1
|
Nath S. Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by F OF 1-ATP Synthase. Molecules 2023; 28:7486. [PMID: 38005208 PMCID: PMC10673332 DOI: 10.3390/molecules28227486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi-ATP, Pi-HOH, and ATP-HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi-HOH and ATP-HOH exchanges occur at a considerably higher rate relative to the Pi-ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi-HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi-HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer's binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi-HOH exchange. The prominent intermediate Pi-HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi-HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi-ATP and ATP-HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D-53127 Bonn, Germany
| |
Collapse
|
2
|
Nath S. Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F 1-ATPase. Biomolecules 2023; 13:1596. [PMID: 38002278 PMCID: PMC10669602 DOI: 10.3390/biom13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F1-ATPase (MF1). The apparent rate constant of oxygen exchange governing the intermediate Pi-HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1-5000 μM) and a corresponding ~200-fold range of reaction velocity (3.5-650 [moles of Pi/{moles of F1-ATPase}-1 s-1]). Isotopomer distributions of [18O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F1-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F1-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F1-ATPase have been discussed. Current models of ATP hydrolysis by F1-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F1-ATPase.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D–53127 Bonn, Germany
| |
Collapse
|
3
|
Pérez I, Heitkamp T, Börsch M. Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping F oF 1-ATP Synthase Trapped in Solution. Int J Mol Sci 2023; 24:ijms24098442. [PMID: 37176150 PMCID: PMC10178918 DOI: 10.3390/ijms24098442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes' reverse chemical reaction of fast wasteful ATP hydrolysis, including mechanical or redox-based blockade of catalysis and ADP inhibition. In general, product inhibition is expected to slow down the mean catalytic turnover. Biochemical assays are ensemble measurements and cannot discriminate between a mechanism affecting all enzymes equally or individually. For example, all enzymes could work more slowly at a decreasing substrate/product ratio, or an increasing number of individual enzymes could be completely blocked. Here, we examined the effect of increasing amounts of ADP on ATP hydrolysis of single Escherichia coli FoF1-ATP synthases in liposomes. We observed the individual catalytic turnover of the enzymes one after another by monitoring the internal subunit rotation using single-molecule Förster resonance energy transfer (smFRET). Observation times of single FRET-labeled FoF1-ATP synthases in solution were extended up to several seconds using a confocal anti-Brownian electrokinetic trap (ABEL trap). By counting active versus inhibited enzymes, we revealed that ADP inhibition did not decrease the catalytic turnover of all FoF1-ATP synthases equally. Instead, increasing ADP in the ADP/ATP mixture reduced the number of remaining active enzymes that operated at similar catalytic rates for varying substrate/product ratios.
Collapse
Affiliation(s)
- Iván Pérez
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
4
|
Habanjar O, Maurin AC, Vituret C, Vachias C, Longechamp L, Garnier C, Decombat C, Bourgne C, Diab-Assaf M, Caldefie-Chezet F, Delort L. A bicellular fluorescent ductal carcinoma in situ (DCIS)-like tumoroid to study the progression of carcinoma: practical approaches and optimization. Biomater Sci 2023; 11:3308-3320. [PMID: 36946175 DOI: 10.1039/d2bm01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Recently, many types of 3D culture systems have been developed to preserve the physicochemical environment and biological characteristics of the original tumors better than the conventional 2D monolayer culture system. There are various types of models belonging to this culture, such as the culture based on non-adherent and/or scaffold-free matrices to form the tumors. Agarose mold has been widely used to facilitate tissue spheroid assembly, as it is essentially non-biodegradable, bio-inert, biocompatible, low-cost, and low-attachment material that can promote cell spheroidization. As no studies have been carried out on the development of a fluorescent bicellular tumoroid mimicking ductal carcinoma in situ (DCIS) using human cell lines, our objective was to detail the practical approaches developed to generate this model, consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumor. The practical approaches developed to generate a bi-cellular tumoroid mimicking ductal carcinoma in situ (DCIS), consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumoroid. Firstly, the optimal steps and conditions of spheroids generation using a non-adherent agarose gel were described, in particular, the appropriate medium, seeding density of each cell type and incubation period. Next, a lentiviral transduction approach to achieve stable fluorescent protein expression (integrative system) was used to characterize the different cell lines and to track tumoroid generation through immunofluorescence, the organization of the two cell types was validated, specific merits and drawbacks were compared to lentiviral transduction. Two lentiviral vectors expressing either EGFP (Enhanced Green Fluorescent Protein) or m-Cherry (Red Fluorescent Protein) were used. Various rates of a multiplicity of infection (MOI) and multiple types of antibodies (anti-p63, anti-CK8, anti-Maspin, anti-Calponin) for immunofluorescence analysis were tested to determine the optimal conditions for each cell line. At MOI 40 (GFP) and MOI 5 (m-Cherry), the signals were almost homogeneously distributed in the cells which could then be used to generate the DCIS-like tumoroids. Images of the tumoroids in agarose molds were captured with a confocal microscope Micro Zeiss Cell Observer Spinning Disk or with IncuCyte® to follow the progress of the generation. Measurement of protumoral cytokines such as IL-6, IL8 and leptin confirmed their secretion in the supernatants, indicating that the properties of our cells were not altered. Finally the advantages and disadvantages of each fluorescent approach were discussed. This model could also be used for other solid malignancies to study the complex relationship between different cells such as tumor and myoepithelial cells in various microenvironments (inflammatory, adipose and tumor, obesity, etc.). Although, this new model is well established to monitor drug screening applications and perform pharmacokinetic and pharmacodynamic analyses.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | | | - Cyrielle Vituret
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Caroline Vachias
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Cécile Garnier
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Céline Bourgne
- Plate-forme CMF, Service d'Hématologie biologique, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| |
Collapse
|
5
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
6
|
Heitkamp T, Börsch M. Fast ATP-Dependent Subunit Rotation in Reconstituted F oF 1-ATP Synthase Trapped in Solution. J Phys Chem B 2021; 125:7638-7650. [PMID: 34254808 DOI: 10.1021/acs.jpcb.1c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FoF1-ATP synthases are ubiquitous membrane-bound, rotary motor enzymes that can catalyze ATP synthesis and hydrolysis. Their enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, and by mechanical inhibitory mechanisms but also by the electrochemical potential of protons across the membrane. Single-molecule Förster resonance energy transfer (smFRET) has been used to detect subunit rotation within FoF1-ATP synthases embedded in freely diffusing liposomes. We now report that kinetic monitoring of functional rotation can be prolonged from milliseconds to seconds by utilizing an anti-Brownian electrokinetic trap (ABEL trap). These extended observation times allowed us to observe fluctuating rates of functional rotation for individual FoF1-liposomes in solution. Broad distributions of ATP-dependent catalytic rates were revealed. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores or uncouplers, the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second. This was much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 complexes uncoupled from the membrane-embedded Fo complex. Further application of ABEL trap measurements should help resolve the mechanistic causes of such fluctuating rates of subunit rotation.
Collapse
Affiliation(s)
- Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
7
|
Burger M, Rein S, Weber S, Gräber P, Kacprzak S. Distance measurements in the F 0F 1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:1-10. [PMID: 31705179 DOI: 10.1007/s00249-019-01408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence resonance energy transfer in single enzyme molecules (smFRET, single-molecule measurement) allows the measurement of multicomponent distance distributions in complex biomolecules similar to pulsed electron-electron double resonance (PELDOR, ensemble measurement). Both methods use reporter groups: FRET exploits the distance dependence of the electric interaction between electronic transition dipole moments of the attached fluorophores, whereas PELDOR spectroscopy uses the distance dependence of the interaction between the magnetic dipole moments of attached spin labels. Such labels can be incorporated easily to cysteine residues in the protein. Comparison of distance distributions obtained with both methods was carried out with the H+-ATPase from Escherichia coli (EF0F1). The crystal structure of this enzyme is known. It contains endogenous cysteines, and as an internal reference two additional cysteines were introduced (EF0F1-γT106C-εH56C). These positions were chosen to allow application of both methods under optimal conditions. Both methods yield very similar multicomponent distance distributions. The dominating distance distribution (> 50%) is due to the two cysteines introduced by site-directed mutagenesis and the distance is in agreement with the crystal structure. Two additional distance distributions are detected with smFRET and with PELDOR. These can be assigned by comparison with the structure to labels at endogenous cysteines. One additional distribution is detected only with PELDOR. The comparison indicates that under optimal conditions smFRET and PELDOR result in the same distance distributions. PELDOR has the advantage that different distributions can be obtained with ensemble measurements, whereas FRET requires single-molecule techniques.
Collapse
Affiliation(s)
- Markus Burger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Stephan Rein
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Peter Gräber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany.
| | - Sylwia Kacprzak
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|
8
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
9
|
Zarrabi N, Schluesche P, Meisterernst M, Börsch M, Lamb DC. Analyzing the Dynamics of Single TBP-DNA-NC2 Complexes Using Hidden Markov Models. Biophys J 2018; 115:2310-2326. [PMID: 30527334 DOI: 10.1016/j.bpj.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
Single-pair Förster resonance energy transfer (spFRET) has become an important tool for investigating conformational dynamics in biological systems. To extract dynamic information from the spFRET traces measured with total internal reflection fluorescence microscopy, we extended the hidden Markov model (HMM) approach. In our extended HMM analysis, we incorporated the photon-shot noise from camera-based systems into the HMM. Thus, the variance in Förster resonance energy transfer (FRET) efficiency of the various states, which is typically a fitted parameter, is explicitly included in the analysis estimated from the number of detected photons. It is also possible to include an additional broadening of the FRET state, which would then only reflect the inherent flexibility of the dynamic biological systems. This approach is useful when comparing the dynamics of individual molecules for which the total intensities vary significantly. We used spFRET with the extended HMM analysis to investigate the dynamics of TATA-box-binding protein (TBP) on promoter DNA in the presence of negative cofactor 2 (NC2). We compared the dynamics of two promoters as well as DNAs of different length and labeling location. For the adenovirus major late promoter, four FRET states were observed; three states correspond to different conformations of the DNA in the TBP-DNA-NC2 complex and a four-state model in which the complex has shifted along the DNA. The HMM analysis revealed that the states are connected via a linear, four-well model. For the H2B promoter, more complex dynamics were observed. By clustering the FRET states detected with the HMM analysis, we could compare the general dynamics observed for the two promoter sequences. We observed that the dynamics from a stretched DNA conformation to a bent conformation for the two promoters were similar, whereas the bent conformation of the TBP-DNA-NC2 complex for the H2B promoter is approximately three times more stable than for the adenovirus major late promoter.
Collapse
Affiliation(s)
- Nawid Zarrabi
- Physikalisches Institut, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany; Single-Molecule Microscopy Group, Jena University Hospital, Jena, Thuringia, Germany
| | - Peter Schluesche
- Department Chemie, Center for Nano Science, Center for Integrated Protein Science, and Nanosystems Initiative München, Ludwig-Maximilians-Universität Munich, Munich, Bavaria, Germany
| | - Michael Meisterernst
- GSF-National Research Center for Environment and Health, Gene Expression, Munich, Bavaria, Germany; Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, Muenster, North Rhine-Westphalia, Germany
| | - Michael Börsch
- Physikalisches Institut, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany; Single-Molecule Microscopy Group, Jena University Hospital, Jena, Thuringia, Germany
| | - Don C Lamb
- Department Chemie, Center for Nano Science, Center for Integrated Protein Science, and Nanosystems Initiative München, Ludwig-Maximilians-Universität Munich, Munich, Bavaria, Germany.
| |
Collapse
|
10
|
Starke I, Glick GD, Börsch M. Visualizing Mitochondrial F oF 1-ATP Synthase as the Target of the Immunomodulatory Drug Bz-423. Front Physiol 2018; 9:803. [PMID: 30022951 PMCID: PMC6039829 DOI: 10.3389/fphys.2018.00803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 01/17/2023] Open
Abstract
Targeting the mitochondrial enzyme FoF1-ATP synthase and modulating its catalytic activities with small molecules is a promising new approach for treatment of autoimmune diseases. The immunomodulatory compound Bz-423 is such a drug that binds to subunit OSCP of the mitochondrial FoF1-ATP synthase and induces apoptosis via increased reactive oxygen production in coupled, actively respiring mitochondria. Here, we review the experimental progress to reveal the binding of Bz-423 to the mitochondrial target and discuss how subunit rotation of FoF1-ATP synthase is affected by Bz-423. Briefly, we report how Förster resonance energy transfer can be employed to colocalize the enzyme and the fluorescently tagged Bz-423 within the mitochondria of living cells with nanometer resolution.
Collapse
Affiliation(s)
- Ilka Starke
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.,Institute for Physical Chemistry, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Gary D Glick
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
12
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
13
|
What can be learned about the enzyme ATPase from single-molecule studies of its subunit F1? Q Rev Biophys 2018; 50:e14. [PMID: 29233226 DOI: 10.1017/s0033583517000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We summarize the different types of single molecule experiments on the F1 component of FOF1-ATP Synthase and what has been learned from them. We also describe results from our recent studies on interpreting the experiments using a chemical-mechanical theory for these biological motors.
Collapse
|
14
|
Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, Börsch M, Lira RB, Dimova R, Lipowsky R, Bodenschatz E, Baret JC, Vidakovic-Koch T, Sundmacher K, Platzman I, Spatz JP. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. NATURE MATERIALS 2018; 17:89-96. [PMID: 29035355 DOI: 10.1038/nmat5005] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Collapse
Affiliation(s)
- Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Johannes Patrick Frohnmayer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Lucia Theresa Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rafael B Lira
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jean-Christophe Baret
- Droplets, Membranes and Interfaces, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Soft Micro Systems, CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Tanja Vidakovic-Koch
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Kai Sundmacher
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
16
|
Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiol Mol Biol Rev 2016; 80:161-86. [PMID: 26819321 DOI: 10.1128/mmbr.00056-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
Collapse
|
17
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
18
|
Abstract
Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent F1 structure of the Escherichia coli enzyme with the ϵ-subunit in an inhibitory conformation initiated a study for real-time monitoring of the conformational changes of ϵ. The present mini-review summarizes smFRET rotation experiments and previews new smFRET data on the conformational changes of the CTD (C-terminal domain) of ϵ in the E. coli enzyme.
Collapse
|
19
|
Bockenhauer SD, Duncan TM, Moerner WE, Börsch M. The regulatory switch of F 1-ATPase studied by single-molecule FRET in the ABEL Trap. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 8950:89500H. [PMID: 25309100 DOI: 10.1117/12.2042688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
F1-ATPase is the soluble portion of the membrane-embedded enzyme FoF1-ATP synthase that catalyzes the production of adenosine triphosphate in eukaryotic and eubacterial cells. In reverse, the F1 part can also hydrolyze ATP quickly at three catalytic binding sites. Therefore, catalysis of 'non-productive' ATP hydrolysis by F1 (or FoF1) must be minimized in the cell. In bacteria, the ε subunit is thought to control and block ATP hydrolysis by mechanically inserting its C-terminus into the rotary motor region of F1. We investigate this proposed mechanism by labeling F1 specifically with two fluorophores to monitor the C-terminus of the ε subunit by Förster resonance energy transfer. Single F1 molecules are trapped in solution by an Anti-Brownian electrokinetic trap which keeps the FRET-labeled F1 in place for extended observation times of several hundreds of milliseconds, limited by photobleaching. FRET changes in single F1 and FRET histograms for different biochemical conditions are compared to evaluate the proposed regulatory mechanism.
Collapse
Affiliation(s)
- Samuel D Bockenhauer
- Department of Chemistry, Stanford University, Stanford, CA, USA ; Department of Physics, Stanford University, Stanford, CA, USA
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Duncan TM, Düser MG, Heitkamp T, McMillan DGG, Börsch M. Regulatory conformational changes of the ε subunit in single FRET-labeled F oF 1-ATP synthase. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 8948:89481J. [PMID: 25076824 DOI: 10.1117/12.2040463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase, the ubiquitous membrane-embedded enzyme that utilizes a proton motive force in most organisms to synthesize adenosine triphosphate (ATP). The C-terminal domain of ε can extend into the central cavity formed by the α and β subunits, as revealed by the recent X-ray structure of the F1 portion of the Escherichia coli enzyme. This insertion blocks the rotation of the central γ subunit and, thereby, prevents wasteful ATP hydrolysis. Here we aim to develop an experimental system that can reveal conditions under which ε inhibits the holoenzyme FoF1-ATP synthase in vitro. Labeling the C-terminal domain of ε and the γ subunit specifically with two different fluorophores for single-molecule Förster resonance energy transfer (smFRET) allowed monitoring of the conformation of ε in the reconstituted enzyme in real time. New mutants were made for future three-color smFRET experiments to unravel the details of regulatory conformational changes in ε.
Collapse
Affiliation(s)
- Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Monika G Düser
- 3 Institute of Physics, Stuttgart University, Stuttgart, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Duncan G G McMillan
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
21
|
Biased Brownian stepping rotation of FoF1-ATP synthase driven by proton motive force. Nat Commun 2013; 4:1631. [PMID: 23535652 DOI: 10.1038/ncomms2631] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/21/2013] [Indexed: 11/08/2022] Open
Abstract
FoF1-ATP synthase (FoF1) produces most of the ATP in cells, uniquely, by converting the proton motive force (pmf) into ATP production via mechanical rotation of the inner rotor complex. Technical difficulties have hampered direct investigation of pmf-driven rotation, which are crucial to elucidating the chemomechanical coupling mechanism of FoF1. Here we develop a novel supported membrane system for direct observation of the rotation of FoF1 driven by pmf that was formed by photolysis of caged protons. Upon photolysis, FoF1 initiated rotation in the opposite direction to that of the ATP-driven rotation. The step size of pmf-driven rotation was 120°, suggesting that the kinetic bottleneck is a catalytic event on F1 with threefold symmetry. The reaction equilibrium was slightly biased to ATP synthesis like under physiological conditions, and FoF1 showed highly stochastic behaviour, frequently making a 120° backward step. This new experimental system would be applicable to single-molecule study of other membrane proteins.
Collapse
|
22
|
Zarrabi N, Ernst S, Verhalen B, Wilkens S, Börsch M. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models. Methods 2013; 66:168-79. [PMID: 23891547 DOI: 10.1016/j.ymeth.2013.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022] Open
Abstract
Single-molecule Förster resonance energy (smFRET) transfer has become a powerful tool for observing conformational dynamics of biological macromolecules. Analyzing smFRET time trajectories allows to identify the state transitions occuring on reaction pathways of molecular machines. Previously, we have developed a smFRET approach to monitor movements of the two nucleotide binding domains (NBDs) of P-glycoprotein (Pgp) during ATP hydrolysis driven drug transport in solution. One limitation of this initial work was that single-molecule photon bursts were analyzed by visual inspection with manual assignment of individual FRET levels. Here a fully automated analysis of Pgp smFRET data using hidden Markov models (HMM) for transitions up to 9 conformational states is applied. We propose new estimators for HMMs to integrate the information of fluctuating intensities in confocal smFRET measurements of freely diffusing lipid bilayer bound membrane proteins in solution. HMM analysis strongly supports that under conditions of steady state turnover, conformational states with short NBD distances and short dwell times are more populated compared to conditions without nucleotide or transport substrate present.
Collapse
Affiliation(s)
- Nawid Zarrabi
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; 3rd Institute of Physics, University of Stuttgart, 70550 Stuttgart, Germany
| | - Stefan Ernst
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Brandy Verhalen
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; 3rd Institute of Physics, University of Stuttgart, 70550 Stuttgart, Germany.
| |
Collapse
|
23
|
Brandt K, Maiwald S, Herkenhoff-Hesselmann B, Gnirß K, Greie JC, Dunn SD, Deckers-Hebestreit G. Individual interactions of the b subunits within the stator of the Escherichia coli ATP synthase. J Biol Chem 2013; 288:24465-79. [PMID: 23846684 DOI: 10.1074/jbc.m113.465633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Karsten Brandt
- Department of Microbiology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Mashkovtseva E, Boronovsky S, Nartsissov Y. Combined mathematical methods in the description of the F(o)F(1)-ATP synthase catalytic cycle. Math Biosci 2013; 243:117-25. [PMID: 23499574 DOI: 10.1016/j.mbs.2013.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
Abstract
The FoF1-ATP synthase is one of the key enzymes in supplying energy production in almost all living systems. In this paper, we provide a theoretical description of its catalytic cycle using combined mathematical methods. These methods include Langevin dynamics for the rotation of the central protein core and the Monte-Carlo method to model nucleotide and proton binding. This model is the first in which ATP synthesis and hydrolysis can occur depending on the nucleotide concentration and system conditions. The main advantage of the presented model is the possibility of obtaining results for both single-molecular protein-machines and large ensembles of proteins. The calculated rates are close to the experimentally measured rates for a single enzyme. The model has been formalised as a computer simulation that allows researchers to evaluate ATP production in different types of living cells.
Collapse
|
25
|
Shah NB, Hutcheon ML, Haarer BK, Duncan TM. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands. J Biol Chem 2013; 288:9383-95. [PMID: 23400782 DOI: 10.1074/jbc.m113.451583] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ε binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
26
|
Adachi K, Oiwa K, Yoshida M, Nishizaka T, Kinosita K. Controlled rotation of the F₁-ATPase reveals differential and continuous binding changes for ATP synthesis. Nat Commun 2013; 3:1022. [PMID: 22929779 PMCID: PMC3449090 DOI: 10.1038/ncomms2026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/27/2012] [Indexed: 11/23/2022] Open
Abstract
F1-ATPase is an ATP-driven rotary molecular motor that synthesizes ATP when rotated in reverse. To elucidate the mechanism of ATP synthesis, we imaged binding and release of fluorescently labelled ADP and ATP while rotating the motor in either direction by magnets. Here we report the binding and release rates for each of the three catalytic sites for 360° of the rotary angle. We show that the rates do not significantly depend on the rotary direction, indicating ATP synthesis by direct reversal of the hydrolysis-driven rotation. ADP and ATP are discriminated in angle-dependent binding, but not in release. Phosphate blocks ATP binding at angles where ADP binding is essential for ATP synthesis. In synthesis rotation, the affinity for ADP increases by >104, followed by a shift to high ATP affinity, and finally the affinity for ATP decreases by >104. All these angular changes are gradual, implicating tight coupling between the rotor angle and site affinities. Reverse rotation of the F1-ATPase results in the synthesis, rather than hydrolysis of ATP. Adachi et al. show that the molecular mechanism of ATP synthesis is the reverse of hydrolysis-driven rotation of the motor, and that ADP and ATP are discriminated by angle-dependent binding.
Collapse
Affiliation(s)
- Kengo Adachi
- Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan.
| | | | | | | | | |
Collapse
|
27
|
Börsch M. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls. IUBMB Life 2013; 65:227-37. [PMID: 23378185 DOI: 10.1002/iub.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/12/2013] [Indexed: 11/09/2022]
Abstract
Optical microscopy of single F(1) -ATPase and F(o) F(1) -ATP synthases started 15 years ago. Direct demonstration of ATP-driven subunit rotation by videomicroscopy became the new exciting tool to analyze the conformational changes of this enzyme during catalysis. Stimulated by these experiments, technical improvements for higher time resolution, better angular resolution, and reduced viscous drag were developed rapidly. Optics and single-molecule enzymology were entangled to benefit both biochemists and microscopists. Today, several single-molecule microscopy methods are established including controls for the precise nanomanipulation of individual enzymes in vitro. Förster resonance energy transfer, which has been used for simultaneous monitoring of conformational changes of different parts of this rotary motor, is one of them and may become the tool for the analysis of single F(o) F(1) -ATP synthases in membranes of living cells. Here, breakthrough experiments are critically reviewed and challenges are discussed for the future microscopy of single ATP synthesizing enzymes at work.
Collapse
Affiliation(s)
- Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
28
|
Bilyard T, Nakanishi-Matsui M, Steel BC, Pilizota T, Nord AL, Hosokawa H, Futai M, Berry RM. High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120023. [PMID: 23267177 DOI: 10.1098/rstb.2012.0023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.
Collapse
Affiliation(s)
- Thomas Bilyard
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sielaff H, Börsch M. Twisting and subunit rotation in single F(O)(F1)-ATP synthase. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120024. [PMID: 23267178 DOI: 10.1098/rstb.2012.0024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
F(O)F(1)-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single F(O)F(1)-ATP synthases.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | | |
Collapse
|
30
|
Ernst S, Düser MG, Zarrabi N, Dunn SD, Börsch M. Elastic deformations of the rotary double motor of single FoF1-ATP synthases detected in real time by Förster resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1722-31. [DOI: 10.1016/j.bbabio.2012.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 11/17/2022]
|
31
|
Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. Proc Natl Acad Sci U S A 2012; 109:11150-5. [PMID: 22733773 DOI: 10.1073/pnas.1202799109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(0)F(1)-ATP synthases use the free energy derived from a transmembrane proton transport to synthesize ATP from ADP and inorganic phosphate. The number of protons translocated per ATP (H(+)/ATP ratio) is an important parameter for the mechanism of the enzyme and for energy transduction in cells. Current models of rotational catalysis predict that the H(+)/ATP ratio is identical to the stoichiometric ratio of c-subunits to β-subunits. We measured in parallel the H(+)/ATP ratios at equilibrium of purified F(0)F(1)s from yeast mitochondria (c/β = 3.3) and from spinach chloroplasts (c/β = 4.7). The isolated enzymes were reconstituted into liposomes and, after energization of the proteoliposomes with acid-base transitions, the initial rates of ATP synthesis and hydrolysis were measured as a function of ΔpH. The equilibrium ΔpH was obtained by interpolation, and from its dependency on the stoichiometric ratio, [ATP]/([ADP]·[P(i)]), finally the thermodynamic H(+)/ATP ratios were obtained: 2.9 ± 0.2 for the mitochondrial enzyme and 3.9 ± 0.3 for the chloroplast enzyme. The data show that the thermodynamic H(+)/ATP ratio depends on the stoichiometry of the c-subunit, although it is not identical to the c/β ratio.
Collapse
|
32
|
Ernst S, Düser MG, Zarrabi N, Börsch M. Three-color Förster resonance energy transfer within single F₀F₁-ATP synthases: monitoring elastic deformations of the rotary double motor in real time. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:011004. [PMID: 22352638 DOI: 10.1117/1.jbo.17.1.011004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Catalytic activities of enzymes are associated with elastic conformational changes of the protein backbone. Förster-type resonance energy transfer, commonly referred to as FRET, is required in order to observe the dynamics of relative movements within the protein. Förster-type resonance energy transfer between two specifically attached fluorophores provides a ruler with subnanometer resolution between 3 and 8 nm, submillisecond time resolution for time trajectories of conformational changes, and single-molecule sensitivity to overcome the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary molecular machine which catalyzes the formation of adenosine triphosphate (ATP). The Escherichia coli enzyme comprises a proton driven 10 stepped rotary F(O) motor connected to a 3-stepped F(1) motor, where ATP is synthesized. This mismatch of step sizes will result in elastic deformations within the rotor parts. We present a new single-molecule FRET approach to observe both rotary motors simultaneously in a single F(O)F(1)-ATP synthase at work. We labeled this enzyme with three fluorophores, specifically at the stator part and at the two rotors. Duty cycle-optimized with alternating laser excitation, referred to as DCO-ALEX, allowed to control enzyme activity and to unravel associated transient twisting within the rotors of a single enzyme during ATP hydrolysis and ATP synthesis. Monte Carlo simulations revealed that the rotor twisting is larger than 36 deg.
Collapse
Affiliation(s)
- Stefan Ernst
- University of Stuttgart, 3rd Institute of Physics, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | | | | | | |
Collapse
|
33
|
Verhalen B, Ernst S, Börsch M, Wilkens S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 2011; 287:1112-27. [PMID: 22086917 DOI: 10.1074/jbc.m111.301192] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
34
|
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 2011; 18:701-7. [PMID: 21602818 PMCID: PMC3109198 DOI: 10.1038/nsmb.2058] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/15/2011] [Indexed: 02/03/2023]
Abstract
ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F(1) structures.
Collapse
|
35
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
36
|
Börsch M, Wrachtrup J. Improving FRET‐Based Monitoring of Single Chemomechanical Rotary Motors at Work. Chemphyschem 2011; 12:542-53. [DOI: 10.1002/cphc.201000702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/12/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Börsch
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| | - Jörg Wrachtrup
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| |
Collapse
|
37
|
Bienert R, Zimmermann B, Rombach‐Riegraf V, Gräber P. Time‐Dependent FRET with Single Enzymes: Domain Motions and Catalysis in H
+
‐ATP Synthases. Chemphyschem 2011; 12:510-7. [DOI: 10.1002/cphc.201000921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Roland Bienert
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Boris Zimmermann
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Verena Rombach‐Riegraf
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Peter Gräber
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| |
Collapse
|
38
|
Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases. Biol Chem 2011; 392:135-42. [DOI: 10.1515/bc.2011.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of FoF1-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.
Collapse
|
39
|
|
40
|
D'Alessandro M, Turina P, Melandri BA. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:130-43. [PMID: 20800570 DOI: 10.1016/j.bbabio.2010.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/18/2022]
Abstract
The ATP synthase from Escherichia coli was isolated and reconstituted into liposomes. The ATP hydrolysis by these proteoliposomes was coupled to proton pumping, and the ensuing inner volume acidification was measured by the fluorescent probe 9-amino-6-chloro-2-methoxyacridine (ACMA). The ACMA response was calibrated by acid-base transitions, and converted into internal pH values. The rates of internal acidification and of ATP hydrolysis were measured in parallel, as a function of P(i) or ADP concentration. Increasing P(i) monotonically inhibited the hydrolysis rate with a half-maximal effect at 510μM, whereas it stimulated the acidification rate up to 100-200μM, inhibiting it only at higher concentrations. The ADP concentration in the assay, due both to contaminant ADP in ATP and to the hydrolysis reaction, was progressively decreased by means of increasing pyruvate kinase activities. Decreasing ADP stimulated the hydrolysis rate, whereas it inhibited the internal acidification rate. The quantitative analysis showed that the relative number of translocated protons per hydrolyzed ATP, i.e. the relative coupling ratio, depended on the concentrations of P(i) and ADP with apparent K(d) values of 220μM and 27nM respectively. At the smallest ADP concentrations reached, and in the absence of P(i), the coupling ratio dropped down to 15% relative to the value observed at the highest ADP and P(i) concentrations tested. In addition, the data indicate the presence of two ADP and P(i) binding sites, of which only the highest affinity one is related to changes in the coupling ratio.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | |
Collapse
|
41
|
Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1828-37. [PMID: 20691145 DOI: 10.1016/j.bbabio.2010.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/20/2022]
Abstract
The H(+)/ATP synthase from yeast mitochondria, MF₀F₁, was purified and reconstituted into liposomes prepared from phosphatidylcholine and phosphatidic acid. Analysis by mass spectrometry revealed the presence of all subunits of the yeast enzyme with the exception of the K-subunit. The MF₀F₁ liposomes were energized by acid-base transitions (DeltapH) and a K(+)/valinomycin diffusion potential (Deltaphi). ATP synthesis was completely abolished by the addition of uncouplers as well as by the inhibitor oligomycin. The rate of ATP synthesis was optimized as a function of various parameters and reached a maximum value (turnover number) of 120s⁻¹ at a transmembrane pH difference of 3.2 units (at pH(in)=4.8 and pH(out)=8.0) and a Deltaphi of 133mV (Nernst potential). Functional studies showed that the monomeric MF₀F₁, was fully active in ATP synthesis. The turnover increased in a sigmoidal way with increasing internal and decreasing external proton concentration. The dependence of the turnover on the phosphate concentration and the dependence of K(M) on pH(out) indicated that the substrate for ATP synthesis is the monoanionic phosphate species H₂PO⁻₄.
Collapse
|
42
|
Raghunathan D, Gayen S, Grüber G, Verma CS. Crosstalk along the Stalk: Dynamics of the Interaction of Subunits B and F in the A1AO ATP Synthase of Methanosarcina mazei Gö1. Biochemistry 2010; 49:4181-90. [DOI: 10.1021/bi9021236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Shovanlal Gayen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Gerhard Grüber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
43
|
Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M. The mechanism of rotating proton pumping ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1343-52. [PMID: 20170625 DOI: 10.1016/j.bbabio.2010.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
Abstract
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.
| | | | | | | |
Collapse
|
44
|
Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3. Biophys J 2010; 98:434-42. [PMID: 20141757 PMCID: PMC2814204 DOI: 10.1016/j.bpj.2009.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022] Open
Abstract
Subunit epsilon of bacterial and chloroplast F(O)F(1)-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit epsilon can adopt two conformations. In the "extended", inhibitory conformation, its two C-terminal alpha-helices are stretched along subunit gamma. In the "contracted", noninhibitory conformation, these helices form a hairpin. The transition of subunit epsilon from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59 degrees C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit epsilon and in the N-terminus of subunit gamma was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 microM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit beta were found to stabilize the extended conformation of epsilon. Binding of ATP directly to epsilon was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 microM) suggests that subunit epsilon probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.
Collapse
Affiliation(s)
- Boris A. Feniouk
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| | | | - Masasuke Yoshida
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiharu Suzuki
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| |
Collapse
|
45
|
Bienert R, Rombach-Riegraf V, Diez M, Gräber P. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis. J Biol Chem 2009; 284:36240-36247. [PMID: 19864418 PMCID: PMC2794740 DOI: 10.1074/jbc.m109.060376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/26/2009] [Indexed: 11/06/2022] Open
Abstract
Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.
Collapse
Affiliation(s)
- Roland Bienert
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Verena Rombach-Riegraf
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Manuel Diez
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Peter Gräber
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
46
|
The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 2009; 106:21597-601. [PMID: 19995987 DOI: 10.1073/pnas.0910365106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the complex between bovine mitochondrial F(1)-ATPase and a stator subcomplex has been determined at a resolution of 3.2 A. The resolved region of the stator contains residues 122-207 of subunit b; residues 5-25 and 35-57 of F(6); 3 segments of subunit d from residues 30-40, 65-74, and 85-91; and residues 1-146 and 169-189 of the oligomycin sensitivity conferral protein (OSCP). The stator subcomplex represents its membrane distal part, and its structure has been augmented with an earlier structure of a subcomplex containing residues 79-183, 3-123, and 5-70 of subunits b, d, and F(6), respectively, which extends to the surface of the inner membrane of the mitochondrion. The N-terminal domain of the OSCP links the stator with F(1)-ATPase via alpha-helical interactions with the N-terminal region of subunit alpha(E). Its C-terminal domain makes extensive helix-helix interactions with the C-terminal alpha-helix of subunit b from residues 190-207. Subunit b extends as a continuous 160-A long alpha-helix from residue 188 back to residue 79 near to the surface of the inner mitochondrial membrane. This helix appears to be stiffened by other alpha-helices in subunits d and F(6), but the structure can bend inward toward the F(1) domain around residue 146 of subunit b. The linker region between the 2 domains of the OSCP also appears to be flexible, enabling the stator to adjust its shape as it passes over the changing profile of the F(1) domain during a catalytic cycle. The structure of the membrane extrinsic part of bovine ATP synthase is now complete.
Collapse
|
47
|
Johnson KM, Swenson L, Opipari AW, Reuter R, Zarrabi N, Fierke CA, Börsch M, Glick GD. Mechanistic basis for differential inhibition of the F1Fo-ATPase by aurovertin. Biopolymers 2009; 91:830-40. [PMID: 19462418 DOI: 10.1002/bip.21262] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial F(1)F(o)-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F(1)F(o)-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the beta subunits in the F(1) domain and inhibits F(1)F(o)-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F(1)F(o)-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower K(i) values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F(1)F(o)-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F(1)F(o)-ATPase catalyzes ATP synthesis and hydrolysis.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase. EMBO J 2009; 28:2689-96. [PMID: 19644443 DOI: 10.1038/emboj.2009.213] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/29/2009] [Indexed: 11/09/2022] Open
Abstract
Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.
Collapse
|
49
|
Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1890-900. [PMID: 19482006 DOI: 10.1016/j.bbamem.2009.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 01/24/2023]
Abstract
Ciliary neurotrophic factor (CNTF) signals via a receptor complex consisting of the specific CNTF receptor (CNTFR) and two promiscuous signal transducers, gp130 and leukemia inhibitory factor receptor (LIFR). Whereas earlier studies suggested that the signaling complex is a hexamer, more recent analyses strongly support a tetrameric structure. However, all studies so far analyzed the stoichiometry of the CNTF receptor complex in vitro and not in the context of living cells. We generated and expressed in mammalian cells acyl carrier protein-tagged versions of both CNTF and CNTFR. After labeling CNTF and CNTFR with different dyes we analyzed their diffusion behavior at the cell surface. Fluorescence (cross) correlation spectroscopy (FCS/FCCS) measurements reveal that CNTFR diffuses with a diffusion constant of about 2 x 10(-9) cm(2) s(-1) independent of whether CNTF is bound or not. FCS and FCCS measurements detect the formation of receptor complexes containing at least two CNTFs and CNTFRs. In addition, we measured Förster-type fluorescence resonance energy transfer between two differently labeled CNTFs within a receptor complex indicating a distance of 5-7 nm between the two. These findings are not consistent with a tetrameric structure of the CNTFR complex suggesting that either hexamers and or even higher-order structures (e.g. an octamer containing two tetramers) are formed.
Collapse
|
50
|
Iino R, Hasegawa R, Tabata KV, Noji H. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase. J Biol Chem 2009; 284:17457-64. [PMID: 19411254 DOI: 10.1074/jbc.m109.003798] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epsilon subunit of bacterial FoF1-ATP synthase (FoF1), a rotary motor protein, is known to inhibit the ATP hydrolysis reaction of this enzyme. The inhibitory effect is modulated by the conformation of the C-terminal alpha-helices of epsilon, and the "extended" but not "hairpin-folded" state is responsible for inhibition. Although the inhibition of ATP hydrolysis by the C-terminal domain of epsilon has been extensively studied, the effect on ATP synthesis is not fully understood. In this study, we generated an Escherichia coli FoF1 (EFoF1) mutant in which the epsilon subunit lacked the C-terminal domain (FoF1epsilonDeltaC), and ATP synthesis driven by acid-base transition (DeltapH) and the K+-valinomycin diffusion potential (DeltaPsi) was compared in detail with that of the wild-type enzyme (FoF1epsilonWT). The turnover numbers (kcat) of FoF1epsilonWT were severalfold lower than those of FoF1epsilonDeltaC. FoF1epsilonWT showed higher Michaelis constants (Km). The dependence of the activities of FoF1epsilonWT and FoF1epsilonDeltaC on various combinations of DeltapH and DeltaPsi was similar, suggesting that the rate-limiting step in ATP synthesis was unaltered by the C-terminal domain of epsilon. Solubilized FoF1epsilonWT also showed lower kcat and higher Km values for ATP hydrolysis than the corresponding values of FoF1epsilonDeltaC. These results suggest that the C-terminal domain of the epsilon subunit of EFoF1 slows multiple elementary steps in both the ATP synthesis/hydrolysis reactions by restricting the rotation of the gamma subunit.
Collapse
Affiliation(s)
- Ryota Iino
- Institute of Scientific and Industrial Research, Osaka University, 567-0047 Osaka, Japan.
| | | | | | | |
Collapse
|