1
|
Gerasimov ES, Afonin DA, Škodová-Sveráková I, Saura A, Trusina N, Gahura O, Zakharova A, Butenko A, Baráth P, Horváth A, Opperdoes FR, Pérez-Morga D, Zimmer SL, Lukeš J, Yurchenko V. Evolutionary divergent kinetoplast genome structure and RNA editing patterns in the trypanosomatid Vickermania. Proc Natl Acad Sci U S A 2025; 122:e2426887122. [PMID: 40203041 PMCID: PMC12012515 DOI: 10.1073/pnas.2426887122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
Collapse
Affiliation(s)
- Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow119991, Russia
| | - Dmitry A. Afonin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow119991, Russia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| | - Natália Trusina
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
- Faculty of Science, University of South Bohemia, 370 05České Budějovice, Czechia
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava845 38, Slovakia
- Medirex Group Academy, Nitra949 05, Slovakia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
| | - Fred R. Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels1200, Belgium
| | | | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN55812
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
- Faculty of Science, University of South Bohemia, 370 05České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| |
Collapse
|
2
|
Giraudo A, Bolchi C, Pallavicini M, Di Santo R, Costi R, Saccoliti F. Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy. Pharmaceuticals (Basel) 2024; 18:28. [PMID: 39861091 PMCID: PMC11768348 DOI: 10.3390/ph18010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V 44, I-00165 Rome, Italy
| |
Collapse
|
3
|
Hauser DA, Kaiser M, Mäser P, Albisetti A. Venturicidin A affects the mitochondrial membrane potential and induces kDNA loss in Trypanosoma brucei. Antimicrob Agents Chemother 2024; 68:e0167123. [PMID: 38869301 PMCID: PMC11232411 DOI: 10.1128/aac.01671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.
Collapse
Affiliation(s)
- Dennis A Hauser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Albisetti
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Taleva G, Husová M, Panicucci B, Hierro-Yap C, Pineda E, Biran M, Moos M, Šimek P, Butter F, Bringaud F, Zíková A. Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation. PLoS Pathog 2023; 19:e1011699. [PMID: 37819951 PMCID: PMC10593219 DOI: 10.1371/journal.ppat.1011699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.
Collapse
Affiliation(s)
- Gergana Taleva
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Michaela Husová
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Erika Pineda
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Martin Moos
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Alena Zíková
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| |
Collapse
|
6
|
McDermott SM, Pham V, Lewis I, Tracy M, Stuart K. mt-LAF3 is a pseudouridine synthase ortholog required for mitochondrial rRNA and mRNA gene expression in Trypanosoma brucei. Int J Parasitol 2023; 53:573-583. [PMID: 37268169 PMCID: PMC10527287 DOI: 10.1016/j.ijpara.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
Trypanosoma brucei and related kinetoplastid parasites possess unique RNA processing pathways, including in their mitochondria, that regulate metabolism and development. Altering RNA composition or conformation through nucleotide modifications is one such pathway, and modifications including pseudouridine regulate RNA fate and function in many organisms. We surveyed pseudouridine synthase (PUS) orthologs in trypanosomatids, with a particular interest in mitochondrial enzymes due to their potential importance for mitochondrial function and metabolism. Trypanosoma brucei mitochondrial (mt)-LAF3 is an ortholog of human and yeast mitochondrial PUS enzymes, and a mitoribosome assembly factor, but structural studies differ in their conclusion as to whether it has PUS catalytic activity. Here, we generated T. brucei cells that are conditionally null (CN) for mt-LAF3 expression and showed that mt-LAF3 loss is lethal and disrupts mitochondrial membrane potential (ΔΨm). Addition of a mutant gamma ATP synthase allele to the CN cells permitted ΔΨm maintenance and cell survival, allowing us to assess primary effects on mitochondrial RNAs. As expected, these studies showed that loss of mt-LAF3 dramatically decreases levels of mitochondrial 12S and 9S rRNAs. Notably, we also observed decreases in mitochondrial mRNA levels, including differential effects on edited vs. pre-edited mRNAs, indicating that mt-LAF3 is required for mitochondrial rRNA and mRNA processing, including of edited transcripts. To assess the importance of PUS catalytic activity in mt-LAF3 we mutated a conserved aspartate that is necessary for catalysis in other PUS enzymes and showed it is not essential for cell growth, or maintenance of ΔΨm and mitochondrial RNA levels. Together, these results indicate that mt-LAF3 is required for normal expression of mitochondrial mRNAs in addition to rRNAs, but that PUS catalytic activity is not required for these functions. Instead, our work, combined with previous structural studies, suggests that T. brucei mt-LAF3 acts as a mitochondrial RNA-stabilizing scaffold.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Vy Pham
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Isaac Lewis
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Maxwell Tracy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Meehan J, McDermott SM, Ivens A, Goodall Z, Chen Z, Yu Z, Woo J, Rodshagen T, McCleskey L, Sechrist R, Stuart K, Zeng L, Rouskin S, Savill N, Schnaufer A, Zhang X, Cruz-Reyes J. Trypanosome RNA helicase KREH2 differentially controls non-canonical editing and putative repressive structure via a novel proposed 'bifunctional' gRNA in mRNA A6. Nucleic Acids Res 2023; 51:6944-6965. [PMID: 37246647 PMCID: PMC10359474 DOI: 10.1093/nar/gkad453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.
Collapse
Affiliation(s)
- Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Alasdair Ivens
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Zachary Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jia Woo
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Rodshagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura McCleskey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca Sechrist
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
9
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
10
|
Yao X, Duan Y, Deng Z, Zhao W, Wei J, Li X, An S. ATP Synthase Subunit α from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036055 DOI: 10.1021/acs.jafc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Collapse
Affiliation(s)
- Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunpeng Duan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- College of Life Science, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
11
|
Wenger C, Harsman A, Niemann M, Oeljeklaus S, von Känel C, Calderaro S, Warscheid B, Schneider A. The Mba1 homologue of Trypanosoma brucei is involved in the biogenesis of oxidative phosphorylation complexes. Mol Microbiol 2023; 119:537-550. [PMID: 36829306 DOI: 10.1111/mmi.15048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Consistent with other eukaryotes, the Trypanosoma brucei mitochondrial genome encodes mainly hydrophobic core subunits of the oxidative phosphorylation system. These proteins must be co-translationally inserted into the inner mitochondrial membrane and are synthesized by the highly unique trypanosomal mitoribosomes, which have a much higher protein to RNA ratio than any other ribosome. Here, we show that the trypanosomal orthologue of the mitoribosome receptor Mba1 (TbMba1) is essential for normal growth of procyclic trypanosomes but redundant in the bloodstream form, which lacks an oxidative phosphorylation system. Proteomic analyses of TbMba1-depleted mitochondria from procyclic cells revealed reduced levels of many components of the oxidative phosphorylation system, most of which belong to the cytochrome c oxidase (Cox) complex, three subunits of which are mitochondrially encoded. However, the integrity of the mitoribosome and its interaction with the inner membrane were not affected. Pull-down experiments showed that TbMba1 forms a dynamic interaction network that includes the trypanosomal Mdm38/Letm1 orthologue and a trypanosome-specific factor that stabilizes the CoxI and CoxII mRNAs. In summary, our study suggests that the function of Mba1 in the biogenesis of membrane subunits of OXPHOS complexes is conserved among yeast, mammals and trypanosomes, which belong to two eukaryotic supergroups.
Collapse
Affiliation(s)
- Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anke Harsman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Moritz Niemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| |
Collapse
|
12
|
McDermott SM, Pham V, Lewis I, Tracy M, Stuart K. mt-LAF3 is a pseudouridine synthase ortholog required for mitochondrial rRNA and mRNA gene expression in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529727. [PMID: 36865177 PMCID: PMC9980140 DOI: 10.1101/2023.02.23.529727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Trypanosoma brucei and related kinetoplastid parasites possess unique RNA processing pathways, including in their mitochondria, that regulate metabolism and development. Altering RNA composition or conformation through nucleotide modifications is one such pathway, and modifications including pseudouridine regulate RNA fate and function in many organisms. We surveyed pseudouridine synthase (PUS) orthologs in Trypanosomatids, with a particular interest in mitochondrial enzymes due to their potential importance for mitochondrial function and metabolism. T. brucei mt-LAF3 is an ortholog of human and yeast mitochondrial PUS enzymes, and a mitoribosome assembly factor, but structural studies differ in their conclusion as to whether it has PUS catalytic activity. Here, we generated T. brucei cells that are conditionally null for mt-LAF3 and showed that mt-LAF3 loss is lethal and disrupts mitochondrial membrane potential (ΔΨm). Addition of a mutant gamma-ATP synthase allele to the conditionally null cells permitted ΔΨm maintenance and cell survival, allowing us to assess primary effects on mitochondrial RNAs. As expected, these studies showed that loss of mt-LAF3 dramatically decreases levels of mitochondrial 12S and 9S rRNAs. Notably, we also observed decreases in mitochondrial mRNA levels, including differential effects on edited vs. pre-edited mRNAs, indicating that mt-LAF3 is required for mitochondrial rRNA and mRNA processing, including of edited transcripts. To assess the importance of PUS catalytic activity in mt-LAF3 we mutated a conserved aspartate that is necessary for catalysis in other PUS enzymes and showed it is not essential for cell growth, or maintenance of ΔΨm and mitochondrial RNA levels. Together, these results indicate that mt-LAF3 is required for normal expression of mitochondrial mRNAs in addition to rRNAs, but that PUS catalytic activity is not required for these functions. Instead, our work, combined with previous structural studies, suggests that T. brucei mt-LAF3 acts as a mitochondrial RNA-stabilizing scaffold.
Collapse
|
13
|
Nare Z, Moses T, Burgess K, Schnaufer A, Walkinshaw MD, Michels PAM. Metabolic insights into phosphofructokinase inhibition in bloodstream-form trypanosomes. Front Cell Infect Microbiol 2023; 13:1129791. [PMID: 36864883 PMCID: PMC9971811 DOI: 10.3389/fcimb.2023.1129791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Previously, we reported the development of novel small molecules that are potent inhibitors of the glycolytic enzyme phosphofructokinase (PFK) of Trypanosoma brucei and related protists responsible for serious diseases in humans and domestic animals. Cultured bloodstream-form trypanosomes, which are fully reliant on glycolysis for their ATP production, are rapidly killed at submicromolar concentrations of these compounds, which have no effect on the activity of human PFKs and human cells. Single-day oral dosing cures stage 1 human trypanosomiasis in an animal model. Here we analyze changes in the metabolome of cultured trypanosomes during the first hour after addition of a selected PFK inhibitor, CTCB405. The ATP level of T. brucei drops quickly followed by a partial increase. Already within the first five minutes after dosing, an increase is observed in the amount of fructose 6-phosphate, the metabolite just upstream of the PFK reaction, while intracellular levels of the downstream glycolytic metabolites phosphoenolpyruvate and pyruvate show an increase and decrease, respectively. Intriguingly, a decrease in the level of O-acetylcarnitine and an increase in the amount of L-carnitine were observed. Likely explanations for these metabolomic changes are provided based on existing knowledge of the trypanosome's compartmentalized metabolic network and kinetic properties of its enzymes. Other major changes in the metabolome concerned glycerophospholipids, however, there was no consistent pattern of increase or decrease upon treatment. CTCB405 treatment caused less prominent changes in the metabolome of bloodstream-form Trypanosoma congolense, a ruminant parasite. This agrees with the fact that it has a more elaborate glucose catabolic network with a considerably lower glucose consumption rate than bloodstream-form T. brucei.
Collapse
Affiliation(s)
- Zandile Nare
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Moses
- EdinOmics, RRID:SCR_021838, Centre for Engineering Biology, School of Biological Sciences, CH Waddington Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karl Burgess
- EdinOmics, RRID:SCR_021838, Centre for Engineering Biology, School of Biological Sciences, CH Waddington Building, The University of Edinburgh, Edinburgh, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, CH Waddington Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm D. Walkinshaw
- Wellcome Centre for Cell Biology, School of Biological Sciences, Michael Swann Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paul A. M. Michels
- Wellcome Centre for Cell Biology, School of Biological Sciences, Michael Swann Building, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
14
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
15
|
Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun 2022; 13:5989. [PMID: 36220811 PMCID: PMC9553925 DOI: 10.1038/s41467-022-33588-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Minal Jain
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - David Hollaus
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| |
Collapse
|
16
|
Carnes J, McDermott SM, Lewis I, Tracy M, Stuart K. Domain function and predicted structure of three heterodimeric endonuclease subunits of RNA editing catalytic complexes in Trypanosoma brucei. Nucleic Acids Res 2022; 50:10123-10139. [PMID: 36095119 PMCID: PMC9508840 DOI: 10.1093/nar/gkac753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Suzanne M McDermott
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Isaac Lewis
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Maxwell Tracy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Arbon D, Ženíšková K, Šubrtová K, Mach J, Štursa J, Machado M, Zahedifard F, Leštinová T, Hierro-Yap C, Neuzil J, Volf P, Ganter M, Zoltner M, Zíková A, Werner L, Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob Agents Chemother 2022; 66:e0072722. [PMID: 35856666 PMCID: PMC9380531 DOI: 10.1128/aac.00727-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Karolína Šubrtová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Štursa
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marta Machado
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tereza Leštinová
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lukáš Werner
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
18
|
Sanz-Rodríguez CE, Hoffman B, Guyett PJ, Purmal A, Singh B, Pollastri MP, Mensa-Wilmot K. Physiologic Targets and Modes of Action for CBL0137, a Lead for Human African Trypanosomiasis Drug Development. Mol Pharmacol 2022; 102:1-16. [PMID: 35605992 PMCID: PMC9341264 DOI: 10.1124/molpharm.121.000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/20/2022] [Indexed: 08/15/2023] Open
Abstract
CBL0137 is a lead drug for human African trypanosomiasis, caused by Trypanosoma brucei Herein, we use a four-step strategy to 1) identify physiologic targets and 2) determine modes of molecular action of CBL0137 in the trypanosome. First, we identified fourteen CBL0137-binding proteins using affinity chromatography. Second, we developed hypotheses of molecular modes of action, using predicted functions of CBL0137-binding proteins as guides. Third, we documented effects of CBL0137 on molecular pathways in the trypanosome. Fourth, we identified physiologic targets of the drug by knocking down genes encoding CBL0137-binding proteins and comparing their molecular effects to those obtained when trypanosomes were treated with CBL0137. CBL0137-binding proteins included glycolysis enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, phosphoglycerate kinase) and DNA-binding proteins [universal minicircle sequence binding protein 2, replication protein A1 (RPA1), replication protein A2 (RPA2)]. In chemical biology studies, CBL0137 did not reduce ATP level in the trypanosome, ruling out glycolysis enzymes as crucial targets for the drug. Thus, many CBL0137-binding proteins are not physiologic targets of the drug. CBL0137 inhibited 1) nucleus mitosis, 2) nuclear DNA replication, and 3) polypeptide synthesis as the first carbazole inhibitor of eukaryote translation. RNA interference (RNAi) against RPA1 inhibited both DNA synthesis and mitosis, whereas RPA2 knockdown inhibited mitosis, consistent with both proteins being physiologic targets of CBL0137. Principles used here to distinguish drug-binding proteins from physiologic targets of CBL0137 can be deployed with different drugs in other biologic systems. SIGNIFICANCE STATEMENT: To distinguish drug-binding proteins from physiologic targets in the African trypanosome, we devised and executed a multidisciplinary approach involving biochemical, genetic, cell, and chemical biology experiments. The strategy we employed can be used for drugs in other biological systems.
Collapse
Affiliation(s)
- Carlos E Sanz-Rodríguez
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Benjamin Hoffman
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Paul J Guyett
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Andrei Purmal
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Baljinder Singh
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Michael P Pollastri
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| |
Collapse
|
19
|
Molecular Analysis of Trypanosome Infections in Algerian Camels. Acta Parasitol 2022; 67:1246-1253. [PMID: 35657485 PMCID: PMC9399045 DOI: 10.1007/s11686-022-00577-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Surra is an economically important livestock disease in many low- and middle-income countries, including those of Northern Africa. The disease is caused by the biting fly-transmitted subspecies Trypanosoma brucei evansi, which is very closely related to the tsetse-transmitted subspecies T. b. brucei and the sexually transmitted subspecies T. b. equiperdum. At least two phylogenetically distinct groups of T. b. evansi can be distinguished, called type A and type B. These evolved from T. b. brucei independently. The close relationships between the T. brucei subspecies and the multiple evolutionary origins of T. b. evansi pose diagnostic challenges. METHODS Here we use previously established and newly developed PCR assays based on nuclear and mitochondrial genetic markers to type the causative agent of recent trypanosome infections of camels in Southern Algeria. RESULTS/CONCLUSION We confirm that these infections have been caused by T. b. evansi type A. We also report a newly designed PCR assay specific for T. b. evansi type A that we expect will be of diagnostic use for the community.
Collapse
|
20
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
22
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
23
|
Chang Y, Zhang B, Du M, Geng Z, Wei J, Guan R, An S, Zhao W. The vital hormone 20-hydroxyecdysone controls ATP production by upregulating binding of trehalase 1 with ATP synthase subunit α in Helicoverpa armigera. J Biol Chem 2022; 298:101565. [PMID: 34999119 PMCID: PMC8819028 DOI: 10.1016/j.jbc.2022.101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Trehalose is the major “blood sugar” of insects and it plays a crucial role in energy supply and as a stress protectant. The hydrolysis of trehalose occurs only under the enzymatic control of trehalase (Treh), which plays important roles in growth and development, energy supply, chitin biosynthesis, and abiotic stress responses. Previous reports have revealed that the vital hormone 20-hydroxyecdysone (20E) regulates Treh, but the detailed mechanism underlying 20E regulating Treh remains unclear. In this study, we investigated the function of HaTreh1 in Helicoverpa armigera larvae. The results showed that the transcript levels and enzymatic activity of HaTreh1 were elevated during molting and metamorphosis stages in the epidermis, midgut, and fat body, and that 20E upregulated the transcript levels of HaTreh1 through the classical nuclear receptor complex EcR-B1/USP1. HaTreh1 is a mitochondria protein. We also found that knockdown of HaTreh1 in the fifth- or sixth-instar larvae resulted in weight loss and increased mortality. Yeast two-hybrid, coimmunoprecipitation, and glutathione-S-transferase (GST) pull-down experiments demonstrated that HaTreh1 bound with ATP synthase subunit alpha (HaATPs-α) and that this binding increased under 20E treatment. In addition, 20E enhanced the transcript level of HaATPs-α and ATP content. Finally, the knockdown of HaTreh1 or HaATPs-α decreased the induction effect of 20E on ATP content. Altogether, these findings demonstrate that 20E controls ATP production by up-regulating the binding of HaTreh1 to HaATPs-α in H. armigera.
Collapse
Affiliation(s)
- Yanpeng Chang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bo Zhang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zichen Geng
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ruobing Guan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenli Zhao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
24
|
A novel high-content phenotypic screen to identify inhibitors of mitochondrial DNA maintenance in trypanosomes. Antimicrob Agents Chemother 2021; 66:e0198021. [PMID: 34871097 PMCID: PMC8846439 DOI: 10.1128/aac.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Kinetoplastid parasites cause diverse neglected diseases in humans and livestock, with an urgent need for new treatments. The survival of kinetoplastids depends on their uniquely structured mitochondrial genome (kDNA), the eponymous kinetoplast. Here, we report the development of a high-content screen for pharmacologically induced kDNA loss, based on specific staining of parasites and automated image analysis. As proof of concept, we screened a diverse set of ∼14,000 small molecules and exemplify a validated hit as a novel kDNA-targeting compound.
Collapse
|
25
|
Vowinckel J, Hartl J, Marx H, Kerick M, Runggatscher K, Keller MA, Mülleder M, Day J, Weber M, Rinnerthaler M, Yu JSL, Aulakh SK, Lehmann A, Mattanovich D, Timmermann B, Zhang N, Dunn CD, MacRae JI, Breitenbach M, Ralser M. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nat Metab 2021; 3:1521-1535. [PMID: 34799698 PMCID: PMC7612105 DOI: 10.1038/s42255-021-00477-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biognosys AG, Schlieren, Switzerland
| | - Johannes Hartl
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Hans Marx
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Martin Kerick
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Parasitology and Biomedicine 'López-Neyra' (IPBLN, CSIC), Granada, Spain
| | - Kathrin Runggatscher
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Mülleder
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Manuela Weber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Lehmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nianshu Zhang
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Turkey
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, London, UK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Trypanosoma brucei Tim50 Possesses PAP Activity and Plays a Critical Role in Cell Cycle Regulation and Parasite Infectivity. mBio 2021; 12:e0159221. [PMID: 34517757 PMCID: PMC8546626 DOI: 10.1128/mbio.01592-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma brucei, the infective agent for African trypanosomiasis, possesses a homologue of the translocase of the mitochondrial inner membrane 50 (TbTim50). It has a pair of characteristic phosphatase signature motifs, DXDX(T/V). Here, we demonstrated that, besides its protein phosphatase activity, the recombinant TbTim50 binds and hydrolyzes phosphatidic acid in a concentration-dependent manner. Mutations of D242 and D244, but not of D345and D347, to alanine abolished these activities. In silico structural homology models identified the putative binding interfaces that may accommodate different phosphosubstrates. Interestingly, TbTim50 depletion in the bloodstream form (BF) of T. brucei reduced cardiolipin (CL) levels and decreased mitochondrial membrane potential (ΔΨ). TbTim50 knockdown (KD) also reduced the population of G2/M phase and increased that of G1 phase cells; inhibited segregation and caused overreplication of kinetoplast DNA (kDNA), and reduced BF cell growth. Depletion of TbTim50 increased the levels of AMPK phosphorylation, and parasite morphology was changed with upregulation of expression of a few stumpy marker genes. Importantly, we observed that TbTim50-depleted parasites were unable to establish infection in mice. Proteomics analysis showed reductions in levels of the translation factors, flagellar transport proteins, and many proteasomal subunits, including those of the mitochondrial heat shock locus ATPase (HslVU), which is known to play a role in regulation of kinetoplast DNA (kDNA) replication. Reduction of the level of HslV in TbTim50 KD cells was further validated by immunoblot analysis. Together, our results showed that TbTim50 is essential for mitochondrial function, regulation of kDNA replication, and the cell cycle in the BF. Therefore, TbTim50 is an important target for structure-based drug design to combat African trypanosomiasis.
Collapse
|
27
|
Gahura O, Hierro-Yap C, Zíková A. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 2021; 148:1151-1160. [PMID: 33551002 PMCID: PMC8311965 DOI: 10.1017/s0031182021000202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
Collapse
Affiliation(s)
- Ondřej Gahura
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Carolina Hierro-Yap
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Alena Zíková
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| |
Collapse
|
28
|
Chaudhuri M, Tripathi A, Gonzalez FS. Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. Int J Mol Sci 2021; 22:7779. [PMID: 34360547 PMCID: PMC8346121 DOI: 10.3390/ijms22157779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (A.T.); (F.S.G.)
| | | | | |
Collapse
|
29
|
Cadena LR, Gahura O, Panicucci B, Zíková A, Hashimi H. Mitochondrial Contact Site and Cristae Organization System and F 1F O-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae. mSphere 2021; 6:e0032721. [PMID: 34133204 PMCID: PMC8265648 DOI: 10.1128/msphere.00327-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
30
|
Carruthers LV, Munday JC, Ebiloma GU, Steketee P, Jayaraman S, Campagnaro GD, Ungogo MA, Lemgruber L, Donachie AM, Rowan TG, Peter R, Morrison LJ, Barrett MP, De Koning HP. Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Mol Microbiol 2021; 116:564-588. [PMID: 33932053 DOI: 10.1111/mmi.14733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 01/27/2023]
Abstract
Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.
Collapse
Affiliation(s)
- Lauren V Carruthers
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Pieter Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharth Jayaraman
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tim G Rowan
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Rose Peter
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
31
|
Kramer S, Meyer-Natus E, Stigloher C, Thoma H, Schnaufer A, Engstler M. Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples. Nucleic Acids Res 2021; 49:e14. [PMID: 33275141 PMCID: PMC7897490 DOI: 10.1093/nar/gkaa1142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023] Open
Abstract
Single mRNA molecules are frequently detected by single molecule fluorescence in situ hybridization (smFISH) using branched DNA technology. While providing strong and background-reduced signals, the method is inefficient in detecting mRNAs within dense structures, in monitoring mRNA compactness and in quantifying abundant mRNAs. To overcome these limitations, we have hybridized slices of high pressure frozen, freeze-substituted and LR White embedded cells (LR White smFISH). mRNA detection is physically restricted to the surface of the resin. This enables single molecule detection of RNAs with accuracy comparable to RNA sequencing, irrespective of their abundance, while at the same time providing spatial information on RNA localization that can be complemented with immunofluorescence and electron microscopy, as well as array tomography. Moreover, LR White embedding restricts the number of available probe pair recognition sites for each mRNA to a small subset. As a consequence, differences in signal intensities between RNA populations reflect differences in RNA structures, and we show that the method can be employed to determine mRNA compactness. We apply the method to answer some outstanding questions related to trans-splicing, RNA granules and mitochondrial RNA editing in single-cellular trypanosomes and we show an example of differential gene expression in the metazoan Caenorhabditis elegans.
Collapse
Affiliation(s)
- Susanne Kramer
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | | | - Christian Stigloher
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Imaging Core Facility, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Hanna Thoma
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Achim Schnaufer
- Institute for Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Markus Engstler
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
33
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Cestari I, Stuart K. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes. PLoS Negl Trop Dis 2020; 14:e0008689. [PMID: 33119588 PMCID: PMC7595295 DOI: 10.1371/journal.pntd.0008689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unicellular eukaryote Trypanosoma brucei undergoes extensive cellular and developmental changes during its life cycle. These include regulation of mammalian stage surface antigen variation and surface composition changes between life stages; switching between glycolysis and oxidative phosphorylation; differential mRNA editing; and changes in posttranscriptional gene expression, protein trafficking, organellar function, and cell morphology. These diverse events are coordinated and controlled throughout parasite development, maintained in homeostasis at each life stage, and are essential for parasite survival in both the host and insect vector. Described herein are the enzymes and metabolites of the phosphatidylinositol (PI) cellular regulatory network, its integration with other cellular regulatory systems that collectively control and coordinate these numerous cellular processes, including cell development and differentiation and the many associated complex processes in multiple subcellular compartments. We conclude that this regulation is the product of the organization of these enzymes within the cellular architecture, their activities, metabolite fluxes, and responses to environmental changes via signal transduction and other processes. We describe a paradigm for how these enzymes and metabolites could function to control and coordinate multiple cellular functions. The significance of the PI system's regulatory functions in single-celled eukaryotes to metazoans and their potential as chemotherapeutic targets are indicated.
Collapse
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (IC); (KS)
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IC); (KS)
| |
Collapse
|
35
|
Smith Jr. JT, Doleželová E, Tylec B, Bard JE, Chen R, Sun Y, Zíková A, Read LK. Developmental regulation of edited CYb and COIII mitochondrial mRNAs is achieved by distinct mechanisms in Trypanosoma brucei. Nucleic Acids Res 2020; 48:8704-8723. [PMID: 32738044 PMCID: PMC7470970 DOI: 10.1093/nar/gkaa641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.
Collapse
Affiliation(s)
- Joseph T Smith Jr.
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Brianna Tylec
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Genomics and Bioinformatics Core, University at Buffalo, Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
36
|
Mochizuki K, Inaoka DK, Mazet M, Shiba T, Fukuda K, Kurasawa H, Millerioux Y, Boshart M, Balogun EO, Harada S, Hirayama K, Bringaud F, Kita K. The ASCT/SCS cycle fuels mitochondrial ATP and acetate production in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148283. [PMID: 32763239 PMCID: PMC7402102 DOI: 10.1016/j.bbabio.2020.148283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/03/2022]
Abstract
Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro–reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF. First biochemical and structural characterization of mitochondrial ASCT/SCS cycle It is essential for mitochondrial acetate/ATP production and T. brucei BSF growth. TbASCT/SCS cycle shows higher kcat than that of yeast and bacterial ATP synthases. Detailed comparative biochemical analysis between ASCT and human SCOT Active site residue and X-CoA binding site determined by site-directed mutagenesis
Collapse
Affiliation(s)
- Kota Mochizuki
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan.
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan.
| | - Keisuke Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Hana Kurasawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Germany
| | - Emmanuel O Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Nigeria
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Host - Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| |
Collapse
|
37
|
Doleželová E, Kunzová M, Dejung M, Levin M, Panicucci B, Regnault C, Janzen CJ, Barrett MP, Butter F, Zíková A. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol 2020; 18:e3000741. [PMID: 32520929 PMCID: PMC7307792 DOI: 10.1371/journal.pbio.3000741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/22/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
Collapse
Affiliation(s)
- Eva Doleželová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Michaela Kunzová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Clément Regnault
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian J. Janzen
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
38
|
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J Biol Chem 2020; 295:8331-8347. [PMID: 32354742 PMCID: PMC7294092 DOI: 10.1074/jbc.ra120.012355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Gustavo D Campagnaro
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gergana Taleva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michela Cerone
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
39
|
Luévano-Martínez LA, Girard RMBM, Alencar MB, Silber AM. ATP regulates the activity of an alternative oxidase in Trypanosoma brucei. FEBS Lett 2020; 594:2150-2158. [PMID: 32279308 DOI: 10.1002/1873-3468.13790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023]
Abstract
The reduced mitochondrial respiratory chain from the bloodstream forms of Trypanosoma brucei is composed of only a membrane-bound glycerol-3-phosphate dehydrogenase and an alternative oxidase. Since these enzymes are not proton pumps, their functions are restricted to the maintenance of the redox balance in the glycosome by means of the dihydroxyacetone phosphate/glycerol-3-phosphate shuttle. Additionally, an F1 Fo -ATP synthase functions as an ATP-hydrolysing enzyme to establish the proton motive force necessary to maintain the basic functions of mitochondria. In this report, we studied the interplay between the alternative oxidase and ATP synthase, and we found that, in addition to its role as a proton pump, ATP synthase contributes to maintain safe levels of ATP to prevent the inhibition of the alternative oxidase by ATP.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Richard M B M Girard
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
40
|
Huang G, Docampo R. The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans. mBio 2020; 11:e00268-20. [PMID: 32184243 PMCID: PMC7078472 DOI: 10.1128/mbio.00268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells.IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
41
|
Ni S, Zhou Y, Chen Y, Du X, Zhang S. Identification of ATP synthase α subunit as a new maternal factor capable of protecting zebrafish embryos from bacterial infection. FASEB J 2019; 33:12983-13001. [PMID: 31518507 DOI: 10.1096/fj.201901290r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that ATP synthase α subunit (ATP5A1) plays multiple roles, but our understanding of its biologic functions remains poor and incomprehensive. Here, we clearly demonstrated that zebrafish ATP5A1 was a newly characterized lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs and embryos of zebrafish. Zebrafish ATP5A1 acted not only as a pattern recognition receptor, capable of identifying LTA and LPS, but also as an effector molecule, capable of inhibiting the growth of both gram-positive and -negative bacteria. ATP5A1 could disrupt the bacterial membranes by a combined action of membrane depolarization and permeabilization. We also found that the N-terminal 65 residues were critical for the antibacterial activity of zebrafish ATP5A1. In particular, we showed that microinjection of exogenous recombinant (r)ATP5A1 into early embryos could promote their resistance against pathogenic Aeromonas hydrophila challenge, and this pathogen-resistant activity was markedly reduced by the coinjection of anti-ATP5A1 antibody or by the knockdown with morpholino for atp5a1 but not by the coinjection of anti-actin antibody. Moreover, each egg/embryo contains a sufficient amount of ATP5A1 in vivo to kill A. hydrophila. Furthermore, the N-terminal 65 residues 1-65 of ATP5A1 α subunit (rA1-65) with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the N-terminal 69 residues 66-134 (rA66-134) or C-terminal residues 135-551 (rA135-551) of ATP5A1 α subunit without in vitro antibacterial activity did not. Finally, we showed that the antibacterial activity of the N-terminal 65 residues of ATP5A1 α subunit was conserved throughout animal evolution. Collectively, these results indicate that ATP5A1 is a novel maternal immunocompetent factor that can protect the early embryos of zebrafish from bacterial infection. This work also provides a new viewpoint for understanding the biologic roles of ATP5A1, which is ubiquitously present in animals.-Ni, S., Zhou, Y., Chen, Y., Du, X., Zhang, S. Identification of ATP synthase α subunit as a new maternal factor capable of protecting zebrafish embryos from bacterial infection.
Collapse
Affiliation(s)
- Shousheng Ni
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Chen
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyuan Du
- North China Sea Environmental Monitoring Centre, State Oceanic Administration, Qingdao, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
43
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
44
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
45
|
Nnadi CO, Ebiloma GU, Black JA, Nwodo NJ, Lemgruber L, Schmidt TJ, de Koning HP. Potent Antitrypanosomal Activities of 3-Aminosteroids against African Trypanosomes: Investigation of Cellular Effects and of Cross-Resistance with Existing Drugs. Molecules 2019; 24:E268. [PMID: 30642032 PMCID: PMC6359104 DOI: 10.3390/molecules24020268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G₂/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes.
Collapse
Affiliation(s)
- Charles O Nnadi
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Pharma Campus Corrensstraße 48, D-48149 Münster, Germany.
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu 410001, Nigeria.
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Jennifer A Black
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
| | - Ngozi J Nwodo
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu 410001, Nigeria.
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Pharma Campus Corrensstraße 48, D-48149 Münster, Germany.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
46
|
Gahura O, Panicucci B, Váchová H, Walker JE, Zíková A. Inhibition of F 1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF 1. FEBS J 2018; 285:4413-4423. [PMID: 30288927 DOI: 10.1111/febs.14672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Abstract
Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
47
|
Ferguson SJ. Paracoccus denitrificans Oxidative Phosphorylation: Retentions, Gains, Losses, and Lessons En Route to Mitochondria. IUBMB Life 2018; 70:1214-1221. [PMID: 30428155 DOI: 10.1002/iub.1962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
Abstract
There are many similarities between the oxidative phosphorylation apparatus of mitochondria and those found in the cytoplasmic membranes of alpha-proteobacteria, exemplified by Paracocus denitrificans. These similarities are reviewed here alongside consideration of the differences between mitochondrial and bacterial counterparts, as well as the loss from the modern mitochondria of many of the bacterial respiratory proteins. The assembly of c-type cytochromes is of particular evolutionary interest as the post-translational apparatus used in the alpha-proteobacteria is found in plants, and for example in eukyarotic species including algae of various kinds together with jakobids, but has been superseded by different systems in mitochondria of metazoans and trypanosomatids. All mitochondrial cytochromes c have the N-terminal sequence feature that is recognised by the metazoan system whereas the bacterial counterparts do not, suggesting that the loss of the bacterial system from eukaryotes occurred in the context of an already present recognition sequence in the eukaryotic cytochromes. Interestingly, in the case of cytochromes c1 the putative recognition features for the metazoans appear to be substantially present in the bacterial proteins. The ability to prepare from P. denitrificans inverted membrane vesicles with classic respiratory control presents a valuable system from which to draw lessons concerning the long debated topic of what controls the rates of respiration and ATP synthesis in mitochondria. © 2018 IUBMB Life, 70(12):1214-1221, 2018.
Collapse
Affiliation(s)
- Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
48
|
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universitaet Bochum, Germany
- * E-mail:
| |
Collapse
|
49
|
Huang G, Docampo R. The Mitochondrial Ca 2+ Uniporter Complex (MCUC) of Trypanosoma brucei Is a Hetero-oligomer That Contains Novel Subunits Essential for Ca 2+ Uptake. mBio 2018; 9:e01700-18. [PMID: 30228243 PMCID: PMC6143741 DOI: 10.1128/mbio.01700-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/04/2022] Open
Abstract
The mitochondrial calcium uniporter complex (MCUC) is a highly selective channel that conducts calcium ions across the organelle inner membrane. We previously characterized Trypanosoma brucei's MCU (TbMCU) as an essential component of the MCUC required for parasite viability and infectivity. In this study, we characterize its paralog T. brucei MCUb (TbMCUb) and report the identification of two novel components of the complex that we named TbMCUc and TbMCUd. These new MCUC proteins are unique and conserved only in trypanosomatids. In situ tagging and immunofluorescence microscopy revealed that they colocalize with TbMCU and TbMCUb to the mitochondria of T. brucei Blue Native PAGE and immunodetection analyses indicated that the MCUC proteins exist in a large protein complex with a molecular weight of approximately 380 kDa. RNA interference (RNAi) or overexpression of the TbMCUc and TbMCUd genes significantly reduced or enhanced mitochondrial Ca2+ uptake in T. brucei, respectively, without affecting the mitochondrial membrane potential, indicating that they are essential components of the MCUC of this parasite. The specific interactions of TbMCU with TbMCUb, TbMCUc, or TbMCUd were confirmed by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Furthermore, combining mutagenesis analysis with MYTH assays revealed that transmembrane helices (TMHs) were determinant of the interactions between TbMCUC subunits. In summary, our study has identified two novel essential components of the MCUC of T. brucei and defined their direct physical interactions with the other subunits that result in a hetero-oligomeric MCUC.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and nagana in animals. The finding of a mitochondrial calcium uniporter (MCU) conserved in this parasite was essential for the discovery of the gene encoding the pore subunit. Mitochondrial Ca2+ transport mediated by the MUC complex is critical in Trypanosoma brucei for shaping the dynamics of cytosolic Ca2+ increases, for the bioenergetics of the cells, and for viability and infectivity. We found that one component of the complex (MCUb) does not act as a dominant negative effector of the channel as in vertebrate cells and that the TbMCUC possesses two unique subunits (MCUc and MCUd) present only in trypanosomatids and required for Ca2+ transport. The study of the interactions between these four subunits (MCU, MCUb, MCUc, and MCUd) by a variety of techniques that include coimmunoprecipitation, split-ubiquitin membrane-based yeast two-hybrid assays, and site-directed mutagenesis suggests that they interact through their transmembrane helices to form hetero-oligomers.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
50
|
Isometamidium chloride and homidium chloride fail to cure mice infected with Ethiopian Trypanosoma evansi type A and B. PLoS Negl Trop Dis 2018; 12:e0006790. [PMID: 30208034 PMCID: PMC6152993 DOI: 10.1371/journal.pntd.0006790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 09/24/2018] [Accepted: 08/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma evansi is mechanically transmitted by biting flies and affects camels, equines, and other domestic and wild animals in which it causes a disease called surra. At least two types of Trypanosoma evansi circulate in Ethiopia: type A, which is present in Africa, Latin America and Asia, and type B, which is prevalent in Eastern Africa. Currently, no information is available about the drug sensitivity of any Ethiopian T. evansi type. Methodology/principal findings This study was conducted with the objective of determining the in vivo drug sensitivity of two T. evansi type A and two type B stocks that were isolated from camels from the Tigray and Afar regions of Northern Ethiopia. We investigated the efficacy of four trypanocidal drugs to cure T. evansi infected mice: melarsamine hydrochloride (Cymelarsan), diminazene diaceturate (Veriben and Sequzene), isometamidium chloride (Veridium) and homidium chloride (Bovidium). Per experimental group, 6 mice were inoculated intraperitoneally with trypanosomes, treated at first peak parasitemia by daily drug injections for 4 consecutive days and followed-up for 60 days. Cymelarsan at 2 mg/kg and Veriben at 20 mg/kg cured all mice infected with any T. evansi stock, while Sequzene at 20 mg/kg caused relapses in all T. evansi stocks. In contrast, Veridium and Bovidium at 1 mg/kg failed to cure any T. evansi infection in mice. Conclusions/significance We conclude that mice infected with Ethiopian T. evansi can be cured with Cymelarsan and Veriben regardless of T. evansi type. In contrast, Veridium and Bovidium are not efficacious to cure any T. evansi type. Although innate resistance to phenanthridines was previously described for T. evansi type A, this report is the first study to show that this phenomenom also occurs in T. evansi type B infections. Surra is a vector borne disease in camels, horses, water buffaloes, cattle and other domestic animals caused by Trypanosoma (T.) evansi. This protozoan parasite is transmitted by biting flies such as tabanids and stable flies and is endemic in many countries in Northern and Eastern Africa, Latin America and Asia. Surra is responsible for high economic losses due to mortality and morbidity of draught animals and leads to animal trade restrictions in endemic regions. Control of surra is mainly based on the treatment of sick animals presenting clinical symptoms. In Ethiopia two different types of T. evansi (A and B) have been described, yet no data existed about the drug sensitivity of any T. evansi type. In this study, we show for the first time that T. evansi type B is naturally in vivo resistant to the phenanthridine class of trypanocidal drugs, a phenonomen that was previously described for T. evansi type A. All Ethiopian T. evansi types are sensitive to melarsamine hydrochloride and diminazene diaceturate. Unfortunately, the most efficacious drugs are either not registered in Ethiopia or escape quality control of the active substance in commercial drug formulations. Furthermore, the inefficacious drugs remain accessible on the market despite their toxicity for animals.
Collapse
|