1
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Rodríguez FS, Aballay FE, Tognacca RS, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. THE NEW PHYTOLOGIST 2025; 247:738-759. [PMID: 40415535 PMCID: PMC12177302 DOI: 10.1111/nph.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/27/2025]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. Arabidopsis thaliana At-RS31, a plant-specific splicing factor in the Serine/Arginine-rich (SR) protein family, responds to light and the Target of Rapamycin (TOR) signalling pathway, yet its downstream targets and regulatory impact remain unknown. To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing. iCLIP identified 4034 At-RS31 binding sites across 1421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the arginine/serine (RS) domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator. By regulating stress response genes and genes in both TOR and abscisic acid signalling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of BiologyBielefeld UniversityBielefeld33615Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Biotechnology and Food ScienceBOKU UniversityVienna1190Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of BiologyBielefeld UniversityBielefeld33615Germany
| | - Ezequiel Petrillo
- Instituto de FisiologíaBiología Molecular y Neurociencias (IFIBYNE)Buenos Aires1428Argentina
| | - Yamile Marquez
- Max Perutz LabsMedical University Vienna, Vienna BioCenter (VBC)Vienna1030Austria
| | - Armin Fuchs
- Max Perutz LabsMedical University Vienna, Vienna BioCenter (VBC)Vienna1030Austria
| | - Debashish Ray
- Donnelly CentreUniversity of TorontoTorontoONM5S 3E1Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Biotechnology and Food ScienceBOKU UniversityVienna1190Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Biotechnology and Food ScienceBOKU UniversityVienna1190Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Biotechnology and Food ScienceBOKU UniversityVienna1190Austria
| | - Florencia S. Rodríguez
- Instituto de FisiologíaBiología Molecular y Neurociencias (IFIBYNE)Buenos Aires1428Argentina
| | - Federico E. Aballay
- Instituto de FisiologíaBiología Molecular y Neurociencias (IFIBYNE)Buenos Aires1428Argentina
| | - Rocío S. Tognacca
- Instituto de FisiologíaBiología Molecular y Neurociencias (IFIBYNE)Buenos Aires1428Argentina
| | - Hong Zheng
- Donnelly CentreUniversity of TorontoTorontoONM5S 3E1Canada
| | - Timothy Hughes
- Donnelly CentreUniversity of TorontoTorontoONM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoONM5S 3E1Canada
| | - Quaid Morris
- Sloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Graduate Program in Computational Biology and MedicineWeill‐Cornell Graduate SchoolNew YorkNY10065USA
| | - Andrea Barta
- Max Perutz LabsMedical University Vienna, Vienna BioCenter (VBC)Vienna1030Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of BiologyBielefeld UniversityBielefeld33615Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Biotechnology and Food ScienceBOKU UniversityVienna1190Austria
| |
Collapse
|
2
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626797. [PMID: 39677721 PMCID: PMC11643119 DOI: 10.1101/2024.12.04.626797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. At-RS31, a plant-specific splicing factor in the Serine/Arginine (SR)-rich protein family, responds to light and the Target of Rapamycin (TOR) signaling pathway, yet its downstream targets and regulatory impact remain unknown.To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing.iCLIP identified 4,034 At-RS31 binding sites across 1,421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the RS domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator.By regulating stress-response genes and genes in both TOR and abscisic acid (ABA) signaling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yamile Marquez
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Armin Fuchs
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Timothy Hughes
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Quaid Morris
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Computational Biology and Medicine, Weill-Cornell Graduate School, New York, NY, USA
| | - Andrea Barta
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
3
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
5
|
Cheng FP, Hu XF, Pan LX, Gong ZX, Qin KX, Li Z, Wang ZL. Transcriptome changes of Apis mellifera female embryos with fem gene knockout by CRISPR/Cas9. Int J Biol Macromol 2023; 229:260-267. [PMID: 36587640 DOI: 10.1016/j.ijbiomac.2022.12.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
The sex of honey bees is decided by a regulatory cascade comprising of csd, fem and Amdsx. In order to further identify other genes involved in sex determination and differentiation of honey bees in the early stages of embryo development, the CRISPR/Cas9 method was used to knock out fem gene in the embryonic stage of diploid western honey bees, and RNA-seq was used to analyze gene expression changes in the embryo after fem knockout. Finally, we found that the bees had undergone gender changes due to fem knockout. A total of 155 differentially expressed genes (DEGs) were obtained, with 48 up-regulated and 107 down-regulated DEGs in the mutant group compared to the control group. Of them, many genes are related to sex development or differentiation. In addition, 1502 differentially expressed alternative splicing events (DEASEs) related to 1011 genes, including the main honey bee sex-determining genes csd, tra2, fem, and Amdsx, were identified between the mutant group and control group, indicating that fem regulates alternative splicing of a large number of downstream genes. Our results provide valuable clues for further investigating the molecular mechanism of sex determination and differentiation in honey bees.
Collapse
Affiliation(s)
- Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Xiao-Fen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Lu-Xia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Kai-Xin Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China.
| |
Collapse
|
6
|
Modi S, Dey S, Singh A. Noise suppression in stochastic genetic circuits using PID controllers. PLoS Comput Biol 2021; 17:e1009249. [PMID: 34319990 PMCID: PMC8360635 DOI: 10.1371/journal.pcbi.1009249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Inside individual cells, protein population counts are subject to molecular noise due to low copy numbers and the inherent probabilistic nature of biochemical processes. We investigate the effectiveness of proportional, integral and derivative (PID) based feedback controllers to suppress protein count fluctuations originating from two noise sources: bursty expression of the protein, and external disturbance in protein synthesis. Designs of biochemical reactions that function as PID controllers are discussed, with particular focus on individual controllers separately, and the corresponding closed-loop system is analyzed for stochastic controller realizations. Our results show that proportional controllers are effective in buffering protein copy number fluctuations from both noise sources, but this noise suppression comes at the cost of reduced static sensitivity of the output to the input signal. In contrast, integral feedback has no effect on the protein noise level from stochastic expression, but significantly minimizes the impact of external disturbances, particularly when the disturbance comes at low frequencies. Counter-intuitively, integral feedback is found to amplify external disturbances at intermediate frequencies. Next, we discuss the design of a coupled feedforward-feedback biochemical circuit that approximately functions as a derivate controller. Analysis using both analytical methods and Monte Carlo simulations reveals that this derivative controller effectively buffers output fluctuations from bursty stochastic expression, while maintaining the static input-output sensitivity of the open-loop system. In summary, this study provides a systematic stochastic analysis of biochemical controllers, and paves the way for their synthetic design and implementation to minimize deleterious fluctuations in gene product levels. In the noisy cellular environment, biochemical species such as genes, RNAs and proteins that often occur at low molecular counts, are subject to considerable stochastic fluctuations in copy numbers over time. How cellular biochemical processes function reliably in the face of such randomness is an intriguing fundamental problem. Increasing evidence suggests that random fluctuations (noise) in protein copy numbers play important functional roles, such as driving genetically identical cells to different cell fates. Moreover, many disease states have been attributed to elevated noise levels in specific proteins. Here we systematically investigate design of biochemical systems that function as proportional, integral and derivative-based feedback controllers to suppress protein count fluctuations arising from bursty expression of the protein and external disturbance in protein synthesis. Our results show that different controllers are effective in buffering different noise components, and identify ranges of feedback gain for minimizing deleterious fluctuations in protein levels.
Collapse
Affiliation(s)
- Saurabh Modi
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Abhyudai Singh
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
7
|
Meinke S, Goldammer G, Weber AI, Tarabykin V, Neumann A, Preussner M, Heyd F. Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression. eLife 2020; 9:56075. [PMID: 32338600 PMCID: PMC7244321 DOI: 10.7554/elife.56075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing.
Collapse
Affiliation(s)
- Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Gesine Goldammer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preussner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
8
|
Pons M, Miguel L, Miel C, Avequin T, Juge F, Frebourg T, Campion D, Lecourtois M. Splicing factors act as genetic modulators of TDP-43 production in a new autoregulatory TDP-43 Drosophila model. Hum Mol Genet 2018; 26:3396-3408. [PMID: 28854702 DOI: 10.1093/hmg/ddx229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/09/2017] [Indexed: 01/24/2023] Open
Abstract
TDP-43 is a critical RNA-binding factor associated with RNA metabolism. In the physiological state, maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. As such, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. TDP-43 is a major disease-causing protein in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Several studies argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulating the cycle of TDP-43 production might therefore provide a new therapeutic strategy. In this study, we developed a new transgenic Drosophila model mimicking the TDP-43 autoregulatory feedback loop in order to identify genetic modulators of TDP-43 protein steady-state levels in vivo. First, we showed that our TDP-43_TDPBR Drosophila model recapitulates key features of the TDP-43 autoregulatory processes previously described in mammalian and cellular models, namely alternative splicing events, differential usage of polyadenylation sites, nuclear retention of the transcript and a decrease in steady-state mRNA levels. Using this new Drosophila model, we identified several splicing factors, including SF2, Rbp1 and Sf3b1, as genetic modulators of TDP-43 production. Interestingly, our data indicate that these three RNA-binding proteins regulate TDP-43 protein production, at least in part, by controlling mRNA steady-state levels.
Collapse
Affiliation(s)
- Marine Pons
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Laetitia Miguel
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Camille Miel
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Tracey Avequin
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | | | - Thierry Frebourg
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France.,Department of Genetics, Rouen University Hospital, 76301 Rouen, France
| | - Dominique Campion
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France.,Centre Hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | | |
Collapse
|
9
|
Gene expression noise is affected differentially by feedback in burst frequency and burst size. J Math Biol 2016; 74:1483-1509. [PMID: 27665109 DOI: 10.1007/s00285-016-1059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Inside individual cells, expression of genes is stochastic across organisms ranging from bacterial to human cells. A ubiquitous feature of stochastic expression is burst-like synthesis of gene products, which drives considerable intercellular variability in protein levels across an isogenic cell population. One common mechanism by which cells control such stochasticity is negative feedback regulation, where a protein inhibits its own synthesis. For a single gene that is expressed in bursts, negative feedback can affect the burst frequency or the burst size. In order to compare these feedback types, we study a piecewise deterministic model for gene expression of a self-regulating gene. Mathematically tractable steady-state protein distributions are derived and used to compare the noise suppression abilities of the two feedbacks. Results show that in the low noise regime, both feedbacks are similar in term of their noise buffering abilities. Intriguingly, feedback in burst size outperforms the feedback in burst frequency in the high noise regime. Finally, we discuss various regulatory strategies by which cells implement feedback to control burst sizes of expressed proteins at the level of single cells.
Collapse
|
10
|
Stoiber MH, Olson S, May GE, Duff MO, Manent J, Obar R, Guruharsha KG, Bickel PJ, Artavanis-Tsakonas S, Brown JB, Graveley BR, Celniker SE. Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila. Genome Res 2015; 25:1692-702. [PMID: 26294687 PMCID: PMC4617965 DOI: 10.1101/gr.182675.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 06/10/2015] [Indexed: 01/01/2023]
Abstract
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.
Collapse
Affiliation(s)
- Marcus H Stoiber
- Department of Biostatistics, University of California Berkeley, Berkeley, California 94720, USA; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gemma E May
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Michael O Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jan Manent
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert Obar
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - K G Guruharsha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Biogen Incorporated, Cambridge, Massachusetts 02142, USA
| | - Peter J Bickel
- Department of Biostatistics, University of California Berkeley, Berkeley, California 94720, USA
| | - Spyros Artavanis-Tsakonas
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Biogen Incorporated, Cambridge, Massachusetts 02142, USA
| | - James B Brown
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Department of Statistics, University of California Berkeley, Berkeley, California 94720, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Brooks AN, Duff MO, May G, Yang L, Bolisetty M, Landolin J, Wan K, Sandler J, Booth BW, Celniker SE, Graveley BR, Brenner SE. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Res 2015; 25:1771-80. [PMID: 26294686 PMCID: PMC4617972 DOI: 10.1101/gr.192518.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.
Collapse
Affiliation(s)
- Angela N Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Broad Institute, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Michael O Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gemma May
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Li Yang
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Mohan Bolisetty
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jane Landolin
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Wan
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Sandler
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin W Booth
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Regulation of gene expression through production of unstable mRNA isoforms. Biochem Soc Trans 2015; 42:1196-205. [PMID: 25110025 DOI: 10.1042/bst20140102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is universally accredited for expanding the information encoded within the transcriptome. In recent years, several tightly regulated alternative splicing events have been reported which do not lead to generation of protein products, but lead to unstable mRNA isoforms. Instead these transcripts are targets for NMD (nonsense-mediated decay) or retained in the nucleus and degraded. In the present review I discuss the regulation of these events, and how many have been implicated in control of gene expression that is instrumental to a number of developmental paradigms. I further discuss their relevance to disease settings and conclude by highlighting technologies that will aid identification of more candidate events in future.
Collapse
|
13
|
Bradley T, Cook ME, Blanchette M. SR proteins control a complex network of RNA-processing events. RNA (NEW YORK, N.Y.) 2015; 21:75-92. [PMID: 25414008 PMCID: PMC4274639 DOI: 10.1261/rna.043893.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/15/2014] [Indexed: 05/23/2023]
Abstract
SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.
Collapse
Affiliation(s)
- Todd Bradley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Malcolm E Cook
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
14
|
Scott M, Pimsler M, Tarone A. Sex Determination Mechanisms in the Calliphoridae (Blow Flies). Sex Dev 2014; 8:29-37. [DOI: 10.1159/000357132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Wang S, Wagner EJ, Mattox W. Half pint/Puf68 is required for negative regulation of splicing by the SR splicing factor Transformer2. RNA Biol 2013; 10:1396-406. [PMID: 23880637 DOI: 10.4161/rna.25645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.
Collapse
Affiliation(s)
- Shanzhi Wang
- Program in Genes and Development; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX, USA; Department of Genetics; University of Texas M. D. Anderson Cancer Center; Houston, TX, USA
| | | | | |
Collapse
|
16
|
Genetic variation in the Yolk protein expression network of Drosophila melanogaster: sex-biased negative correlations with longevity. Heredity (Edinb) 2012; 109:226-34. [PMID: 22760232 DOI: 10.1038/hdy.2012.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
One of the persistent problems in biology is understanding how genetic variation contributes to phenotypic variation. Associations at many levels have been reported, and yet causal inference has remained elusive. We propose to rely on the knowledge of causal relationships established by molecular biology approaches. The existing molecular knowledge forms a firm backbone upon which hypotheses connecting genetic variation, transcriptional variation and phenotypic variation can be built. The sex determination pathway is a well-established molecular network, with the Yolk protein 1-3 (Yp) genes as the most downstream target. Our analyses reveal that genetic variation in expression for genes known to be upstream in the pathway explains variation in downstream targets. Relationships differ between the two sexes, and each Yp has a distinct transcriptional pattern. Yp expression is significantly negatively correlated with longevity, an important life history trait, for both males and females.
Collapse
|
17
|
Shen M, Mattox W. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position. Nucleic Acids Res 2011; 40:428-37. [PMID: 21914724 PMCID: PMC3245930 DOI: 10.1093/nar/gkr713] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg–Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.
Collapse
Affiliation(s)
- Manli Shen
- Department of Genetics and Genes & Development Graduate Program, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
18
|
Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev 2011; 25:373-84. [PMID: 21325135 DOI: 10.1101/gad.2004811] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.
Collapse
Affiliation(s)
- Arneet L Saltzman
- Banting and Best Department of Medical Research, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | |
Collapse
|
19
|
Isken O, Maquat LE. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 2011; 9:699-712. [PMID: 18679436 DOI: 10.1038/nrg2402] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events - some not obviously related to NMD - that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | |
Collapse
|
20
|
McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 2010; 11:565. [PMID: 20946641 PMCID: PMC3091714 DOI: 10.1186/1471-2164-11-565] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Collapse
Affiliation(s)
- Nicholas J McGlincy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
21
|
Damianov A, Black DL. Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA (NEW YORK, N.Y.) 2010; 16:405-16. [PMID: 20042473 PMCID: PMC2811669 DOI: 10.1261/rna.1838210] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/19/2009] [Indexed: 05/23/2023]
Abstract
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxDeltaRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxDeltaRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.
Collapse
Affiliation(s)
- Andrey Damianov
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Chung T, Wang D, Kim CS, Yadegari R, Larkins BA. Plant SMU-1 and SMU-2 homologues regulate pre-mRNA splicing and multiple aspects of development. PLANT PHYSIOLOGY 2009; 151:1498-512. [PMID: 19734266 PMCID: PMC2773069 DOI: 10.1104/pp.109.141705] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/31/2009] [Indexed: 05/18/2023]
Abstract
In eukaryotes, alternative splicing of pre-mRNAs contributes significantly to the proper expression of the genome. However, the functions of many auxiliary spliceosomal proteins are still unknown. Here, we functionally characterized plant homologues of nematode suppressors of mec-8 and unc-52 (smu). We compared transcript profiles of maize (Zea mays) smu2 endosperm with those of wild-type plants and identified pre-mRNA splicing events that depend on the maize SMU2 protein. Consistent with a conserved role of plant SMU-2 homologues, Arabidopsis (Arabidopsis thaliana) smu2 mutants also show altered splicing of similar target pre-mRNAs. The Atsmu2 mutants occasionally show developmental phenotypes, including abnormal cotyledon numbers and higher seed weights. We identified AtSMU1 as one of the SMU2-interacting proteins, and Atsmu1 mutations cause similar developmental phenotypes with higher penetrance than Atsmu2. The AtSMU2 and AtSMU1 proteins are localized to the nucleus and highly prevalent in actively dividing tissues. Taken together, our data indicated that the plant SMU-1 and SMU-2 homologues appear to be involved in splicing of specific pre-mRNAs that affect multiple aspects of development.
Collapse
|
23
|
Abstract
Enzyme isoforms are found in many cellular reactions, and can differ in the kind of reaction they catalyze, in their substrate affinity, or in their reaction rates. The evolutionary significance of enzyme isoforms is only partially understood. We used mathematical modeling to investigate the hypothesis that isoforms may be favored by selection because they can increase the phenotypic robustness of the system. We modify a model for circadian clock gene expression in Drosophila to incorporate the presence of isoforms in the phosphorylation pathway of the period gene. We consider the case in which different isoforms catalyze the same reaction but have different affinities for the substrate. Stability is increased if there is dynamic control of the expression of isoforms relative to each other. Thus, we show that controlling isoform proportion can be a powerful mechanism for reducing the effects of variations in the values of system parameters, increasing system robustness.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
24
|
Abstract
SR proteins are a family of splicing factors important for splice site recognition and spliceosome assembly. Their ability to bind to RNA and to interact with proteins as well identifies them as important players in splice site choice and alternative splicing. Plants possess twice as many SR proteins as animals, and some of the subfamilies are plant specific. Arabidopsis SR proteins are involved in different aspects of plant growth and development as well as in responses to environmental cues. The plant-specific subfamilies have been shown to be regulated by alternative splicing events, which are highly conserved in evolution. The tight regulation of splicing factors by alternative splicing might allow coordinated responses of their target genes.
Collapse
|
25
|
Wan Y, Sun M, Wang S, Liu L, Yuan L, Xie W. DX16 is a novel SR protein phosphorylated by DOA. Mol Cell Biochem 2007; 307:177-83. [PMID: 17828581 DOI: 10.1007/s11010-007-9597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
The serine-arginine-rich (SR) proteins belong to a conserved splicing factor family that not only is essential for constitutive pre-mRNA splicing, but also plays important roles in regulation of alternative splicing. Dx16 is a member of SR protein family in Drosophila. In order to get more insight of dx16 function, we identified the proteins interacting with DX16 through yeast two-hybrid and GST-pull down assays. DX16 interacts with the U1 snRNP subunit CG7564, the SR protein RBP1 and the SR protein kinase DOA. The first and second serine-and arginine-rich regions of DOA are required for the interaction between DOA and DX16. DX16 could be phosphorylated by DOA in vitro and DX16 is highly phosphorylated in vivo. Immunofluorescence microscopy results reveal that doa and dx16 are both highly expressed in embryonic central nervous system. These results suggest that DX16 could be a novel SR protein phosphorylated by DOA and it may participate in the formation of splicing complex through its interactions with other splicing related proteins.
Collapse
Affiliation(s)
- Yongqi Wan
- Department of Genetics and Developmental Biology, Southeast University Medical School, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M, Black DL. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21:1636-52. [PMID: 17606642 PMCID: PMC1899473 DOI: 10.1101/gad.1558107] [Citation(s) in RCA: 429] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/16/2007] [Indexed: 02/06/2023]
Abstract
Many metazoan gene transcripts exhibit neuron-specific splicing patterns, but the developmental control of these splicing events is poorly understood. We show that the splicing of a large group of exons is reprogrammed during neuronal development by a switch in expression between two highly similar polypyrimidine tract-binding proteins, PTB and nPTB (neural PTB). PTB is a well-studied regulator of alternative splicing, but nPTB is a closely related paralog whose functional relationship to PTB is unknown. In the brain, nPTB protein is specifically expressed in post-mitotic neurons, whereas PTB is restricted to neuronal precursor cells (NPC), glia, and other nonneuronal cells. Interestingly, nPTB mRNA transcripts are found in NPCs and other nonneuronal cells, but in these cells nPTB protein expression is repressed. This repression is due in part to PTB-induced alternative splicing of nPTB mRNA, leading to nonsense-mediated decay (NMD). However, we find that even properly spliced mRNA fails to express nPTB protein when PTB is present, indicating contributions from additional post-transcriptional mechanisms. The PTB-controlled repression of nPTB results in a mutually exclusive pattern of expression in the brain, where the loss of PTB in maturing neurons allows the synthesis of nPTB in these cells. To examine the consequences of this switch, we used splicing-sensitive microarrays to identify different sets of exons regulated by PTB, nPTB, or both proteins. During neuronal differentiation, the splicing of these exon sets is altered as predicted from the observed changes in PTB and nPTB expression. These data show that the post-transcriptional switch from PTB to nPTB controls a widespread alternative splicing program during neuronal development.
Collapse
Affiliation(s)
- Paul L. Boutz
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Peter Stoilov
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Qin Li
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Geetanjali Chawla
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Kristin Ostrow
- Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Lily Shiue
- Sinsheimer Laboratories, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Sinsheimer Laboratories, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| |
Collapse
|
27
|
Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007; 446:926-9. [PMID: 17361132 DOI: 10.1038/nature05676] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 02/28/2007] [Indexed: 12/12/2022]
Abstract
The human and mouse genomes share a number of long, perfectly conserved nucleotide sequences, termed ultraconserved elements. Whereas these regions can act as transcriptional enhancers when upstream of genes, those within genes are less well understood. In particular, the function of ultraconserved elements that overlap alternatively spliced exons of genes encoding RNA-binding proteins is unknown. Here we report that in every member of the human SR family of splicing regulators, highly or ultraconserved elements are alternatively spliced, either as alternative 'poison cassette exons' containing early in-frame stop codons, or as alternative introns in the 3' untranslated region. These alternative splicing events target the resulting messenger RNAs for degradation by means of an RNA surveillance pathway called nonsense-mediated mRNA decay. Mouse orthologues of the human SR proteins exhibit the same unproductive splicing patterns. Three SR proteins have been previously shown to direct splicing of their own transcripts, and one of these is known to autoregulate its expression by coupling alternative splicing with decay; our results suggest that unproductive splicing is important for regulation of the entire SR family. We find that unproductive splicing associated with conserved regions has arisen independently in different SR genes, suggesting that splicing factors may readily acquire this form of regulation.
Collapse
Affiliation(s)
- Liana F Lareau
- Department of Molecular and Cell Biology and, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
28
|
Yuan L, Zhou J, Wan Y, Sun M, Ding J, Dou F, Xie W. Identification of RNA binding sequences of Drosophila SR protein DX16. Mol Cell Biochem 2007; 302:119-24. [PMID: 17345156 DOI: 10.1007/s11010-007-9433-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 02/09/2007] [Indexed: 11/24/2022]
Abstract
Dxl6 is a member of the Drosophila melanogaster SR protein family, a group of nuclear proteins that are both essential splicing factors and specific splicing regulators. To get more insight of Dx16 function, we generated the monoclonal antibody against Dx16 and determined its expression pattern and subcellular location. It is mainly expressed in the nucleus of CNS in Drosophila embryos. In order to investigate the RNA-binding specificity of Dxl6, Dxl6-binding RNAs were identified by SELEX screen by using recombinant Dxl6 N-terminus protein as the target. These RNAs contained a consensus motif. Some pre-mRNAs from the corresponding genes showed splicing defects in the Dxl6-P-element insertional mutant fly. These results indicate that Dxl6 has unique functions in the removal of some introns during development.
Collapse
Affiliation(s)
- Liudi Yuan
- Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing 210009, P.R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA. Altered lipid raft-associated proximal signaling and translocation of CD45 tyrosine phosphatase in B lymphocytes from patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2007; 56:291-302. [PMID: 17195233 DOI: 10.1002/art.22309] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE B lymphocytes from patients with systemic lupus erythematosus (SLE) exhibit defective intracellular signaling, hyperactivity, and autoantibody production. Recent evidence indicates a reduced expression of Lyn kinase, a negative regulator of B cell signaling, and reduced translocation of Lyn into membrane signaling domains in SLE. The present study was undertaken to investigate the causes of this altered regulation of Lyn by assessing the expression levels of regulatory molecules and their translocation into the signaling domains of SLE B lymphocytes. METHODS Blood was obtained from 48 patients with SLE and 28 healthy controls for the assessment of B lymphocytes. Levels and intracellular distribution of Lyn, CD45, COOH-terminal Src kinase (Csk), and c-Cbl were studied by Western blotting, confocal microscopy, and flow cytometry. The kinetics of signaling molecule translocation to the B cell receptor (BCR)-antigen synapse were investigated by confocal microscopy. RESULTS A profound alteration in the expression and translocation of regulatory signaling molecules in membrane domains of B cells from patients with SLE was observed. B lymphocytes from SLE patients, but not those from healthy controls, expressed a low molecular weight isoform of CD45 in lipid raft signaling microdomains. Kinetic studies revealed that translocation of Lyn, CD45, Csk, and c-Cbl led to increased recruitment and retention of Lyn and CD45 in the BCR-antigen synapse in SLE B cells. CONCLUSION The results provide evidence of altered expression and translocation/interaction of kinases and phosphatases in membrane signaling microdomains of B cells from patients with SLE. Altered translocation of CD45 correlated with reduced expression of Lyn, indicating that Lyn is a key molecule in the regulation of BCR-mediated signaling.
Collapse
Affiliation(s)
- Fabian Flores-Borja
- William Harvey Institute, Queen Mary School of Medicine and Dentistry, London, UK
| | | | | | | | | |
Collapse
|
30
|
Qi J, Su S, Mattox W. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer. Mol Cell Biol 2007; 27:699-708. [PMID: 17101798 PMCID: PMC1800821 DOI: 10.1128/mcb.01572-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/03/2006] [Accepted: 10/27/2006] [Indexed: 11/20/2022] Open
Abstract
The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.
Collapse
Affiliation(s)
- Junlin Qi
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | |
Collapse
|