1
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Kasho K, Ozaki S, Katayama T. IHF and Fis as Escherichia coli Cell Cycle Regulators: Activation of the Replication Origin oriC and the Regulatory Cycle of the DnaA Initiator. Int J Mol Sci 2023; 24:11572. [PMID: 37511331 PMCID: PMC10380432 DOI: 10.3390/ijms241411572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Rao TVP, Kuzminov A. Robust linear DNA degradation supports replication-initiation-defective mutants in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac228. [PMID: 36165702 PMCID: PMC9635670 DOI: 10.1093/g3journal/jkac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
RecBCD helicase/nuclease supports replication fork progress via recombinational repair or linear DNA degradation, explaining recBC mutant synthetic lethality with replication elongation defects. Since replication initiation defects leave chromosomes without replication forks, these should be insensitive to the recBCD status. Surprisingly, we found that both Escherichia coli dnaA46(Ts) and dnaC2(Ts) initiation mutants at semi-permissive temperatures are also recBC-colethal. Interestingly, dnaA46 recBC lethality suppressors suggest underinitiation as the problem, while dnaC2 recBC suppressors signal overintiation. Using genetic and physical approaches, we studied the dnaA46 recBC synthetic lethality, for the possibility that RecBCD participates in replication initiation. Overproduced DnaA46 mutant protein interferes with growth of dnaA+ cells, while the residual viability of the dnaA46 recBC mutant depends on the auxiliary replicative helicase Rep, suggesting replication fork inhibition by the DnaA46 mutant protein. The dnaA46 mutant depends on linear DNA degradation by RecBCD, rather than on recombinational repair. At the same time, the dnaA46 defect also interacts with Holliday junction-moving defects, suggesting reversal of inhibited forks. However, in contrast to all known recBC-colethals, which fragment their chromosomes, the dnaA46 recBC mutant develops no chromosome fragmentation, indicating that its inhibited replication forks are stable. Physical measurements confirm replication inhibition in the dnaA46 mutant shifted to semi-permissive temperatures, both at the level of elongation and initiation, while RecBCD gradually restores elongation and then initiation. We propose that RecBCD-catalyzed resetting of inhibited replication forks allows replication to displace the "sticky" DnaA46(Ts) protein from the chromosomal DNA, mustering enough DnaA for new initiations.
Collapse
Affiliation(s)
| | - Andrei Kuzminov
- Corresponding author: Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
5
|
Adam Y, Brezellec P, Espinosa E, Besombes A, Naquin D, Paly E, Possoz C, van Dijk E, Francois-Xavier B, Jean-Luc F. Plesiomonas shigelloides, an Atypical Enterobacterales with a Vibrio-related secondary chromosome. Genome Biol Evol 2022; 14:6515279. [PMID: 35078241 PMCID: PMC8826520 DOI: 10.1093/gbe/evac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 11/18/2022] Open
Abstract
About 10% of bacteria have a multichromosome genome with a primary replicon of bacterial origin, called the chromosome, and other replicons of plasmid origin, the chromids. Studies on multichromosome bacteria revealed potential points of coordination between the replication/segregation of chromids and the progression of the cell cycle. For example, replication of the chromid of Vibrionales (called Chr2) is initiated upon duplication of a sequence carried by the primary chromosome (called Chr1), in such a way that replication of both replicons is completed synchronously. Also, Chr2 uses the Chr1 as a scaffold for its partition in the daughter cells. How many of the features detected so far are required for the proper integration of a secondary chromosome in the cell cycle? How many more features remain to be discovered? We hypothesized that critical features for the integration of the replication/segregation of a given chromid within the cell cycle program would be conserved independently of the species in which the chromid has settled. Hence, we searched for a chromid related to that found in Vibrionales outside of this order. We identified one in Plesiomonas shigelloides, an aquatic and pathogenic enterobacterium that diverged early within the clade of Enterobacterales. Our results suggest that the chromids present in P. shigelloides and Vibrionales derive from a common ancestor. We initiated in silico genomic and proteomic comparative analyses of P. shigelloides, Vibrionales, and Enterobacterales that enabled us to establish a list of features likely involved in the maintenance of the chromid within the host cell cycle.
Collapse
Affiliation(s)
- Yazid Adam
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Pierre Brezellec
- Université de Versailles Saint Quentin, 45 avenue des Etats Unis, Versailles, 78000, France
- Atelier de Bioinformatique, UMR 7205 ISYEB, CNRS-MNHN-UPMC-EPHE, Muséum d'Histoire Naturelle, Paris, France
| | - Elena Espinosa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Amelie Besombes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Evelyne Paly
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Christophe Possoz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Barre Francois-Xavier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Ferat Jean-Luc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
- Université de Versailles Saint Quentin, 45 avenue des Etats Unis, Versailles, 78000, France
| |
Collapse
|
6
|
Grimwade JE, Leonard AC. Blocking, Bending, and Binding: Regulation of Initiation of Chromosome Replication During the Escherichia coli Cell Cycle by Transcriptional Modulators That Interact With Origin DNA. Front Microbiol 2021; 12:732270. [PMID: 34616385 PMCID: PMC8488378 DOI: 10.3389/fmicb.2021.732270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Genome duplication is a critical event in the reproduction cycle of every cell. Because all daughter cells must inherit a complete genome, chromosome replication is tightly regulated, with multiple mechanisms focused on controlling when chromosome replication begins during the cell cycle. In bacteria, chromosome duplication starts when nucleoprotein complexes, termed orisomes, unwind replication origin (oriC) DNA and recruit proteins needed to build new replication forks. Functional orisomes comprise the conserved initiator protein, DnaA, bound to a set of high and low affinity recognition sites in oriC. Orisomes must be assembled each cell cycle. In Escherichia coli, the organism in which orisome assembly has been most thoroughly examined, the process starts with DnaA binding to high affinity sites after chromosome duplication is initiated, and orisome assembly is completed immediately before the next initiation event, when DnaA interacts with oriC’s lower affinity sites, coincident with origin unwinding. A host of regulators, including several transcriptional modulators, targets low affinity DnaA-oriC interactions, exerting their effects by DNA bending, blocking access to recognition sites, and/or facilitating binding of DnaA to both DNA and itself. In this review, we focus on orisome assembly in E. coli. We identify three known transcriptional modulators, SeqA, Fis (factor for inversion stimulation), and IHF (integration host factor), that are not essential for initiation, but which interact directly with E. coli oriC to regulate orisome assembly and replication initiation timing. These regulators function by blocking sites (SeqA) and bending oriC DNA (Fis and IHF) to inhibit or facilitate cooperative low affinity DnaA binding. We also examine how the growth rate regulation of Fis levels might modulate IHF and DnaA binding to oriC under a variety of nutritional conditions. Combined, the regulatory mechanisms mediated by transcriptional modulators help ensure that at all growth rates, bacterial chromosome replication begins once, and only once, per cell cycle.
Collapse
Affiliation(s)
- Julia E Grimwade
- Microbial Genetics Laboratory, Biological Sciences Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Alan C Leonard
- Microbial Genetics Laboratory, Biological Sciences Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
7
|
Nanji T, Gehrke EJ, Shen Y, Gloyd M, Zhang X, Firby CD, Huynh A, Razi A, Ortega J, Elliot MA, Guarné A. Streptomyces IHF uses multiple interfaces to bind DNA. Biochim Biophys Acta Gen Subj 2019; 1863:129405. [PMID: 31376411 DOI: 10.1016/j.bbagen.2019.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.
Collapse
Affiliation(s)
- Tamiza Nanji
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma J Gehrke
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yao Shen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Melanie Gloyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Xiafei Zhang
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Christopher D Firby
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Angela Huynh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Riber L, Koch BM, Kruse LR, Germain E, Løbner-Olesen A. HipA-Mediated Phosphorylation of SeqA Does not Affect Replication Initiation in Escherichia coli. Front Microbiol 2018; 9:2637. [PMID: 30450091 PMCID: PMC6225831 DOI: 10.3389/fmicb.2018.02637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022] Open
Abstract
The SeqA protein of Escherichia coli is required to prevent immediate re-initiation of chromosome replication from oriC. The SeqA protein is phosphorylated at the serine-36 (Ser36) residue by the HipA kinase. The role of phosphorylation was addressed by mutating the Ser36 residue to alanine, which cannot be phosphorylated and to aspartic acid, which mimics a phosphorylated serine residue. Both mutant strains were similar to wild-type with respect to origin concentration and initiation synchrony. The minimal time between successive initiations was also unchanged. We therefore suggest that SeqA phosphorylation at the Ser36 residue is silent, at least with respect to SeqA's role in replication initiation.
Collapse
Affiliation(s)
- Leise Riber
- Section for Functional Genomics, Department of Biology, Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
- Leise Riber
| | - Birgit M. Koch
- Section for Functional Genomics, Department of Biology, Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Line Riis Kruse
- Section for Functional Genomics, Department of Biology, Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Université Aix-Marseille, CNRS, Marseille, France
| | - Anders Løbner-Olesen
- Section for Functional Genomics, Department of Biology, Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anders Løbner-Olesen
| |
Collapse
|
10
|
Katayama T. Initiation of DNA Replication at the Chromosomal Origin of E. coli, oriC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:79-98. [PMID: 29357054 DOI: 10.1007/978-981-10-6955-0_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli chromosomal origin consists of a duplex-unwinding region and a region bearing a DNA-bending protein, IHF-binding site, and clusters of binding sites for the initiator protein DnaA. ATP-DnaA molecules form highly organized oligomers in a process stimulated by DiaA, a DnaA-binding protein. The resultant ATP-DnaA complexes promote local unwinding of oriC with the aid of IHF, for which specific interaction of DnaA with the single-stranded DNA is crucial. DnaA complexes also interact with DnaB helicases bound to DnaC loaders, promoting loading of DnaB onto the unwound DNA strands for bidirectional replication. Initiation of replication is strictly regulated during the cell cycle by multiple regulatory systems for oriC and DnaA. The activity of oriC is regulated by its methylation state, whereas that of DnaA depends on the form of the bound nucleotide. ATP-DnaA can be yielded from initiation-inactive ADP-DnaA in a timely manner depending on specific chromosomal DNA elements termed DARS (DnaA-reactivating sequences). After initiation, DnaA-bound ATP is hydrolyzed by two systems, yielding ADP-DnaA. In this review, these and other mechanisms of initiation and its regulation in E. coli are described.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli. J Bacteriol 2016; 198:1305-16. [PMID: 26858102 DOI: 10.1128/jb.00919-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.
Collapse
|
12
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
13
|
Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2015; 38:50-57. [PMID: 26725162 DOI: 10.1016/j.dnarep.2015.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| | - Pingping Li
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Julia Gotthardt
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
14
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
15
|
Abstract
Recent advancements in fluorescence imaging have shown that the bacterial nucleoid is surprisingly dynamic in terms of both behavior (movement and organization) and structure (density and supercoiling). Links between chromosome structure and replication initiation have been made in a number of species, and it is universally accepted that favorable chromosome structure is required for initiation in all cells. However, almost nothing is known about whether cells use changes in chromosome structure as a regulatory mechanism for initiation. Such changes could occur during natural cell cycle or growth phase transitions, or they could be manufactured through genetic switches of topoisomerase and nucleoid structure genes. In this review, we explore the relationship between chromosome structure and replication initiation and highlight recent work implicating structure as a regulatory mechanism. A three-component origin activation model is proposed in which thermal and topological structural elements are balanced with trans-acting control elements (DnaA) to allow efficient initiation control under a variety of nutritional and environmental conditions. Selective imbalances in these components allow cells to block replication in response to cell cycle impasse, override once-per-cell-cycle programming during growth phase transitions, and promote reinitiation when replication forks fail to complete.
Collapse
|
16
|
Helgesen E, Fossum-Raunehaug S, Sætre F, Schink KO, Skarstad K. Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic Acids Res 2015; 43:2730-43. [PMID: 25722374 PMCID: PMC4357733 DOI: 10.1093/nar/gkv146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli SeqA protein binds to newly replicated, hemimethylated DNA behind replication forks and forms structures consisting of several hundred SeqA molecules bound to about 100 kb of DNA. It has been suggested that SeqA structures either direct the new sister DNA molecules away from each other or constitute a spacer that keeps the sisters together. We have developed an image analysis script that automatically measures the distance between neighboring foci in cells. Using this tool as well as direct stochastic optical reconstruction microscopy (dSTORM) we find that in cells with fluorescently tagged SeqA and replisome the sister SeqA structures were situated close together (less than about 30 nm apart) and relatively far from the replisome (on average 200–300 nm). The results support the idea that newly replicated sister molecules are kept together behind the fork and suggest the existence of a stretch of DNA between the replisome and SeqA which enjoys added stabilization. This could be important in facilitating DNA transactions such as recombination, mismatch repair and topoisomerase activity. In slowly growing cells without ongoing replication forks the SeqA protein was found to reside at the fully methylated origins prior to initiation of replication.
Collapse
Affiliation(s)
- Emily Helgesen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Frank Sætre
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kay Oliver Schink
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
17
|
Mika JT, Vanhecke A, Dedecker P, Swings T, Vangindertael J, Van den Bergh B, Michiels J, Hofkens J. A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy. Faraday Discuss 2015; 184:425-50. [DOI: 10.1039/c5fd00058k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) cells replicate their genome once per cell cycle to pass on genetic information to the daughter cells. The SeqA protein binds the origin of replication, oriC, after DNA replication initiation and sequesters it from new initiations in order to prevent overinitiation. Conventional fluorescence microscopy studies of SeqA localization in bacterial cells have shown that the protein is localized to discrete foci. In this study we have used photo-activated localization microscopy (PALM) to determine the localization of SeqA molecules, tagged with fluorescent proteins, with a localization precision of 20–30 nm with the aim to visualize the SeqA subcellular structures in more detail than previously possible. SeqA–PAmCherry was imaged in wild type E. coli, expressed from plasmid or genetically engineered into the bacterial genome, replacing the native seqA gene. Unsynchronized cells as well as cells with a synchronized cell cycle were imaged at various time points, in order to investigate the evolution of SeqA localization during the cell cycle. We found that SeqA indeed localized into discrete foci but these were not the only subcellular localizations of the protein. A significant amount of SeqA–PAmCherry molecules was localized outside the foci and in a fraction of cells we saw patterns indicating localization at the membrane. Using quantitative PALM, we counted protein copy numbers per cell, protein copy numbers per focus, the numbers of foci per cell and the sizes of the SeqA clusters. The data showed broad cell-to-cell variation and we did not observe a correlation between SeqA–PAmCherry protein numbers and the cell cycle under the experimental conditions of this study. The numbers of SeqA–PAmCherry molecules per focus as well as the foci sizes also showed broad distributions indicating that the foci are likely not characterized by a fixed number of molecules. We also imaged an E. coli strain devoid of the dam methylase (Δdam) and observed that SeqA–PAmCherry no longer formed foci, and was dispersed throughout the cell and localized to the plasma membrane more readily. We discuss our results in the context of the limitations of the technique.
Collapse
Affiliation(s)
- Jacek T. Mika
- Department of Chemistry
- KU Leuven
- 3001 Heverlee
- Belgium
| | | | | | - Toon Swings
- Centre of Microbial and Plant Genetics (CMPG)
- KU Leuven
- 3001 Leuven
- Belgium
| | | | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics (CMPG)
- KU Leuven
- 3001 Leuven
- Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics (CMPG)
- KU Leuven
- 3001 Leuven
- Belgium
| | - Johan Hofkens
- Department of Chemistry
- KU Leuven
- 3001 Heverlee
- Belgium
| |
Collapse
|
18
|
Donczew R, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Beyond DnaA: the role of DNA topology and DNA methylation in bacterial replication initiation. J Mol Biol 2014; 426:2269-82. [PMID: 24747048 DOI: 10.1016/j.jmb.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
19
|
Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet 2013; 9:e1003673. [PMID: 23990792 PMCID: PMC3749930 DOI: 10.1371/journal.pgen.1003673] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomerase-catalyzed sister separation is delayed by the well-characterized cohesin complex in eukaryotes, but cohesion control in E. coli is not currently understood. We report that the abundant fork tracking protein SeqA is a strong positive regulator of cohesion, and is responsible for markedly prolonged cohesion observed at “snap” loci. Epistasis analysis suggests that SeqA stabilizes cohesion by antagonizing Topo IV-mediated sister resolution, and possibly also by a direct bridging mechanism. We show that variable cohesion observed along the E. coli chromosome is caused by differential SeqA binding, with oriC and snap loci binding disproportionally more SeqA. We propose that SeqA binding results in loose inter-duplex junctions that are resistant to Topo IV cleavage. Lastly, reducing cohesion by genetic manipulation of Topo IV or SeqA resulted in dramatically slowed sister locus separation and poor nucleoid partitioning, indicating that cohesion has a prominent role in chromosome segregation. Sister chromosome cohesion in eukaryotes maintains genome stability by mediating chromosome segregation and homologous recombination-dependent DNA repair. Here we have investigated the mechanism of cohesion regulation in E. coli by measuring cohesion timing in a broad set of candidate mutant strains. Using a sensitive DNA replication and segregation assay, we show that cohesion is controlled by the conserved DNA decatenation enzyme Topo IV and the abundant DNA binding protein SeqA. Results suggest that cohesion occurs in E. coli by twisting of replicated duplexes around each other behind the replication fork, and immediate resolution of cohered regions is blocked by SeqA. SeqA binds to a sliding 300–400 kb window of hemimethylated DNA behind the fork, and regions binding more SeqA experience longer cohesion periods. An analogous decatenation inhibition function is carried out by the cohesin complex in eukaryotes, indicating that cells mediate pairing and separation of replicated DNA by a conserved mechanism. In both cases, mismanaged cohesion results in failed or inefficient chromosome segregation.
Collapse
|
20
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
21
|
The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 2013; 152:183-95. [PMID: 23332754 PMCID: PMC3549490 DOI: 10.1016/j.cell.2012.12.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 01/16/2023]
Abstract
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.
Collapse
|
22
|
Waldminghaus T, Weigel C, Skarstad K. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res 2012; 40:5465-76. [PMID: 22373925 PMCID: PMC3384311 DOI: 10.1093/nar/gks187] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
23
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
24
|
Sánchez-Romero MA, Busby SJW, Dyer NP, Ott S, Millard AD, Grainger DC. Dynamic distribution of seqa protein across the chromosome of escherichia coli K-12. mBio 2010; 1:e00012-10. [PMID: 20689753 PMCID: PMC2912659 DOI: 10.1128/mbio.00012-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022] Open
Abstract
The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitiation of replication. However, the genome-wide DNA binding properties of SeqA are unknown, and hence, here, we describe a study of the binding of SeqA across the entire Escherichia coli K-12 chromosome, using chromatin immunoprecipitation in combination with DNA microarrays. Our data show that SeqA binding correlates with the frequency and spacing of GATC sequences across the entire genome. Less SeqA is found in highly transcribed regions, as well as in the ter macrodomain. Using synchronized cultures, we show that SeqA distribution differs with the cell cycle. SeqA remains bound to some targets after replication has ceased, and these targets locate to genes encoding factors involved in nucleotide metabolism, chromosome replication, and methyl transfer.
Collapse
Affiliation(s)
| | - Stephen J. W. Busby
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nigel P. Dyer
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Sascha Ott
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Andrew D. Millard
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| | - David C. Grainger
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| |
Collapse
|
25
|
Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163-70. [PMID: 20157337 DOI: 10.1038/nrmicro2314] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
26
|
A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS One 2009; 4:e7617. [PMID: 19898675 PMCID: PMC2773459 DOI: 10.1371/journal.pone.0007617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/04/2009] [Indexed: 11/25/2022] Open
Abstract
Background It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. Methodology/Principal Findings Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a “delay” in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a “repair structure” during the initial phase of the SOS response. Conclusion/Significance The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation.
Collapse
|
27
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
28
|
Rotman E, Bratcher P, Kuzminov A. Reduced lipopolysaccharide phosphorylation in Escherichia coli lowers the elevated ori/ter ratio in seqA mutants. Mol Microbiol 2009; 72:1273-92. [PMID: 19432803 DOI: 10.1111/j.1365-2958.2009.06725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The seqA defect in Escherichia coli increases the ori/ter ratio and causes chromosomal fragmentation, making seqA mutants dependent on recombinational repair (the seqA recA colethality). To understand the nature of this chromosomal fragmentation, we characterized DeltaseqA mutants and isolated suppressors of the DeltaseqA recA lethality. We demonstrate that our DeltaseqA alleles have normal function of the downstream pgm gene and normal ratios of the major phospholipids in the membranes, but increased surface lipopolysaccharide (LPS) phosphorylation. The predominant class of DeltaseqA recA suppressors disrupts the rfaQGP genes, reducing phosphorylation of the inner core region of LPS. The rfaQGP suppressors also reduce the elevated ori/ter ratio of the DeltaseqA mutants but, unexpectedly, the suppressed mutants still exhibit the high levels of chromosomal fragmentation and SOS induction, characteristic of the DeltaseqA mutants. We also found that colethality of rfaP with defects in the production of acidic phospholipids is suppressed by alternative initiation of chromosomal replication, suggesting that LPS phosphorylation stimulates replication initiation. The rfaQGP suppression of the seqA recA lethality provides genetic support for the surprising physical evidence that the oriC DNA forms complexes with the outer membrane.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | |
Collapse
|
29
|
Morigen, Odsbu I, Skarstad K. Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli. Genes Cells 2009; 14:643-57. [PMID: 19371375 DOI: 10.1111/j.1365-2443.2009.01298.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When the bacterium Escherichia coli is grown in rich medium, the replication and segregation periods may span two, three or four generations and cells may contain up to 24 replication forks. The newly synthesized, hemimethylated DNA at each fork is bound by SeqA protein. The SeqA-DNA structures form distinct foci that can be observed by immunofluorescence microscopy. The numbers of foci were lower than the numbers of replication forks indicating fork co-localization. The extent of co-localization correlated with the extent of replication cycle overlap in wild-type cells. No abrupt increase in the numbers of foci occurred at the time of initiation of replication, suggesting that new replication forks bind to existing SeqA structures. Manipulations with replication control mechanisms that led to extension or reduction of the replication period and number of forks, did not lead to changes in the numbers of SeqA foci per cell. The results indicate that the number of SeqA foci is not directly governed by the number of replication forks, and supports the idea that new DNA may be 'captured' by existing SeqA structures.
Collapse
Affiliation(s)
- Morigen
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
30
|
Chung YS, Brendler T, Austin S, Guarné A. Structural insights into the cooperative binding of SeqA to a tandem GATC repeat. Nucleic Acids Res 2009; 37:3143-52. [PMID: 19304745 PMCID: PMC2691817 DOI: 10.1093/nar/gkp151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqAΔ(41–59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA–DNA complex also unveils additional protein–protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.
Collapse
Affiliation(s)
- Yu Seon Chung
- Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | |
Collapse
|
31
|
Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid 2009; 61:141-50. [PMID: 19254745 DOI: 10.1016/j.plasmid.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The Escherichia coli SeqA protein contributes to regulation of chromosome replication by preventing re-initiation at newly replicated origins. SeqA protein binds to new DNA which is hemimethylated at the adenine of GATC sequences. Most of the cellular SeqA is found complexed with the new DNA at the replication forks. In vitro the SeqA protein binds as a dimer to two GATC sites and is capable of forming a helical fiber of dimers through interactions of the N-terminal domain. SeqA can also bind, with less affinity, to fully methylated origins and affect timing of "primary" initiations. In addition to its roles in replication, the SeqA protein may also act in chromosome organization and gene regulation.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
32
|
Mercier R, Petit MA, Schbath S, Robin S, El Karoui M, Boccard F, Espéli O. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 2008; 135:475-85. [PMID: 18984159 DOI: 10.1016/j.cell.2008.08.031] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/08/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
The organization of the Escherichia coli chromosome into insulated macrodomains influences the segregation of sister chromatids and the mobility of chromosomal DNA. Here, we report that organization of the Terminus region (Ter) into a macrodomain relies on the presence of a 13 bp motif called matS repeated 23 times in the 800-kb-long domain. matS sites are the main targets in the E. coli chromosome of a newly identified protein designated MatP. MatP accumulates in the cell as a discrete focus that colocalizes with the Ter macrodomain. The effects of MatP inactivation reveal its role as main organizer of the Ter macrodomain: in the absence of MatP, DNA is less compacted, the mobility of markers is increased, and segregation of Ter macrodomain occurs early in the cell cycle. Our results indicate that a specific organizational system is required in the Terminus region for bacterial chromosome management during the cell cycle.
Collapse
Affiliation(s)
- Romain Mercier
- Centre de Génétique Moléculaire du CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Daghfous D, Chatti A, Hammami R, Landoulsi A. Modeling of the full-length Escherichia coli SeqA protein, in complex with DNA. ACTA ACUST UNITED AC 2008; 57:e61-6. [PMID: 18849124 DOI: 10.1016/j.patbio.2008.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/18/2008] [Indexed: 11/27/2022]
Abstract
The Escherichia coli SeqA protein, a negative regulator of chromosome DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated GATC sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the SeqA protein biological activity, we performed a SeqA protein model to examine its architecture. SeqA has a bipartite structure composed of a large and small lobe. The SeqA spatial conformation contributes to its ability to bind to a pair of hemimethylated GATC sequences and to its cooperative behavior.
Collapse
Affiliation(s)
- D Daghfous
- Laboratoire de biochimie et de biologie moléculaire, faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia.
| | | | | | | |
Collapse
|
34
|
Excess SeqA leads to replication arrest and a cell division defect in Vibrio cholerae. J Bacteriol 2008; 190:5870-8. [PMID: 18621898 DOI: 10.1128/jb.00479-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although most bacteria contain a single circular chromosome, some have complex genomes, and all Vibrio species studied so far contain both a large and a small chromosome. In recent years, the divided genome of Vibrio cholerae has proven to be an interesting model system with both parallels to and novel features compared with the genome of Escherichia coli. While factors influencing the replication and segregation of both chromosomes have begun to be elucidated, much remains to be learned about the maintenance of this genome and of complex bacterial genomes generally. An important aspect of replicating any genome is the correct timing of initiation, without which organisms risk aneuploidy. During DNA replication in E. coli, newly replicated origins cannot immediately reinitiate because they undergo sequestration by the SeqA protein, which binds hemimethylated origin DNA. This DNA is already methylated by Dam on the template strand and later becomes fully methylated; aberrant amounts of Dam or the deletion of seqA leads to asynchronous replication. In our study, hemimethylated DNA was detected at both origins of V. cholerae, suggesting that these origins are also subject to sequestration. The overproduction of SeqA led to a loss of viability, the condensation of DNA, and a filamentous morphology. Cells with abnormal DNA content arose in the population, and replication was inhibited as determined by a reduced ratio of origin to terminus DNA in SeqA-overexpressing cells. Thus, excessive SeqA negatively affects replication in V. cholerae and prevents correct progression to downstream cell cycle events such as segregation and cell division.
Collapse
|
35
|
Chung YS, Guarné A. Crystallization and preliminary X-ray diffraction analysis of SeqA bound to a pair of hemimethylated GATC sites. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:567-71. [PMID: 18540078 DOI: 10.1107/s1744309108014851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/16/2008] [Indexed: 11/10/2022]
Abstract
Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to multiple hemimethylated GATC sequences. In an effort to understand how SeqA forms a high-affinity complex with hemimethylated DNA, a dimeric variant of SeqA was overproduced, purified and crystallized bound to a DNA duplex containing two hemimethylated GATC sites. The preliminary X-ray analysis of crystals diffracting to 3 A resolution is presented here.
Collapse
Affiliation(s)
- Yu Seon Chung
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton ON L8N 3Z5, Canada
| | | |
Collapse
|
36
|
Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G. Modulation of lambda plasmid and phage DNA replication by Escherichia coli SeqA protein. MICROBIOLOGY-SGM 2007; 153:1653-1663. [PMID: 17464080 DOI: 10.1099/mic.0.2006/005546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the lambda plasmid, is decreased, and that the activity of the lambda p(R) promoter (whose function is required for stimulation of ori lambda) is lower than that in the wild-type host. Here, SeqA-mediated regulation of lambda phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on ori lambda-dependent DNA replication in vitro was observed, indicating that a direct regulation of lambda DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled lambda DNA was monitored after phage infection of host cells, strongly suggested the early appearance of sigma replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of lambda plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable lambda replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the lambda O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent lambda DNA replication, the efficiency of lambda plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of lambda plasmid replication. These results indicate that unlike oriC, SeqA modulates lambda DNA replication indirectly, most probably by influencing the stability of the lambda replication complex and the transcriptional activation of ori lambda.
Collapse
Affiliation(s)
- Magdalena Narajczyk
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Monika Glinkowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
37
|
Fossum S, Crooke E, Skarstad K. Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli. EMBO J 2007; 26:4514-22. [PMID: 17914458 PMCID: PMC2063475 DOI: 10.1038/sj.emboj.7601871] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 09/10/2007] [Indexed: 11/09/2022] Open
Abstract
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules.
Collapse
Affiliation(s)
- Solveig Fossum
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kirsten Skarstad
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo 0310, Norway. Tel.: +47 229 34255; Fax: +47 229 34580; E-mail:
| |
Collapse
|
38
|
Kang S, Han JS, Kim SH, Park JH, Hwang DS. Aggregation of SeqA protein requires positively charged amino acids in the hinge region. Biochem Biophys Res Commun 2007; 360:63-9. [PMID: 17586464 DOI: 10.1016/j.bbrc.2007.05.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/23/2022]
Abstract
SeqA proteins of Escherichia coli bound to the hemimethylated GATC sequences (hemi-sites) interact with each other and eventually form an aggregate. SeqA foci, which are suggested to be formed by aggregation, play important roles in the regulation of chromosome replication and segregation. We found that aggregation of SeqA proteins was preceded by cooperative interactions between these proteins bound to hemi-sites. Positively charged amino acids in the hinge region, which connects the N-terminal and C-terminal domain of SeqA, were critical for SeqA aggregation on hemimethylated DNA. Although the substitution of positively charged amino acids with negatively charged or neutral amino acids maintained the binding and cooperative interaction of mutant proteins, these proteins were defective in aggregation and foci formation in vitro and in vivo, respectively. Our results suggest that in vivo SeqA foci were formed by aggregation following cooperative interactions between SeqA proteins bound to hemi-sites.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Abstract
In all organisms, multi-subunit replicases are responsible for the accurate duplication of genetic material during cellular division. Initiator proteins control the onset of DNA replication and direct the assembly of replisomal components through a series of precisely timed protein-DNA and protein-protein interactions. Recent structural studies of the bacterial protein DnaA have helped to clarify the molecular mechanisms underlying initiator function, and suggest that key structural features of cellular initiators are universally conserved. Moreover, it appears that bacteria use a diverse range of regulatory strategies dedicated to tightly controlling replication initiation; in many cases, these mechanisms are intricately connected to the activities of DnaA at the origin of replication. This Review presents an overview of both the mechanism and regulation of bacterial DNA replication initiation, with emphasis on the features that are similar in eukaryotic and archaeal systems.
Collapse
Affiliation(s)
- Melissa L Mott
- Department of Molecular and Cell Biology, Quantitative Biology Institute, University of California, Berkeley, 237 Hildebrand Hall #3220, California 94720-3220, USA
| | | |
Collapse
|
40
|
Nievera C, Torgue JJC, Grimwade JE, Leonard AC. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 2007; 24:581-92. [PMID: 17114060 PMCID: PMC1939805 DOI: 10.1016/j.molcel.2006.09.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/02/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.
Collapse
Affiliation(s)
| | | | | | - Alan C. Leonard
- Corresponding author: Alan C. Leonard, Email , Tel. (321) 674 8577, Fax (321) 674 7990
| |
Collapse
|
41
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
42
|
den Blaauwen T, Aarsman MEG, Wheeler LJ, Nanninga N. Pre‐replication assembly ofE. colireplisome components. Mol Microbiol 2006; 62:695-708. [PMID: 16999830 DOI: 10.1111/j.1365-2958.2006.05417.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of SeqA, thymidylate synthase, DnaB (helicase) and the DNA polymerase components alpha and tau, has been studied by immunofluorescence microscopy. The origin has been labelled through GFP-LacI bound near oriC. SeqA was located in the cell centre for one replication factory (RF) and at 1/4 and 3/4 positions in pre-divisional cells harbouring two RFs. The transition of central to 1/4 and 3/4 positions of SeqA appeared abrupt. Labelled thymidylate synthetase was found all over the cell, thus not supporting the notion of a dNTP-synthesizing complex exclusively localized near the RF. More DnaB, alpha and tau foci were found than expected. We have hypothesized that extra foci arise at pre-replication assembly sites, where the number of sites equals the number of origins, i.e. the number of future RFs. A reasonable agreement was found between predicted and found foci. In the case of multifork replication the number of foci appeared consistent with the assumption that three RFs are grouped into a higher-order structure. The RF is probably separate from the foci containing SeqA and the hemi-methylated SeqA binding sites because these foci did not coincide significantly with DnaB as marker of the RF. Co-labelling of DnaB and oriC revealed limited colocalization, indicating that DnaB did not yet become associated with oriC at a pre-replication assembly site. DnaB and tau co-labelled in the cell centre, though not at presumed pre-replication assembly sites. By contrast, alpha and tau co-labelled consistently suggesting that they are already associated before replication starts.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
43
|
Odsbu I, Klungsøyr HK, Fossum S, Skarstad K. Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 2006; 10:1039-49. [PMID: 16236133 DOI: 10.1111/j.1365-2443.2005.00898.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein binds preferentially to hemimethylated DNA and is required for inactivation (sequestration) of newly formed origins. A mutant SeqA protein, SeqA4 (A25T), which is deficient in origin sequestration in vivo, was found here to have lost the ability to form multimers, but could bind as dimers with wild-type affinity to a pair of hemimethylated GATC sites. In vitro, binding of SeqA dimers to a plasmid first generates a topology change equivalent to a few positive supercoils, then the binding leads to a topology change in the "opposite" direction, resulting in a restraint of negative supercoils. Binding of SeqA4 mutant dimers produced the former effect, but not the latter, showing that a topology change equivalent to positive supercoiling is caused by the binding of single dimers, whereas restraint of negative supercoils requires multimerization via the N-terminus. In vivo, mutant SeqA4 protein was not capable of forming foci observed by immunofluorescence microscopy, showing that N-terminus-dependent multimerization is required for building SeqA foci. Overproduction of SeqA4 led to partially restored initiation synchrony, indicating that origin sequestration may not depend on efficient higher-order multimerization into foci, but do require a high local concentration of SeqA.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
44
|
Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S. Progressive segregation of the Escherichia coli chromosome. Mol Microbiol 2006; 61:383-93. [PMID: 16771843 DOI: 10.1111/j.1365-2958.2006.05245.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie in the nucleoid, and the terminus region from the cell centre. Segregation appears to leave one copy of each locus in place, and rapidly transport the other to the other side of the cell centre.
Collapse
Affiliation(s)
- Henrik J Nielsen
- BioCentrum-DTU, Technical University of Denmark, DK-2800 kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
45
|
Kang S, Han JS, Kim KP, Yang HY, Lee KY, Hong CB, Hwang DS. Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences. Nucleic Acids Res 2005; 33:1524-31. [PMID: 15767277 PMCID: PMC1065253 DOI: 10.1093/nar/gki289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The binding of SeqA protein to hemi-methylated GATC sequences (hemi-sites) regulates chromosome initiation and the segregation of replicated chromosome in Escherichia coli. We have used atomic force microscopy to examine the architecture of SeqA and the mode of binding of one molecule of SeqA to a pair of hemi-sites in aqueous solution. SeqA has a bipartite structure composed of a large and a small lobe. Upon binding of a SeqA molecule to a pair of hemi-sites, the larger lobe becomes visibly separated into two DNA binding domains, each of which binds to one hemi-site. The two DNA binding domains are held together by association between the two multimerization domains that make up the smaller lobe. The binding of each DNA binding domain to a hemi-site leads to bending of the bound DNA inwards toward the bound protein. In this way, SeqA adopts a dimeric configuration when bound to a pair of hemi-sites. Mutational analysis of the multimerization domain indicates that, in addition to multimerization of SeqA polypeptides, this domain contributes to the ability of SeqA to bind to a pair of hemi-sites and to its cooperative behavior.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Joo Seok Han
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Keun Pill Kim
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Hye Yoon Yang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Kyung Yong Lee
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Choo Bong Hong
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
- To whom correspondence should be addressed. Tel: +82 2 880 7524; Fax: +82 2 874 1206;
| |
Collapse
|