1
|
Dan-Dukor G, Shang S, Leighton GO, Travis CR, Schwochert T, Agrawal P, Ajasa O, Li T, Waters ML, Ginder GD, Williams DC. The role of multivalency in the association of the eight twenty-one protein 2 (ETO2) with the nucleosome remodeling and deacetylase (NuRD) complex. Nucleic Acids Res 2025; 53:gkaf439. [PMID: 40421803 PMCID: PMC12107431 DOI: 10.1093/nar/gkaf439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/04/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Over the past 50 years, research has uncovered the co-regulatory proteins and complexes that silence the expression of the γ-globin gene in a developmental stage-specific manner. Recent research expanded the list of these regulatory factors by showing that the eight twenty-one protein 2 (ETO2) helps recruit the nucleosome remodeling and deacetylase (NuRD) complex to the globin locus. Furthermore, ETO2 regulates hematopoietic differentiation and is a potential therapeutic target for acute leukemia. In this work, we identify critical interactions between ETO2 and the GATA Zn finger domain containing the 2A (GATAD2A) component of NuRD. The ETO2 nervy homology region 4 (NHR4) domain interacts with multiple polyproline-leucine motifs within GATAD2A. We demonstrate that oligomerization of the ETO2 nervy homology region 3 (NHR3) enhances its affinity for peptides containing at least two polyproline-leucine motifs. Replacing the native motifs from GATAD2A with a higher-affinity sequence from known-binder N-CoR markedly enhances binding affinity, yielding a peptide that disrupts the interaction between ETO2 and target proteins. Enforced peptide expression elevates γ-globin expression levels and induces differentiation of HUDEP-2 and K562 cells. These findings provide insight into ETO2-mediated recruitment of co-regulatory proteins and yield a novel approach for ETO2 inhibition through multivalent binding of the NHR4 domain.
Collapse
Affiliation(s)
- Glory Dan-Dukor
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Shengzhe Shang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Gage O Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Christopher R Travis
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Timothy D Schwochert
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Parnika Agrawal
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Oyindamola Ajasa
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Torry Li
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gordon D Ginder
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
- Departments of Internal Medicine and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
2
|
He X, Liao Y, Yu G, Wang S, Bao Y. Genome-wide association study reveals the underlying regulatory mechanisms of red blood traits in Anadara granosa. BMC Genomics 2024; 25:931. [PMID: 39367301 PMCID: PMC11452991 DOI: 10.1186/s12864-024-10857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Anadara granosa, commonly known as the blood clam, exhibits the unusual characteristic of having red blood among invertebrates. There is significant individual variation in blood color intensity among blood clams; individuals with vibrant red blood are deemed healthier and exhibit stronger stress resistance. However, the molecular basis underlying these red blood traits (RBTs) remains poorly understood. RESULTS In this study, we performed genome-wide association studies (GWAS) in a population of 300 A. granosa individuals, focusing on RBTs as measured by hemoglobin concentration (HC), total hemocyte count (THC), and heme concentration (HEME). Our analysis identified 18 single nucleotide polymorphisms (SNPs) correlated with RBTs, subsequently selected 117 candidate genes within a 100 kb flanking region of these SNPs, potentially involved in the RBTs of A. granosa. Moreover, we discovered two haplotype blocks specifically associated with THC and HEME. Further analysis revealed eight genes (Septin7, Hox5, Cbfa2t3, Avpr1b, Hhex, Eif2ak3, Glrk, and Rpl35a) that significantly influence RBTs. Notably, a heterozygous A/T mutation in the 3'UTR of Cbfa2t3 was found to promote blood cell proliferation. These genes suggest that the hematopoietic function plays a significant role in the variability of RBTs in A. granosa. CONCLUSIONS Our findings reveal a conservation of the regulatory mechanisms of RBTs between blood clams and vertebrates. The results not only provide a scientific basis for selective breeding in blood clams, but also offer deeper insights into the evolutionary mechanisms of RBTs in invertebrates.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaowei Yu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
3
|
Fedl AS, Tagoh H, Gruenbacher S, Sun Q, Schenk RL, Froussios K, Jaritz M, Busslinger M, Schwickert TA. Transcriptional function of E2A, Ebf1, Pax5, Ikaros and Aiolos analyzed by in vivo acute protein degradation in early B cell development. Nat Immunol 2024; 25:1663-1677. [PMID: 39179932 DOI: 10.1038/s41590-024-01933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Early B cell lymphopoiesis depends on E2A, Ebf1, Pax5 and Ikaros family members. In the present study, we used acute protein degradation in mice to identify direct target genes of these transcription factors in pro-B, small pre-B and immature B cells. E2A, Ebf1 and Pax5 predominantly function as transcriptional activators by inducing open chromatin at their target genes, have largely unique functions and are essential for early B cell maintenance. Ikaros and Aiolos act as dedicated repressors to cooperatively control early B cell development. The surrogate light-chain genes Igll1 and Vpreb1 are directly activated by Ebf1 and Pax5 in pro-B cells and directly repressed by Ikaros and Aiolos in small pre-B cells. Pax5 and E2A contribute to V(D)J recombination by activating Rag1, Rag2, Dntt, Irf4 and Irf8. Similar to Pax5, Ebf1 also represses the cohesin-release factor gene Wapl to mediate prolonged loop extrusion across the Igh locus. In summary, in vivo protein degradation has provided unprecedented insight into the control of early B cell lymphopoiesis by five transcription factors.
Collapse
Affiliation(s)
- Anna S Fedl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robyn L Schenk
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kimon Froussios
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| | - Tanja A Schwickert
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
4
|
Fagnan A, Aid Z, Baille M, Drakul A, Robert E, Lopez CK, Thirant C, Lecluse Y, Rivière J, Ignacimouttou C, Salmoiraghi S, Anguita E, Naimo A, Marzac C, Pflumio F, Malinge S, Wichmann C, Huang Y, Lobry C, Chaumeil J, Soler E, Bourquin J, Nerlov C, Bernard OA, Schwaller J, Mercher T. The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300-dependent stemness program. Hemasphere 2024; 8:e90. [PMID: 38903535 PMCID: PMC11187848 DOI: 10.1002/hem3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Zakia Aid
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Marie Baille
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Aneta Drakul
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Elie Robert
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile K. Lopez
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile Thirant
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Yann Lecluse
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Julie Rivière
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cathy Ignacimouttou
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Silvia Salmoiraghi
- Department of Oncology and HematologyAzienda Socio Sanitaria Territoriale Papa Giovanni XXIII, FROM Research Foundation, Papa Giovanni XXIII HospitalBergamoItaly
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (HCSC), IML, IdISSC, Department of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Audrey Naimo
- Gustave Roussy, Genomic PlatformUniversité Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Christophe Marzac
- Department of HematologyLeukemia Interception Program, Personalized Cancer Prevention Center, Gustave RoussyVillejuifFrance
| | - Françoise Pflumio
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Unité de Recherche (UMR)‐E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Université de Paris‐Université Paris‐SaclayFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| | - Sébastien Malinge
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Telethon Kids Institute, Perth Children's HospitalNedlandsAustralia
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and HaemostasisLudwig‐Maximilians‐University of MunichMunichGermany
| | - Yun Huang
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Camille Lobry
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- INSERM U944, CNRS UMR7212Institut de Recherche Saint Louis and Université de ParisParisFrance
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France & Université de Paris, Laboratory of Excellence GR‐ExParisFrance
| | - Jean‐Pierre Bourquin
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Juerg Schwaller
- Department of BiomedicineUniversity Children's Hospital Beider Basel (UKBB), University of BaselBaselSwitzerland
| | - Thomas Mercher
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| |
Collapse
|
5
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
7
|
Piqué-Borràs MR, Jevtic Z, Bagger FO, Seguin J, Sivalingam R, Bezerra MF, Louwagie A, Juge S, Nellas I, Ivanek R, Tzankov A, Moll UM, Cantillo O, Schulz-Heddergott R, Fagnan A, Mercher T, Schwaller J. The NFIA-ETO2 fusion blocks erythroid maturation and induces pure erythroid leukemia in cooperation with mutant TP53. Blood 2023; 141:2245-2260. [PMID: 36735909 PMCID: PMC10646783 DOI: 10.1182/blood.2022017273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
The NFIA-ETO2 fusion is the product of a t(1;16)(p31;q24) chromosomal translocation, so far, exclusively found in pediatric patients with pure erythroid leukemia (PEL). To address the role for the pathogenesis of the disease, we facilitated the expression of the NFIA-ETO2 fusion in murine erythroblasts (EBs). We observed that NFIA-ETO2 significantly increased proliferation and impaired erythroid differentiation of murine erythroleukemia cells and of primary fetal liver-derived EBs. However, NFIA-ETO2-expressing EBs acquired neither aberrant in vitro clonogenic activity nor disease-inducing potential upon transplantation into irradiated syngenic mice. In contrast, in the presence of 1 of the most prevalent erythroleukemia-associated mutations, TP53R248Q, expression of NFIA-ETO2 resulted in aberrant clonogenic activity and induced a fully penetrant transplantable PEL-like disease in mice. Molecular studies support that NFIA-ETO2 interferes with erythroid differentiation by preferentially binding and repressing erythroid genes that contain NFI binding sites and/or are decorated by ETO2, resulting in a activity shift from GATA- to ETS-motif-containing target genes. In contrast, TP53R248Q does not affect erythroid differentiation but provides self-renewal and survival potential, mostly via downregulation of known TP53 targets. Collectively, our work indicates that NFIA-ETO2 initiates PEL by suppressing gene expression programs of terminal erythroid differentiation and cooperates with TP53 mutation to induce erythroleukemia.
Collapse
Affiliation(s)
- Maria-Riera Piqué-Borràs
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zivojin Jevtic
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Frederik Otzen Bagger
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Seguin
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rathick Sivalingam
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matheus Filgueira Bezerra
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amber Louwagie
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine Juge
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ioannis Nellas
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Ute M. Moll
- Institute of Molecular Oncology, University of Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Oriano Cantillo
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Alexandre Fagnan
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Cancer Center, Université Paris Diderot, Université Paris-Sud, OPALE Carnot Institute, PEDIAC Program, Villejuif, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Cancer Center, Université Paris Diderot, Université Paris-Sud, OPALE Carnot Institute, PEDIAC Program, Villejuif, France
| | - Juerg Schwaller
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Chapola H, de Bastiani MA, Duarte MM, Freitas MB, Schuster JS, de Vargas DM, Klamt F. A comparative study of COVID-19 transcriptional signatures between clinical samples and preclinical cell models in the search for disease master regulators and drug repositioning candidates. Virus Res 2023; 326:199053. [PMID: 36709793 PMCID: PMC9877318 DOI: 10.1016/j.virusres.2023.199053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute viral disease with millions of cases worldwide. Although the number of daily new cases and deaths has been dropping, there is still a need for therapeutic alternatives to deal with severe cases. A promising strategy to prospect new therapeutic candidates is to investigate the regulatory mechanisms involved in COVID-19 progression using integrated transcriptomics approaches. In this work, we aimed to identify COVID-19 Master Regulators (MRs) using a series of publicly available gene expression datasets of lung tissue from patients which developed the severe form of the disease. We were able to identify a set of six potential COVID-19 MRs related to its severe form, namely TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2. In addition, using the Connectivity Map drug repositioning approach, we identified 52 different drugs which could be used to revert the disease signature, thus being candidates for the design of novel clinical treatments. Furthermore, we compared the identified signature and drugs with the ones obtained from the analysis of nasopharyngeal swab samples from infected patients and preclinical cell models. This comparison showed significant similarities between them, although also revealing some limitations on the overlap between clinical and preclinical data in COVID-19, highlighting the need for careful selection of the best model for each disease stage.
Collapse
Affiliation(s)
- Henrique Chapola
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marco Antônio de Bastiani
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marcelo Mendes Duarte
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Matheus Becker Freitas
- Estacio College of Rio Grande do Sul (ESTACIO FARGS), Porto Alegre, RS 90020-060, Brazil
| | | | - Daiani Machado de Vargas
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; National Institutes of Science & Technology, Translational Medicine (INCT-TM), Porto Alegre, RS 90035-903, Brazil; IMMUNESHARE - MCTI Trial (CNPq/MCTI #137541939766794), Brazil
| |
Collapse
|
9
|
Koizumi M, Kama Y, Hirano KI, Endo Y, Tanaka T, Hozumi K, Hosokawa H. Transcription factor Zbtb1 interacts with bridging factor Lmo2 and maintains the T-lineage differentiation capacity of lymphoid progenitor cells. J Biol Chem 2022; 298:102506. [PMID: 36126774 PMCID: PMC9582733 DOI: 10.1016/j.jbc.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow–derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.
Collapse
Affiliation(s)
- Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuichi Kama
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| |
Collapse
|
10
|
Asgarian Z, Oliveira MG, Stryjewska A, Maragkos I, Rubin AN, Magno L, Pachnis V, Ghorbani M, Hiebert SW, Denaxa M, Kessaris N. MTG8 interacts with LHX6 to specify cortical interneuron subtype identity. Nat Commun 2022; 13:5217. [PMID: 36064547 PMCID: PMC9445035 DOI: 10.1038/s41467-022-32898-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones. There is a large diversity of inhibitory interneurons in the mammalian cerebral cortex. How this emerges during embryogenesis remains unclear. Here, the authors identify MTG8 as a co-factor of LHX6 and a new regulator of cortical interneuron development.
Collapse
Affiliation(s)
- Zeinab Asgarian
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcio Guiomar Oliveira
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Agata Stryjewska
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ioannis Maragkos
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Anna Noren Rubin
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Mohammadmersad Ghorbani
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.,Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Scott Wayne Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Myrto Denaxa
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Liu G, Wang L, Wess J, Dean A. Enhancer looping protein LDB1 regulates hepatocyte gene expression by cooperating with liver transcription factors. Nucleic Acids Res 2022; 50:9195-9211. [PMID: 36018801 PMCID: PMC9458430 DOI: 10.1093/nar/gkac707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.
Collapse
Affiliation(s)
- Guoyou Liu
- Correspondence may also be addressed to Guoyou Liu. Tel: +1 301 435 9396;
| | - Lei Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- To whom correspondence should be addressed. Tel: +1 301 496 6068;
| |
Collapse
|
12
|
Jakobczyk H, Debaize L, Soubise B, Avner S, Rouger-Gaudichon J, Commet S, Jiang Y, Sérandour AA, Rio AG, Carroll JS, Wichmann C, Lie-A-Ling M, Lacaud G, Corcos L, Salbert G, Galibert MD, Gandemer V, Troadec MB. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:47. [PMID: 33743795 PMCID: PMC7981807 DOI: 10.1186/s13045-021-01051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. Methods We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. Results We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. Conclusions Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01051-z.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jérémie Rouger-Gaudichon
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Département d'onco-hematologie pediatrique, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Haemostasis, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Lie-A-Ling
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Service de Génétique et Génomique Moléculaire, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35033, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Department of Pediatric Hemato-Oncology, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35203, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France.
| |
Collapse
|
13
|
Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J. The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep 2020; 10:21438. [PMID: 33293632 PMCID: PMC7722897 DOI: 10.1038/s41598-020-78629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.
Collapse
Affiliation(s)
- Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nicole Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Julia Ringleb
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, 98195, USA
| | - Joern Lausen
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany. .,Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
14
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
15
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Wu S, Cui T, Zhang X, Tian T. A non-linear reverse-engineering method for inferring genetic regulatory networks. PeerJ 2020; 8:e9065. [PMID: 32391205 PMCID: PMC7195839 DOI: 10.7717/peerj.9065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is a highly complex developmental process that produces various types of blood cells. This process is regulated by different genetic networks that control the proliferation, differentiation, and maturation of hematopoietic stem cells (HSCs). Although substantial progress has been made for understanding hematopoiesis, the detailed regulatory mechanisms for the fate determination of HSCs are still unraveled. In this study, we propose a novel approach to infer the detailed regulatory mechanisms. This work is designed to develop a mathematical framework that is able to realize nonlinear gene expression dynamics accurately. In particular, we intended to investigate the effect of possible protein heterodimers and/or synergistic effect in genetic regulation. This approach includes the Extended Forward Search Algorithm to infer network structure (top-down approach) and a non-linear mathematical model to infer dynamical property (bottom-up approach). Based on the published experimental data, we study two regulatory networks of 11 genes for regulating the erythrocyte differentiation pathway and the neutrophil differentiation pathway. The proposed algorithm is first applied to predict the network topologies among 11 genes and 55 non-linear terms which may be for heterodimers and/or synergistic effect. Then, the unknown model parameters are estimated by fitting simulations to the expression data of two different differentiation pathways. In addition, the edge deletion test is conducted to remove possible insignificant regulations from the inferred networks. Furthermore, the robustness property of the mathematical model is employed as an additional criterion to choose better network reconstruction results. Our simulation results successfully realized experimental data for two different differentiation pathways, which suggests that the proposed approach is an effective method to infer the topological structure and dynamic property of genetic regulations.
Collapse
Affiliation(s)
- Siyuan Wu
- School of Mathematics, Monash University, Clayton, VIC, Australia
| | - Tiangang Cui
- School of Mathematics, Monash University, Clayton, VIC, Australia
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, PR China
| | - Tianhai Tian
- School of Mathematics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Adv 2020; 3:1379-1393. [PMID: 31040112 DOI: 10.1182/bloodadvances.2018028514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
CBFA2T3 is a master transcriptional coregulator in hematopoiesis. In this study, we report novel functions of CBFA2T3 in acute myeloid leukemia (AML) relapse. CBFA2T3 regulates cell-fate genes to establish gene expression signatures associated with leukemia stem cell (LSC) transformation and relapse. Gene set enrichment analysis showed that CBFA2T3 expression marks LSC signatures in primary AML samples. Analysis of paired primary and relapsed samples showed that acquisition of LSC gene signatures involves cell type-specific activation of CBFA2T3 transcription via the NM_005187 promoter by GCN5. Short hairpin RNA-mediated downregulation of CBFA2T3 arrests G1/S cell cycle progression, diminishes LSC gene signatures, and attenuates in vitro and in vivo proliferation of AML cells. We also found that the RUNX1-RUNX1T1 fusion protein transcriptionally represses NM_005187 to confer t(8;21) AML patients a natural resistance to relapse, whereas lacking a similar repression mechanism renders non-core-binding factor AML patients highly susceptible to relapse. These studies show that 2 related primary AML-associated factors, the expression level of CBFA2T3 and the ability of leukemia cells to repress cell type-specific CBFA2T3 gene transcription, play important roles in patient prognosis, providing a paradigm that differential abilities to repress hematopoietic coregulator gene transcription are correlated with patient-specific outcomes in AML.
Collapse
|
18
|
Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J. The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol 2020; 28:101313. [PMID: 31539803 PMCID: PMC6812007 DOI: 10.1016/j.redox.2019.101313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is widely considered as a limiting factor in vertebrate embryonic development, which requires adequate oxygen delivery for efficient energy metabolism, while nowadays some researches have revealed that hypoxia can induce stem cells so as to improve embryonic development. Erythroid differentiation is the oxygen delivery method employed by vertebrates at the very early step of embryo development, however, the mechanism how erythroid progenitor cell was triggered into mature erythrocyte is still not clear. In this study, after detecting the upregulation of vgll4b in response to oxygen levels, we generated vgll4b mutant zebrafish using CRISPR/Cas9, and verified the resulting impaired heme and dysfunctional erythroid terminal differentiation phenotype. Neither the vgll4b-deficient nor the γ-secretase inhibitor IX (DAPT)-adapted zebrafish were able to mediate HIF1α-induced heme generation. In addition, we showed that vgll4b mutant zebrafish were associated with an impaired erythroid phenotype, induced by the downregulation of alas2, which could be rescued by irf2bp2 depletion. Further mechanistic studies revealed that zebrafish VGLL4 sequesters IRF2BP2, thereby inhibiting its repression of alas2 expression and heme biosynthesis. These processes occur primarily via the VGLL4 TDU1 and IRF2BP2 ring finger domains. Our study also indicates that VGLL4 is a key player in the mediation of NOTCH1-dependent HIF1α-regulated erythropoiesis and can be sensitively regulated by oxygen concentrations. On the other hand, VGLL4 is a pivotal regulator of heme biosynthesis and erythroid terminal differentiation, which collectively improve oxygen metabolism.
Collapse
Affiliation(s)
- Yiqin Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohui Liu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baoshu Xie
- Department of Neurosurgery, The First Affliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Yuan
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
| |
Collapse
|
19
|
Xie S, Armendariz D, Zhou P, Duan J, Hon GC. Global Analysis of Enhancer Targets Reveals Convergent Enhancer-Driven Regulatory Modules. Cell Rep 2019; 29:2570-2578.e5. [PMID: 31775028 PMCID: PMC6904118 DOI: 10.1016/j.celrep.2019.10.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/15/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Single-cell screens enable high-throughput functional assessment of enhancers in their endogenous genomic context. However, the design of current studies limits their application to identifying the primary gene targets of enhancers. Here, we improve the experimental and computational parameters of single-cell enhancer screens to identify the secondary gene targets of enhancers. Our analysis of >500 putative enhancers in K562 cells reveals an interwoven enhancer-driven gene regulatory network. We find that enhancers from distinct genomic loci converge to modulate the expression of common sub-modules, including the α- and β-globin loci, by directly regulating transcription factors. Our analysis suggests that several genetic variants associated with myeloid blood cell traits alter the activity of a distal enhancer of MYB (~140 kb away), with downstream consequences on hemoglobin genes expression and cell state. These data have implications for the understanding of enhancer-associated traits and emphasize the flexibility of controlling transcriptional systems by modifying enhancer activity. Xie et al. apply improved strategies for single-cell screens to identify an enhancer-driven transcriptional regulatory network in K562 cells. They demonstrate that the same group of genes can be indirectly regulated by enhancers from distinct genomic loci. These data have implications for the understanding of enhancer-associated traits.
Collapse
Affiliation(s)
- Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pei Zhou
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Yu X, Martella A, Kolovos P, Stevens M, Stadhouders R, Grosveld FG, Andrieu-Soler C. The dynamic emergence of GATA1 complexes identified in in vitro embryonic stem cell differentiation and in vivo mouse fetal liver. Haematologica 2019; 105:1802-1812. [PMID: 31582556 PMCID: PMC7327653 DOI: 10.3324/haematol.2019.216010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023] Open
Abstract
GATA1 is an essential transcriptional regulator of myeloid hematopoietic differentiation towards red blood cells. During erythroid differentiation, GATA1 forms different complexes with other transcription factors such as LDB1, TAL1, E2A and LMO2 ("the LDB1 complex") or with FOG1. The functions of GATA1 complexes have been studied extensively in definitive erythroid differentiation; however, the temporal and spatial formation of these complexes during erythroid development is unknown. We applied proximity ligation assay (PLA) to detect, localize and quantify individual interactions during embryonic stem cell differentiation and in mouse fetal liver (FL) tissue. We show that GATA1/LDB1 interactions appear before the proerythroblast stage and increase in a subset of the CD71+/TER119- cells to activate the terminal erythroid differentiation program in 12.5 day FL. Using Ldb1 and Gata1 knockdown FL cells, we studied the functional contribution of the GATA1/LDB1 complex during differentiation. This shows that the active LDB1 complex appears quite late at the proerythroblast stage of differentiation and confirms the power of PLA in studying the dynamic interaction of proteins in cell differentiation at the single cell level. We provide dynamic insight into the temporal and spatial formation of the GATA1 and LDB1 transcription factor complexes during hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Current address: Department of Medical Microbiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Andrea Martella
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,AstraZeneca, R&D Innovative Medicines, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Petros Kolovos
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mary Stevens
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Charlotte Andrieu-Soler
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands .,Institut de Génétique Moléculaire Montpellier, Université de Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratoire d'excellence (LabEx) du globule rouge GR-Ex, Paris, France
| |
Collapse
|
21
|
Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 2019; 46:4933-4949. [PMID: 29547954 PMCID: PMC6007553 DOI: 10.1093/nar/gky193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Chang Su Lim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hea Young Eum
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea
| | - Ho Chul Kang
- Department of Physiology and Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
22
|
How the avidity of polymerase binding to the -35/-10 promoter sites affects gene expression. Proc Natl Acad Sci U S A 2019; 116:13340-13345. [PMID: 31196959 PMCID: PMC6613100 DOI: 10.1073/pnas.1905615116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the key promoter elements necessary to drive transcription in Escherichia coli have long been understood, we still cannot predict the behavior of arbitrary novel promoters, hampering our ability to characterize the myriad sequenced regulatory architectures as well as to design new synthetic circuits. This work builds upon a beautiful recent experiment by Urtecho et al. [G. Urtecho, et al, Biochemistry, 68, 1539-1551 (2019)] who measured the gene expression of over 10,000 promoters spanning all possible combinations of a small set of regulatory elements. Using these data, we demonstrate that a central claim in energy matrix models of gene expression-that each promoter element contributes independently and additively to gene expression-contradicts experimental measurements. We propose that a key missing ingredient from such models is the avidity between the -35 and -10 RNA polymerase binding sites and develop what we call a multivalent model that incorporates this effect and can successfully characterize the full suite of gene expression data. We explore several applications of this framework, namely, how multivalent binding at the -35 and -10 sites can buffer RNA polymerase (RNAP) kinetics against mutations and how promoters that bind overly tightly to RNA polymerase can inhibit gene expression. The success of our approach suggests that avidity represents a key physical principle governing the interaction of RNA polymerase to its promoter.
Collapse
|
23
|
Enhancer long-range contacts: The multi-adaptor protein LDB1 is the tie that binds. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:625-633. [DOI: 10.1016/j.bbagrm.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
24
|
Nandakumar SK, McFarland SK, Mateyka LM, Lareau CA, Ulirsch JC, Ludwig LS, Agarwal G, Engreitz JM, Przychodzen B, McConkey M, Cowley GS, Doench JG, Maciejewski JP, Ebert BL, Root DE, Sankaran VG. Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis. eLife 2019; 8:44080. [PMID: 31070582 PMCID: PMC6534380 DOI: 10.7554/elife.44080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of variants associated with human diseases and traits. However, the majority of GWAS-implicated variants are in non-coding regions of the genome and require in depth follow-up to identify target genes and decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes at 38 GWAS loci, with most loci harboring 1-2 candidate genes. Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by this approach are enriched in specific and relevant biological pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be defined. More generally, this functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human diseases and traits.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sean K McFarland
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Laura M Mateyka
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Biochemistry Center (BZH), Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Program in Biological and Medical Sciences, Harvard Medical School, Boston, United States
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Program in Biological and Medical Sciences, Harvard Medical School, Boston, United States
| | - Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gaurav Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,University of Oxford, Oxford, United Kingdom.,Harvard Stem Cell Institute, Cambridge, United States
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Society of Fellows, Harvard University, Cambridge, United States
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States
| | - Marie McConkey
- Division of Hematology, Brigham and Women's Hospital, Boston, United States
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, United States.,Division of Hematology, Brigham and Women's Hospital, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
25
|
López C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hübschmann D, Wagener R, Toprak UH, Raimondi F, Kreuz M, Waszak SM, Huang Z, Sieverling L, Paramasivam N, Seufert J, Sungalee S, Russell RB, Bausinger J, Kretzmer H, Ammerpohl O, Bergmann AK, Binder H, Borkhardt A, Brors B, Claviez A, Doose G, Feuerbach L, Haake A, Hansmann ML, Hoell J, Hummel M, Korbel JO, Lawerenz C, Lenze D, Radlwimmer B, Richter J, Rosenstiel P, Rosenwald A, Schilhabel MB, Stein H, Stilgenbauer S, Stadler PF, Szczepanowski M, Weniger MA, Zapatka M, Eils R, Lichter P, Loeffler M, Möller P, Trümper L, Klapper W, Hoffmann S, Küppers R, Burkhardt B, Schlesner M, Siebert R. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun 2019; 10:1459. [PMID: 30926794 PMCID: PMC6440956 DOI: 10.1038/s41467-019-08578-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing. Burkitt lymphoma (BL) is the most common pediatric B-cell lymphoma. Here, within the International Cancer Genome Consortium, the authors performed whole genome and transcriptome sequencing of 39 sporadic BL, describing the landscape of mutations, structural variants, and mutational processes that underpin this disease how alterations on different cellular levels cooperate in deregulating key pathways and complexes.
Collapse
Affiliation(s)
- Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sietse M Aukema
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, 35392, Giessen, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, University Hospital, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, Heidelberg, Germany and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Umut H Toprak
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Francesco Raimondi
- Cell Networks, Bioquant and Biochemistry CenterBiochemie Zentrum Heidelberg (BZH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Markus Kreuz
- Institute for Medical Informatics Statistics and Epidemiology, 04107, Leipzig, Germany
| | | | - Zhiqin Huang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lina Sieverling
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.,Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, 69120, Heidelber, Germany
| | - Julian Seufert
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Robert B Russell
- Cell Networks, Bioquant and Biochemistry CenterBiochemie Zentrum Heidelberg (BZH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Julia Bausinger
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Helene Kretzmer
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Alexander Claviez
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Gero Doose
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, University of Frankfurt Medical School, 60590, Frankfurt am Main, Germany
| | - Jessica Hoell
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Jan O Korbel
- Genome Biology Unit, EMBL Heidelberg, 69117, Heidelberg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080, Würzburg, Germany
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | | | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany
| | | | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Loeffler
- Institute for Medical Informatics Statistics and Epidemiology, 04107, Leipzig, Germany
| | - Peter Möller
- Institute of Pathology, University of Ulm and University Hospital of Ulm, 89081, Ulm, Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-University of Göttingen, 37075, Göttingen, Germany
| | - Wolfram Klapper
- Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | | | - Steve Hoffmann
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany.,Computational Biology, Leibniz Institute on Ageing-Fritz Lipmann Institut (FLI), 07745, Jena, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Birgit Burkhardt
- University Hospital Münster - Pediatric Hematology and Oncology, 48149, Münster, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany. .,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.
| |
Collapse
|
26
|
Lopez CK, Mercher T. [Pediatric de novo acute megakaryoblastic leukemia: an affair of complexes]. Med Sci (Paris) 2018; 34:954-962. [PMID: 30526836 DOI: 10.1051/medsci/2018237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) are generally associated with poor prognosis and the expression of fusion oncogenes involving transcriptional regulators. Recent results indicate that the ETO2-GLIS2 fusion, associated with 25-30 % of pediatric AMKL, binds and alters the activity of regulatory regions of gene expression, called "enhancers", resulting in the deregulation of GATA and ETS factors essential for the development of hematopoietic stem cells. An imbalance in GATA/ETS factor activity is also found in other AMKL subgroups. This review addresses the transcriptional bases of transformation in pediatric AMKL and therapeutic perspectives.
Collapse
Affiliation(s)
- Cécile K Lopez
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Thomas Mercher
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
27
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
28
|
Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez-Anguita N, Ganter K, Kosim K, Celen C, Itır Perçin G, Collier P, Baying B, Benes V, Hemberg M, Lancrin C. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. eLife 2018; 7:29312. [PMID: 29555020 PMCID: PMC5860872 DOI: 10.7554/elife.29312] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent advances in single-cell transcriptomics techniques have opened the door to the study of gene regulatory networks (GRNs) at the single-cell level. Here, we studied the GRNs controlling the emergence of hematopoietic stem and progenitor cells from mouse embryonic endothelium using a combination of single-cell transcriptome assays. We found that a heptad of transcription factors (Runx1, Gata2, Tal1, Fli1, Lyl1, Erg and Lmo2) is specifically co-expressed in an intermediate population expressing both endothelial and hematopoietic markers. Within the heptad, we identified two sets of factors of opposing functions: one (Erg/Fli1) promoting the endothelial cell fate, the other (Runx1/Gata2) promoting the hematopoietic fate. Surprisingly, our data suggest that even though Fli1 initially supports the endothelial cell fate, it acquires a pro-hematopoietic role when co-expressed with Runx1. This work demonstrates the power of single-cell RNA-sequencing for characterizing complex transcription factor dynamics.
Collapse
Affiliation(s)
- Isabelle Bergiers
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | | | - Andreas Buness
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Ewa Janosz
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Kinga Kosim
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Cemre Celen
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Gülce Itır Perçin
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
29
|
Vagapova ER, Spirin PV, Lebedev TD, Prassolov VS. The Role of TAL1 in Hematopoiesis and Leukemogenesis. Acta Naturae 2018; 10:15-23. [PMID: 29713515 PMCID: PMC5916730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TAL1 (SCL/TAL1, T-cell acute leukemia protein 1) is a transcription factor that is involved in the process of hematopoiesis and leukemogenesis. It participates in blood cell formation, forms mesoderm in early embryogenesis, and regulates hematopoiesis in adult organisms. TAL1 is essential in maintaining the multipotency of hematopoietic stem cells (HSC) and keeping them in quiescence (stage G0). TAL1 forms complexes with various transcription factors, regulating hematopoiesis (E2A/HEB, GATA1-3, LMO1-2, Ldb1, ETO2, RUNX1, ERG, FLI1). In these complexes, TAL1 regulates normal myeloid differentiation, controls the proliferation of erythroid progenitors, and determines the choice of the direction of HSC differentiation. The transcription factors TAL1, E2A, GATA1 (or GATA2), LMO2, and Ldb1 are the major components of the SCL complex. In addition to normal hematopoiesis, this complex may also be involved in the process of blood cell malignant transformation. Upregulation of C-KIT expression is one of the main roles played by the SCL complex. Today, TAL1 and its partners are considered promising therapeutic targets in the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- E. R. Vagapova
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - P. V. Spirin
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - T. D. Lebedev
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - V. S. Prassolov
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| |
Collapse
|
30
|
Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells Int 2017; 2017:6301385. [PMID: 29358956 PMCID: PMC5735743 DOI: 10.1155/2017/6301385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
MTG16 (myeloid translocation gene on chromosome 16) and its related proteins, MTG8 and MTGR1, define a small family of transcriptional corepressors. These corepressors share highly conserved domain structures yet have distinct biological functions and tissue specificity. In vivo studies have shown that, of the three MTG corepressors, MTG16 is uniquely important for the regulation of hematopoietic stem/progenitor cell (HSPC) proliferation and differentiation. Apart from this physiological function, MTG16 is also involved in carcinomas and leukemias, acting as the genetic target of loss of heterozygosity (LOH) aberrations in breast cancer and recurrent translocations in leukemia. The frequent involvement of MTG16 in these disease etiologies implies an important developmental role for this transcriptional corepressor. Furthermore, mounting evidence suggests that MTG16 indirectly alters the disease course of several leukemias via its regulatory interactions with a variety of pathologic fusion proteins. For example, a recent study has shown that MTG16 can repress not only wild-type E2A-mediated transcription, but also leukemia fusion protein E2A-Pbx1-mediated transcription, suggesting that MTG16 may serve as a potential therapeutic target in acute lymphoblastic leukemia expressing the E2A-Pbx1 fusion protein. Given that leukemia stem cells share similar regulatory pathways with normal HSPCs, studies to further understand how MTG16 regulates cell proliferation and differentiation could lead to novel therapeutic approaches for leukemia treatment.
Collapse
|
31
|
Zhao Y, Zhang Z, Liu L, Zhang Y, Fan X, Ma L, Li J, Zhang Y, He H, Kang L. Associations of high altitude polycythemia with polymorphisms in EPAS1, ITGA6 and ERBB4 in Chinese Han and Tibetan populations. Oncotarget 2017; 8:86736-86746. [PMID: 29156832 PMCID: PMC5689722 DOI: 10.18632/oncotarget.21420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
High altitude polycythemia (HAPC) is a common chronic disease at high altitude, which is characterized by excessive erythrocytosis (females, hemoglobin ≥ 190 g/L; males, hemoglobin ≥ 210 g/L). It is the most common disease in chronic mountain sickness casued primarily by persistent arterial hypoxia and ventilatory impairment. However, the disease is still unmanageable and related molecular mechanisms remain largely unclear. This study aims to explore the genetic basis of HAPC in the Chinese Han and Tibetan populations. Subjects were screened for HAPC using the latest approved diagnostic criteria. To explore the hereditary basis of HAPC and investigate the association between three genes (EPAS1, ITGA6, ERBB4) and HAPC in Chinese Han and Tibetan populations. We enrolled 100 patients (70 Han, 30 Tibetan) with HAPC and 100 healthy control subjects (30 Han, 70 Tibetan). Subjects were screened for HAPC using the latest approved diagnostic criteria combined with excessive erythrocytosis and clinical symptoms. Analysis of variance was used to evaluate the impact of polymorphism on HAPC based on genetic variation. The Chi-squared test and analyses of genetic models, rs75591953 and rs75984373 in EPAS1, rs6744873 in ITGA6, rs17335043 in ERBB4 showed associations with reduced HAPC susceptibility in Han populations. Additionally, in Tibetan populations, rs3749148 in ITGA6, rs934607 and rs141267844 in ERBB4 showed a reduced risk of HAPC, whereas rs6710946 in ERBB4 increased the risk of HAPC. Our study suggest that the polymorphisms in the EPAS1, ITGA6 and ERBB4 correlate with susceptibility to HAPC.
Collapse
Affiliation(s)
- Yiduo Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yao Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xiaowei Fan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Jing Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Haijin He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| |
Collapse
|
32
|
Kurkewich JL, Hansen J, Klopfenstein N, Zhang H, Wood C, Boucher A, Hickman J, Muench DE, Grimes HL, Dahl R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet 2017; 13:e1006887. [PMID: 28704388 PMCID: PMC5531666 DOI: 10.1371/journal.pgen.1006887] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progenitors (MPPs) is unchanged; however, in this report we observe by flow cytometry that polarized subsets of MPPs are changed in the absence of mirn23a. Additionally, in vitro culture of MPPs and sorted MPP transplants showed that these cells have decreased myeloid and increased lymphoid potential in vitro and in vivo. We investigated the mechanism by which mirn23a regulates hematopoietic differentiation and observed that mirn23a promotes myeloid development of hematopoietic progenitors through regulation of hematopoietic transcription factors and signaling pathways. Early transcription factors that direct the commitment of MPPs to CLPs (Ikzf1, Runx1, Satb1, Bach1 and Bach2) are increased in the absence of mirn23a miRNAs as well as factors that commit the CLP to the B cell lineage (FoxO1, Ebf1, and Pax5). Mirn23a appears to buffer transcription factor levels so that they do not stochastically reach a threshold level to direct differentiation. Intriguingly, mirn23a also inversely regulates the PI3 kinase (PI3K)/Akt and BMP/Smad signaling pathways. Pharmacological inhibitor studies, coupled with dominant active/dominant negative biochemical experiments, show that both signaling pathways are critical to mirn23a’s regulation of hematopoietic differentiation. Lastly, consistent with mirn23a being a physiological inhibitor of B cell development, we observed that the essential B cell transcription factor EBF1 represses expression of mirn23a. In summary, our data demonstrates that mirn23a regulates a complex array of transcription and signaling pathways to modulate adult hematopoiesis. MicroRNAs (miRNAs) are small ~22 nucleotide long RNA molecules that are involved in regulating multiple cellular processes through inhibiting the expression of target proteins. We previously identified a gene (mirn23a) that codes for 3 miRNAs that control the development of immune cells in the bone marrow. The miRNAs promote the development of innate immune cells, macrophages and granulocytes, while repressing the development of B cells. Here we show that mirn23a miRNAs negatively affect the expression of multiple proteins that are involved in directing blood progenitor cells to become B cells. Additionally, we observed that modulation of FoxO1 and Smad proteins, downstream effectors of two signaling pathways (PI3 kinase/ Akt and BMP/ Smad), is critical to direct immune cell development. This is the first observation that these pathways are potentially coregulated during the commitment of blood progenitors to mature cells of the immune system. Consistent with mirn23a being a critical gene for committing progenitors to innate immune cells at the expense of B cells, we observed that a critical B cell protein represses the expression of mirn23a. In conclusion, we demonstrate the mirn23a regulation of blood development is due to a complex regulation of both transcription factors and signaling pathways.
Collapse
Affiliation(s)
- Jeffrey L. Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Justin Hansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Christian Wood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Joseph Hickman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - David E. Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci U S A 2017; 114:5822-5829. [PMID: 28584094 PMCID: PMC5468644 DOI: 10.1073/pnas.1610609114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adult blood contains a mixture of mature cell types, each with specialized functions. Single hematopoietic stem cells (HSCs) have been functionally shown to generate all mature cell types for the lifetime of the organism. Differentiation of HSCs toward alternative lineages must be balanced at the population level by the fate decisions made by individual cells. Transcription factors play a key role in regulating these decisions and operate within organized regulatory programs that can be modeled as transcriptional regulatory networks. As dysregulation of single HSC fate decisions is linked to fatal malignancies such as leukemia, it is important to understand how these decisions are controlled on a cell-by-cell basis. Here we developed and applied a network inference method, exploiting the ability to infer dynamic information from single-cell snapshot expression data based on expression profiles of 48 genes in 2,167 blood stem and progenitor cells. This approach allowed us to infer transcriptional regulatory network models that recapitulated differentiation of HSCs into progenitor cell types, focusing on trajectories toward megakaryocyte-erythrocyte progenitors and lymphoid-primed multipotent progenitors. By comparing these two models, we identified and subsequently experimentally validated a difference in the regulation of nuclear factor, erythroid 2 (Nfe2) and core-binding factor, runt domain, alpha subunit 2, translocated to, 3 homolog (Cbfa2t3h) by the transcription factor Gata2. Our approach confirms known aspects of hematopoiesis, provides hypotheses about regulation of HSC differentiation, and is widely applicable to other hierarchical biological systems to uncover regulatory relationships.
Collapse
Affiliation(s)
- Fiona K Hamey
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sonia Nestorowa
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - David G Kent
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
34
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
35
|
Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, Liu JH, Taylor BL, Walp ER, Kameswaran V, Yang J, Liu C, Hunter CS, Kaestner KH, Naji A, Li C, Sander M, Stein R, Sussel L, Won KJ, May CL, Stoffers DA. LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells. J Clin Invest 2016; 127:215-229. [PMID: 27941246 DOI: 10.1172/jci88016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The recognition of β cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain β cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic β cells. Inducible ablation of LDB1 in mature β cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted β cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of β cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative β cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of β cells and is a component of active enhancers in both murine and human islets.
Collapse
|
36
|
Gerby B, Veiga DFT, Krosl J, Nourreddine S, Ouellette J, Haman A, Lavoie G, Fares I, Tremblay M, Litalien V, Ottoni E, Kosic M, Geoffrion D, Ryan J, Maddox PS, Chagraoui J, Marinier A, Hébert J, Sauvageau G, Kwok BH, Roux PP, Hoang T. High-throughput screening in niche-based assay identifies compounds to target preleukemic stem cells. J Clin Invest 2016; 126:4569-4584. [PMID: 27797342 DOI: 10.1172/jci86489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state. Improving therapies for T-ALL requires the development of strategies to target pre-LSCs that are absolutely dependent on their microenvironment. Therefore, we designed a robust protocol for high-throughput screening of compounds that target primary pre-LSCs maintained in a niche-like environment, on stromal cells that were engineered for optimal NOTCH1 activation. The multiparametric readout takes into account the intrinsic complexity of primary cells in order to specifically monitor pre-LSCs, which were induced here by the SCL/TAL1 and LMO1 oncogenes. We screened a targeted library of compounds and determined that the estrogen derivative 2-methoxyestradiol (2-ME2) disrupted both cell-autonomous and non-cell-autonomous pathways. Specifically, 2-ME2 abrogated pre-LSC viability and self-renewal activity in vivo by inhibiting translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remained functional. These results illustrate how recapitulating tissue-like properties of primary cells in high-throughput screening is a promising avenue for innovation in cancer chemotherapy.
Collapse
|
37
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
38
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
39
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
40
|
Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli ML, Andrieu-Soler C, Lenhard B, Grosveld F, Soler E. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun 2015; 6:8893. [PMID: 26593974 PMCID: PMC4673834 DOI: 10.1038/ncomms9893] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. Conserved sets of transcription factors (TFs) regulate hematopoiesis. Here, Stadhouders et al. show that IRF2BP2 is a component of the LDB1 TF complex and together with its co-repressor ETO2, enhances transcriptional repression, which plays a crucial role at the erythroid progenitor stage.
Collapse
Affiliation(s)
- Ralph Stadhouders
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alba Cico
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Tharshana Stephen
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Supat Thongjuea
- Computational Biology Unit, Bergen Center for Computational Science, N-5008 Bergen, Norway.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Petros Kolovos
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - H Irem Baymaz
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Xiao Yu
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Jeroen Demmers
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Vilma Barroca
- CEA/DSV/iRCM/SCSR, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Christel Kockx
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Wilfred van Ijcken
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marie-Laure Arcangeli
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic and Leukemic Stem cells, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Boris Lenhard
- Department of Molecular Sciences, Faculty of Medicine, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Laboratory of Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
42
|
RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 2015; 125:3570-9. [PMID: 25911237 DOI: 10.1182/blood-2014-11-610519] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The activity of antagonizing transcription factors represents a mechanistic paradigm of bidirectional lineage-fate control during hematopoiesis. At the megakaryocytic/erythroid bifurcation, the cross-antagonism of krueppel-like factor 1 (KLF1) and friend leukemia integration 1 (FLI1) has such a decisive role. However, how this antagonism is resolved during lineage specification is poorly understood. We found that runt-related transcription factor 1 (RUNX1) inhibits erythroid differentiation of murine megakaryocytic/erythroid progenitors and primary human CD34(+) progenitor cells. We show that RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation by epigenetic repression of the erythroid master regulator KLF1. RUNX1 binding to the KLF1 locus is increased during megakaryocytic differentiation and counterbalances the activating role of T-cell acute lymphocytic leukemia 1 (TAL1). We found that corepressor recruitment by RUNX1 contributes to a block of the KLF1-dependent erythroid gene expression program. Our data indicate that the repressive function of RUNX1 influences the balance between erythroid and megakaryocytic differentiation by shifting the balance between KLF1 and FLI1 in the direction of FLI1. Taken together, we show that RUNX1 is a key player within a network of transcription factors that represses the erythroid gene expression program.
Collapse
|
43
|
Nguyen H, Mariotti J, Bareyan D, Carnahan R, Cooper T, Williams C, Engel M. ANTI-MTG16 ANTIBODIES REVEAL MTG16 SUBCELLULAR DISTRIBUTION AND NUCLEOCYTOPLASMIC TRANSPORT IN ERYTHROLEUKEMIA CELLS. ANTIBODY TECHNOLOGY JOURNAL 2015; 5:27-41. [PMID: 36267145 PMCID: PMC9580851 DOI: 10.2147/anti.s74419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The myeloid translocation gene (MTG) family of transcriptional co-repressors consists of three highly conserved members; MTG8, MTG16 and MTGR1, each evolutionarily related to the Drosophila protein NERVY and with orthologs across the mammalian hierarchy. By coordinating coincident interactions between DNA binding proteins, other co-repressors and epigenetic effectors, MTG proteins occupy a critical nexus in transcriptional control complexes to profoundly impact the specification of cell fate. MTG family members are most conserved within Nervy Homology Regions (NHR) 1-4, with each region fulfilling functions common to the family. Studies of functional differences between MTG proteins require carefully qualified immunologic reagents specific to each family member. We have developed a group of α-MTG16 antibodies and carefully characterized their specificity for MTG16. These tools reveal that MTG16 is concentrated in the cytoplasm of erythroleukemia cell lines from human and mouse. Using the CRM1 antagonist, leptomycin-B, we show that MTG16 levels rise in the nucleus of MEL cells and decline in the cytoplasm. Together, these data indicate bidirectional movement of MTG16 between cytoplasmic and nuclear compartments. Our work reveals an unrecognized feature of MTG16 regulation that may impact cell fate specification and provides reagents to address important questions regarding MTG16 functions in vivo.
Collapse
Affiliation(s)
- Hong Nguyen
- Department of Pediatrics, Vanderbilt University School of Medicine
| | - Jolene Mariotti
- Department of Pediatrics, Vanderbilt University School of Medicine
| | - Diana Bareyan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine
| | - Robert Carnahan
- Department of Cancer Biology, Vanderbilt University School of Medicine
| | - Tracy Cooper
- Department of Cancer Biology, Vanderbilt University School of Medicine
| | | | - Michael Engel
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine
- Department of Pediatrics, University of Utah School of Medicine and Primary Children’s Hospital
| |
Collapse
|
44
|
Ng FSL, Schütte J, Ruau D, Diamanti E, Hannah R, Kinston SJ, Göttgens B. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells. Nucleic Acids Res 2014; 42:13513-24. [PMID: 25428352 PMCID: PMC4267662 DOI: 10.1093/nar/gku1254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the ‘enhanceosome’ versus the ‘TF collective’ model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair—E-box and GATA, and in two previously unknown motif-pairs with constrained spacing—Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the ‘enhanceosome’ model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.
Collapse
Affiliation(s)
- Felicia S L Ng
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Judith Schütte
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - David Ruau
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| |
Collapse
|
45
|
Kolodziej S, Kuvardina ON, Oellerich T, Herglotz J, Backert I, Kohrs N, Buscató EL, Wittmann SK, Salinas-Riester G, Bonig H, Karas M, Serve H, Proschak E, Lausen J. PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation. Nat Commun 2014; 5:3995. [PMID: 24874575 PMCID: PMC4050257 DOI: 10.1038/ncomms4995] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023] Open
Abstract
The transcription factor Tal1 is a
critical activator or repressor of gene expression in hematopoiesis and leukaemia.
The mechanism by which Tal1
differentially influences transcription of distinct genes is not fully understood.
Here we show that Tal1 interacts
with the peptidylarginine deiminase
IV (PADI4). We
demonstrate that PADI4 can act as
an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by
PRMT6 is counteracted by
PADI4, which augments the
active H3K4me3 mark and thus increases IL6ST expression. In contrast, at the CTCF promoter PADI4 acts as a repressor. We propose that
the influence of PADI4 on
IL6ST transcription
plays a role in the control of IL6ST expression during lineage differentiation of
hematopoietic stem/progenitor cells. These results open the possibility to
pharmacologically influence Tal1
in leukaemia. Peptidylarginine deiminase 4 (PADI4) is a transcriptional
co-regulator that converts arginine residues at histone tails to citrulline. The authors
show that PADI4 interacts with the central haematopoietic transcription factor TAL1 to
regulate gene expression in an erythroleukemia cell line.
Collapse
Affiliation(s)
- Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Olga N Kuvardina
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Julia Herglotz
- 1] Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany [2]
| | - Ingo Backert
- 1] Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany [2]
| | - Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Estel la Buscató
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sandra K Wittmann
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Gabriela Salinas-Riester
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | - Halvard Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University, Sandhofstrasse 1, D-60528 Frankfurt am Main, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hubert Serve
- 1] Department of Medicine, Hematology/Oncology, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany [2] German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ewgenij Proschak
- 1] Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet 2013; 30:1-9. [PMID: 24290192 DOI: 10.1016/j.tig.2013.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
Elucidation of the genetic pathways that control red blood cell development has been a central goal of erythropoiesis research over the past decade. Notably, data from several recent studies have provided new insights into the regulation of erythroid gene transcription. Transcription profiling demonstrates that erythropoiesis is mainly controlled by a small group of lineage-restricted transcription factors [Gata binding protein 1 (Gata1), T cell acute lymphocytic leukemia 1 protein (Tal1), and Erythroid Kruppel-like factor (EKLF; henceforth referred to as Klf1)]. Binding-site mapping using ChIP-Seq indicates that most DNA-bound Gata1 and Tal1 proteins are contained within higher order complexes (Ldb1 complexes) that include the nuclear adapters Ldb1 and Lmo2. Ldb1 complexes regulate Klf1, and Ldb1 complex-binding sites frequently colocalize with Klf1 at erythroid genes and cis-regulatory elements, indicating strong functional synergy between Gata1, Tal1, and Klf1. Together with new data demonstrating that Ldb1 can mediate long-range promoter-enhancer interactions, these findings provide a foundation for the first comprehensive models of the global regulation of erythroid gene transcription.
Collapse
Affiliation(s)
- Paul E Love
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Claude Warzecha
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - LiQi Li
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia 2013; 28:1052-9. [PMID: 24150215 PMCID: PMC4017260 DOI: 10.1038/leu.2013.302] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/28/2013] [Accepted: 10/07/2013] [Indexed: 02/08/2023]
Abstract
With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score.
Collapse
|
48
|
Expression profiling of ETO2-regulated miRNAs in erythroid cells: Possible influence on miRNA abundance. FEBS Open Bio 2013; 3:428-32. [PMID: 24251106 PMCID: PMC3821025 DOI: 10.1016/j.fob.2013.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
ETO2 is a component of a protein complex containing master regulators of hematopoiesis, including GATA-1 and SCL/TAL1, and also has RNA binding properties. Although ETO2 has been reported to repress GATA-1 target genes through histone deacetylation of the target gene loci in erythroid cells, little is known about the contribution of ETO2 to microRNA (miRNA) regulation. Here, we conducted miRNA profiling in ETO2-overexpressing and ETO2-silenced K562 cells. The analysis suggests that ETO2 positively regulates the abundance of mature miRNAs, including miR-21, miR-29b and let-7e. Our data suggest a novel mode of ETO2-mediated target gene repression via effects on miRNA expression. miRNA profiling was conducted in ETO2-overexpressing and ETO2-silenced K562 cells. ETO2 positively regulates the abundance of miRNA. ETO2 positively regulates the expression of miR-21, miR-29b and let-7e.
Collapse
Key Words
- CBF1, core-binding factor 1
- ETO2
- ETO2 (CBFA2T3), core-binding factor, runt domain, alpha subunit 2, translocated to, 3
- Erythropoiesis
- IL-3, interleukin 3
- IMDM, Iscove’s Modified Dulbecco’s Media
- LMO2, LIM domain only 2
- RPMI, Roswell Park Memorial Institute
- SCF, stem cell factor
- cDNA, complementary DNA
- miRNA
- siRNA, small interfering RNA
Collapse
|
49
|
Gow CH, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res 2013; 42:137-52. [PMID: 24064250 PMCID: PMC3874172 DOI: 10.1093/nar/gkt855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) acute myeloid leukemia and ETO-2 in hematopoietic cells. Here, we show that, unlike the HEB E-protein, the activation domain 1 (AD1) of E2A has specifically reduced corepressor interaction due to E2A-specific amino acid changes in the p300/CBP and ETO target motif. Replacing E2A-AD1 with HEB-AD1 abolished the ability of E2A-Pbx1 to activate target genes and to induce cell transformation. On the other hand, the weak E2A-AD1-corepressor interaction imposes a critical importance on another ETO-interacting domain, downstream ETO-interacting sequence (DES), for corepressor-mediated repression. Deletion of DES abrogates silencing of E2A activity by AML1-ETO in t(8;21) leukemia cells or by ETO-2 in normal hematopoietic cells. Our results reveal an E2A-specific mechanism important for its context-dependent activation and repression function, and provide the first evidence for the differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
50
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|