes, and mutagenic analysis indicates that this interaction is essential for Sec incorporation. However, the ribosomal function of SBP2 has not been elucidated. To shed light on the functional relevance of the SBP2-ribosome interaction, we screened the functional centers of the 28 S rRNA in translationally competent 80 S ribosomes using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). We demonstrate that SBP2 specifically alters the reactivity of specific residues in Helix 89 (H89) and expansion segment 31 (ES31). These results are indicative of a conformational change in response to SBP2 binding. Based on the known functions of H89 during translation, we propose that SBP2 allows Sec incorporation by either promoting Sec-tRNA(Sec) accommodation into the peptidyltransferase center and/or by stimulating the ribosome-dependent GTPase activity of eEFSec.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Paul R Copeland
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
46
|
El-Bayoumy K, Das A, Russell S, Wolfe S, Jordan R, Renganathan K, Loughran TP, Somiari R. The effect of selenium enrichment on baker's yeast proteome. J Proteomics 2012; 75:1018-30. [PMID: 22067702 PMCID: PMC3246083 DOI: 10.1016/j.jprot.2011.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 11/26/2022]
Abstract
The use of regular yeast (RY) and selenium-enriched yeast (SEY) as dietary supplement is of interest because the Nutritional Prevention of Cancer (NPC) trial revealed that SEY but not RY decreased the incidence of prostate cancer (PC). Using two-dimensional difference in gel electrophoresis (2D-DIGE)-tandem mass spectrometry (MS/MS) approach, we performed proteomic analysis of RY and SEY to identify proteins that are differentially expressed as a result of selenium enrichment. 2D-DIGE revealed 96 candidate protein spots that were differentially expressed (p≤0.05) between SEY and RY. The 96 spots were selected, sequenced by LC/MS/MS and 37 proteins were unequivocally identified. The 37 identified proteins were verified with ProteinProphet software and mapped to existing Gene Ontology categories. Furthermore, the expression profile of 5 of the proteins with validated or putative roles in the carcinogenesis process, and for which antibodies against human forms of the proteins are available commercially was verified by western analysis. This study provides evidence for the first time that SEY contains higher levels of Pyruvate Kinase, HSP70, and Elongation factor 2 and lower levels of Eukaryotic Translation Initiation Factor 5A-2 and Triosephosphate Isomerase than those found in RY.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bulyha I, Hot E, Huntley S, Søgaard-Andersen L. GTPases in bacterial cell polarity and signalling. Curr Opin Microbiol 2011; 14:726-33. [DOI: 10.1016/j.mib.2011.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 12/20/2022]
|
48
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
49
|
Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse. PLoS One 2011; 6:e20032. [PMID: 21629646 PMCID: PMC3101227 DOI: 10.1371/journal.pone.0020032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/09/2011] [Indexed: 11/26/2022] Open
Abstract
Background Selenocysteine tRNAs (tRNASec) exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNASec-interacting factors are incompletely understood. Methodology/Principal Findings We applied rational mutagenesis to obtain well diffracting crystals of murine tRNASec. tRNASec lacking the single-stranded 3′-acceptor end (ΔGCCARNASec) yielded a crystal structure at 2.0 Å resolution. The global structure of ΔGCCARNASec resembles the structure of human tRNASec determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNASec used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2′-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNASecin vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn2+-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNASec. Conclusions/Significance We provide the most highly resolved structure of a tRNASec molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNASec support its interaction with proteins.
Collapse
|
50
|
Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochem Soc Trans 2011; 39:45-50. [PMID: 21265745 DOI: 10.1042/bst0390045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.
Collapse
|