1
|
Nakata M, Kosaka N, Kawauchi K, Miyoshi D. Quantitative Effects of the Loop Region on Topology, Thermodynamics, and Cation Binding of DNA G-quadruplexes. ACS OMEGA 2024; 9:35028-35036. [PMID: 39157113 PMCID: PMC11325513 DOI: 10.1021/acsomega.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024]
Abstract
The thermal stability of G-quadruplexes is important for their biological roles. G-quadruplexes are stable in the presence of cations such as K+ and Na+ because these cations coordinate in the G-quartet of four guanine bases. It is well known that the number of G-quartets and the configuration of the guanine bases affect the binding affinity of the cation. Recently, structures formed in the loop regions connecting the guanine stretches have attracted significant attention, because the loop region affects G-quadruplex properties, such as topology, thermal stability, and interactions with proteins and small molecules. Considering these effects, the loop region can also affect the binding affinity of the cations. Here, we designed a series of G-quadruplex-forming DNA sequences that contain a hairpin in a loop region and investigated the effects of the sequence and structure of the loop region on the cation binding affinity as well as the thermal stability of the G-quadruplex as a whole. First, structural analysis of the DNA sequences showed that the hairpin at the loop plays a key role in determining G4 topology (strand orientation). Second, in the case of the G-quadruplexes with the hairpin-forming loop region, it was found that a longer loop length led to a higher thermodynamic stability of the G-quadruplex as well as higher cation binding affinity. In contrast, an unstructured loop region did not lead to such effects. Interestingly, the cation binding affinity was correlated to the thermodynamic stability of the hairpin structure at the loop region. It was quantitatively demonstrated that the stable loop region stabilized the whole G-quadruplex structure, which induced higher cation binding affinity. These systematic and quantitative results showed that the loop region is one of the determinants of cation binding and expanded the possibilities of drug development targeting G4s by stabilizing the loop region.
Collapse
Affiliation(s)
- Minori Nakata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Kosaka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Ling X, Yao Y, Ding L, Ma J. The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194985. [PMID: 37717939 DOI: 10.1016/j.bbagrm.2023.194985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The human telomere contains multiple copies of the DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of telomere length and chromosomal integrity. The nucleic acid binding protein heteronuclear ribonucleoprotein A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)3], and in combination of systematic site-direct mutagenesis of two tandem RNA recognition motifs (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas RRM2 assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the "TAG" binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.
Collapse
Affiliation(s)
- Xiaobin Ling
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Ding
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
7
|
Beseiso D, Chen EV, McCarthy SE, Martin KN, Gallagher EP, Miao J, Yatsunyk L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2959-2972. [PMID: 35212369 PMCID: PMC8934647 DOI: 10.1093/nar/gkac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
G-quadruplexes (GQs) are non-canonical DNA structures composed of stacks of stabilized G-tetrads. GQs play an important role in a variety of biological processes and may form at telomeres and oncogene promoters among other genomic locations. Here, we investigate nine variants of telomeric DNA from Tetrahymena thermophila with the repeat (TTGGGG)n. Biophysical data indicate that the sequences fold into stable four-tetrad GQs which adopt multiple conformations according to native PAGE. Excitingly, we solved the crystal structure of two variants, TET25 and TET26. The two variants differ by the presence of a 3′-T yet adopt different GQ conformations. TET25 forms a hybrid [3 + 1] GQ and exhibits a rare 5′-top snapback feature. Consequently, TET25 contains four loops: three lateral (TT, TT, and GTT) and one propeller (TT). TET26 folds into a parallel GQ with three TT propeller loops. To the best of our knowledge, TET25 and TET26 are the first reported hybrid and parallel four-tetrad unimolecular GQ structures. The results presented here expand the repertoire of available GQ structures and provide insight into the intricacy and plasticity of the 3D architecture adopted by telomeric repeats from T. thermophila and GQs in general.
Collapse
Affiliation(s)
- Dana Beseiso
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Erin V Chen
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Sawyer E McCarthy
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Kailey N Martin
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Elizabeth P Gallagher
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Joanne Miao
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | | |
Collapse
|
8
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Craven HM, Bonsignore R, Lenis V, Santi N, Berrar D, Swain M, Whiteland H, Casini A, Hoffmann KF. Identifying and validating the presence of Guanine-Quadruplexes (G4) within the blood fluke parasite Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0008770. [PMID: 33600427 PMCID: PMC7924807 DOI: 10.1371/journal.pntd.0008770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/02/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that currently affects over 250 million individuals worldwide. In the absence of an immunoprophylactic vaccine and the recognition that mono-chemotherapeutic control of schistosomiasis by praziquantel has limitations, new strategies for managing disease burden are urgently needed. A better understanding of schistosome biology could identify previously undocumented areas suitable for the development of novel interventions. Here, for the first time, we detail the presence of G-quadruplexes (G4) and putative quadruplex forming sequences (PQS) within the Schistosoma mansoni genome. We find that G4 are present in both intragenic and intergenic regions of the seven autosomes as well as the sex-defining allosome pair. Amongst intragenic regions, G4 are particularly enriched in 3´ UTR regions. Gene Ontology (GO) term analysis evidenced significant G4 enrichment in the wnt signalling pathway (p<0.05) and PQS oligonucleotides synthetically derived from wnt-related genes resolve into parallel and anti-parallel G4 motifs as elucidated by circular dichroism (CD) spectroscopy. Finally, utilising a single chain anti-G4 antibody called BG4, we confirm the in situ presence of G4 within both adult female and male worm nuclei. These results collectively suggest that G4-targeted compounds could be tested as novel anthelmintic agents and highlights the possibility that G4-stabilizing molecules could be progressed as candidates for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Holly M. Craven
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | | | - Vasilis Lenis
- School of Health and Life Sciences, Teesside University, United Kingdom
| | - Nicolo Santi
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Daniel Berrar
- Data Science Laboratory, Tokyo Institute of Technology, Tokyo, Japan
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Germany
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Dey U, Sarkar S, Teronpi V, Yella VR, Kumar A. G-quadruplex motifs are functionally conserved in cis-regulatory regions of pathogenic bacteria: An in-silico evaluation. Biochimie 2021; 184:40-51. [PMID: 33548392 DOI: 10.1016/j.biochi.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The role of G-quadruplexes in the cellular physiology of human pathogenesis is an intriguing area of research. Nonetheless, their functional roles and evolutionary conservation have not been compared comprehensively in pathogenic forms of various bacterial genera and species. In the current in silico study, we addressed the role of G-quadruplex-forming sequences (G4 motifs) in the context of cis-regulation, expression variation, regulatory networks, gene orthology and ontology. Genome-wide screening across seven pathogenic genomes using the G4Hunter tool revealed the significant prevalence of G4 motifs in cis-regulatory regions compared to the intragenic regions. Significant conservation of G4 motifs was observed in the regulatory region of 300 orthologous genes. Further analysis of published ChIP-Seq data (Minch et al., 2015) of 91 DNA-binding proteins of the M. tuberculosis genome revealed significant links between G4 motifs and target sites of transcriptional regulators. Interestingly, the transcription factors entangled with virulence, in specific, CsoR, Rv0081, DevR/DosR, and TetR family are found to have G4 motifs in their target regulatory regions. Overall the current study applies positional-functional relationship computation to delve into the cis-regulation of G-quadruplex structures in the context of gene orthology in pathogenic bacteria.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522502, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
11
|
Jain N, Mishra SK, Shankar U, Jaiswal A, Sharma TK, Kodgire P, Kumar A. G-quadruplex stabilization in the ions and maltose transporters gene inhibit Salmonella enterica growth and virulence. Genomics 2020; 112:4863-4874. [PMID: 32898642 PMCID: PMC7474834 DOI: 10.1016/j.ygeno.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
The G-quadruplex structure is a highly conserved drug target for preventing infection of several human pathogens. We tried to explore G-quadruplex forming motifs as promising drug targets in the genome of Salmonella enterica that causes enteric fever in humans. Herein, we report three highly conserved G-quadruplex motifs (SE-PGQ-1, 2, and 3) in the genome of Salmonella enterica. Bioinformatics analysis inferred the presence of SE-PGQ-1 in the regulatory region of mgtA, SE-PGQ-2 in ORF of entA, and SE-PGQ-3 in the promoter region of malE and malK genes. The G-quadruplex forming sequences were confirmed by biophysical and biomolecular techniques. Cellular studies affirm the inhibitory effect of G-quadruplex specific ligands on Salmonella enterica growth. Further, PCR inhibition, reporter based assay, and RT-qPCR assays emphasize the biological relevance of G-quadruplexes in these genes. Thus, this study confirmed the presence of G-quadruplex motifs in Salmonella enterica and characterized them as a promising drug target.
Collapse
Affiliation(s)
- Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Ankit Jaiswal
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Prashant Kodgire
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India.
| |
Collapse
|
12
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
13
|
Abstract
Several decades elapsed between the first descriptions of G-quadruplex nucleic acid structures (G4s) assembled in vitro and the emergence of experimental findings indicating that such structures can form and function in living systems. A large body of evidence now supports roles for G4s in many aspects of nucleic acid biology, spanning processes from transcription and chromatin structure, mRNA processing, protein translation, DNA replication and genome stability, and telomere and mitochondrial function. Nonetheless, it must be acknowledged that some of this evidence is tentative, which is not surprising given the technical challenges associated with demonstrating G4s in biology. Here I provide an overview of evidence for G4 biology, focusing particularly on the many potential pitfalls that can be encountered in its investigation, and briefly discuss some of broader biological processes that may be impacted by G4s including cancer.
Collapse
Affiliation(s)
- F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 2020; 9:56428. [PMID: 32723475 PMCID: PMC7426096 DOI: 10.7554/elife.56428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Aaron Lavel Moye
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Jessica K Holien
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Monica L Birrento
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kamthorn Intharapichai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Madrid, Spain
| | - Jennifer L Beck
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| |
Collapse
|
15
|
Jurikova K, Gajarsky M, Hajikazemi M, Nosek J, Prochazkova K, Paeschke K, Trantirek L, Tomaska L. Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. J Biol Chem 2020; 295:8958-8971. [PMID: 32385108 PMCID: PMC7335780 DOI: 10.1074/jbc.ra120.012914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.
Collapse
Affiliation(s)
- Katarina Jurikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Gajarsky
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Prochazkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
16
|
Tateishi-Karimata H, Banerjee D, Ohyama T, Matsumoto S, Miyoshi D, Nakano SI, Sugimoto N. Hydroxyl groups in cosolutes regulate the G-quadruplex topology of telomeric DNA. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30313-2. [PMID: 32081425 DOI: 10.1016/j.bbrc.2020.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Telomeric G-quadruplex topology has the ability to regulate telomerase activity, which counteracts the shortening of telomere with successive cell divisions, thereby causing genomic longevity. However, the detailed mechanism of G-quadruplexes topologies formed by telomeric sequences requires further investigation. In this study, we quantitatively investigated the effect of cosolutes, particularly the varying number of hydroxyl groups, on the structural transition between hybrid type and parallel G-quadruplexes formed by telomeric DNA sequences. Cosolutes with one or no hydroxyl groups in the vicinal position more efficiently induced the transition to parallel G-quadruplex from hybrid G-quadruplex than those with more hydroxyl groups. We also examined the effect of cosolute structures on the hydration of G-quadruplex formation; the results indicated that cosolutes with fewer hydroxyl groups lead to the release of greater amount of water during G-quadruplex formation. Molecular dynamics results showed that the parallel G-quadruplex was more dehydrated than the hybrid type G-quadruplex. Generally, a dehydrated structure is favored under crowding condition. Thus, depending on the surrounding cosolutes, the G-quadruplex topology can be controlled by the G-quadruplex hydration state.
Collapse
Affiliation(s)
| | - Dipanwita Banerjee
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan
| | - Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan
| | - Daisuke Miyoshi
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Japan
| | - Shu-Ich Nakano
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan; Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Japan.
| |
Collapse
|
17
|
Parasitic Protozoa: Unusual Roles for G-Quadruplexes in Early-Diverging Eukaryotes. Molecules 2019; 24:molecules24071339. [PMID: 30959737 PMCID: PMC6480360 DOI: 10.3390/molecules24071339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Guanine-quadruplex (G4) motifs, at both the DNA and RNA levels, have assumed an important place in our understanding of the biology of eukaryotes, bacteria and viruses. However, it is generally little known that their very first description, as well as the foundational work on G4s, was performed on protozoans: unicellular life forms that are often parasitic. In this review, we provide a historical perspective on the discovery of G4s, intertwined with their biological significance across the protozoan kingdom. This is a history in three parts: first, a period of discovery including the first characterisation of a G4 motif at the DNA level in ciliates (environmental protozoa); second, a period less dense in publications concerning protozoa, during which DNA G4s were discovered in both humans and viruses; and third, a period of renewed interest in protozoa, including more mechanistic work in ciliates but also in pathogenic protozoa. This last period has opened an exciting prospect of finding new anti-parasitic drugs to interfere with parasite biology, thus adding new compounds to the therapeutic arsenal.
Collapse
|
18
|
Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019; 116:8350-8359. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.
Collapse
|
19
|
Amado E, Muth G, Arechaga I, Cabezón E. The FtsK-like motor TraB is a DNA-dependent ATPase that forms higher-order assemblies. J Biol Chem 2019; 294:5050-5059. [PMID: 30723158 DOI: 10.1074/jbc.ra119.007459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Indexed: 11/06/2022] Open
Abstract
TraB is an FtsK-like DNA translocase responsible for conjugative plasmid transfer in mycelial Streptomyces Unlike other conjugative systems, which depend on a type IV secretion system, Streptomyces requires only TraB protein to transfer the plasmid as dsDNA. The γ-domain of this protein specifically binds to repeated 8-bp motifs on the plasmid sequence, following a mechanism that is reminiscent of the FtsK/SpoIIIE chromosome segregation system. In this work, we purified and characterized the enzymatic activity of TraB, revealing that it is a DNA-dependent ATPase that is highly stimulated by dsDNA substrates. Interestingly, we found that unlike the SpoIIIE protein, the γ-domain of TraB does not confer sequence-specific ATPase stimulation. We also found that TraB binds G-quadruplex DNA structures with higher affinity than TraB-recognition sequences (TRSs). An EM-based structural analysis revealed that TraB tends to assemble as large complexes comprising four TraB hexamers, which might be a prerequisite for DNA translocation across cell membranes. In summary, our findings shed light on the molecular mechanism used by the DNA-translocating motor TraB, which may be shared by other membrane-associated machineries involved in DNA binding and translocation.
Collapse
Affiliation(s)
- Eric Amado
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, 72074 Tuebingen, Germany
| | - Ignacio Arechaga
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Elena Cabezón
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| |
Collapse
|
20
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Lago S, Nadai M, Rossetto M, Richter SN. Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody. Biochim Biophys Acta Gen Subj 2018; 1862:1276-1282. [PMID: 29524541 PMCID: PMC5988565 DOI: 10.1016/j.bbagen.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens. METHODS SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures. RESULTS The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability. CONCLUSIONS Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells. GENERAL SIGNIFICANCE The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
23
|
Abstract
Advances in understanding mechanisms of nucleic acids have revolutionized molecular biology and medicine, but understanding of nontraditional nucleic acid conformations is less developed. The guanine quadruplex (G4) alternative DNA structure was first described in the 1960s, but the existence of G4 structures (G4-S) and their participation in myriads of biological functions are still underappreciated. Despite many tools to study G4s and many examples of roles for G4s in eukaryotic molecular processes and issues with uncontrolled G4-S formation, there is relatively little knowledge about the roles of G4-S in viral or prokaryotic systems. This review summarizes the state of the art with regard to G4-S in eukaryotes and their potential roles in human disease before discussing the evidence that G4-S have equivalent importance in affecting viral and bacterial life.
Collapse
Affiliation(s)
- H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
24
|
Berardinelli F, Sgura A, Facoetti A, Leone S, Vischioni B, Ciocca M, Antoccia A. The G-quadruplex-stabilizing ligand RHPS4 enhances sensitivity of U251MG glioblastoma cells to clinical carbon ion beams. FEBS J 2018; 285:1226-1236. [PMID: 29484821 DOI: 10.1111/febs.14415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 11/27/2022]
Abstract
The pentacyclic acridine RHPS4 is a highly potent and specific G-quadruplex (G4) ligand, which binds and stabilizes telomeric G4 leading to the block of the replication forks at telomeres and consequently to telomere dysfunctionalization. In turn, the cell recognizes unprotected telomeres as DNA double-strand breaks with consequent activation of DNA repair response at telomeres, cellular growth impairment, and death. Data from the literature showed the capability of this compound to sensitize U251MG glioblastoma radioresistant cell line to X-rays sparsely ionizing radiations. In the present paper, it was investigated whether RHPS4 is also able to increase the effect of clinical carbon ion beams (cells irradiated in the middle of a spread-out Bragg peak, in the energy range of 246-312 MeV·μm-1 and a dose-averaged linear energy transfer of 46 keV·μm-1 ). Interestingly, also for charged particles whose damage inflicted to DNA is more complex than that of sparsely ionizing radiations and results in higher Relative Biological Effectiveness (RBE), RHPS4 significantly potentiated the radiation effect in terms of cell killing, delayed rejoining of DNA double-strand breaks (γ-H2AX and 53BBP1 immunofluorescence staining), chromosome aberrations (pan-centromeric/telomeric FISH and multicolor FISH), and G2 /M-phase accumulation in GBM cells. Overall, the results provide the first evidence that the combined administration of the G4-ligand RHPS4 with charged particles interfere with cellular processes involved in cell survival leading to radiosensitization of highly radioresistant tumor cells.
Collapse
Affiliation(s)
| | - Antonella Sgura
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| | | | | | | | | | - Antonio Antoccia
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| |
Collapse
|
25
|
Bhattacharjee S, Chakraborty S, Sengupta PK, Bhowmik S. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches. J Phys Chem B 2016; 120:8942-52. [DOI: 10.1021/acs.jpcb.6b06357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sandipan Chakraborty
- Department
of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Pradeep K. Sengupta
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|
26
|
Wallgren M, Mohammad JB, Yan KP, Pourbozorgi-Langroudi P, Ebrahimi M, Sabouri N. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase. Nucleic Acids Res 2016; 44:6213-31. [PMID: 27185885 PMCID: PMC5291255 DOI: 10.1093/nar/gkw349] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures.
Collapse
Affiliation(s)
- Marcus Wallgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Jani B Mohammad
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Kok-Phen Yan
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Mahsa Ebrahimi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
27
|
Rice C, Skordalakes E. Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 2016; 14:161-7. [PMID: 27239262 PMCID: PMC4872678 DOI: 10.1016/j.csbj.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP) reverse transcriptase, and are maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1) and CST (Cdc13/Ctc1, Stn1, Ten1). The focus of this review is on the CST complex and its role in telomere maintenance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a diverse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase) access to telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions of the CST complex and how it contributes to telomere maintenance and cell proliferation.
Collapse
|
28
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
29
|
Smaldino PJ, Routh ED, Kim JH, Giri B, Creacy SD, Hantgan RR, Akman SA, Vaughn JP. Mutational Dissection of Telomeric DNA Binding Requirements of G4 Resolvase 1 Shows that G4-Structure and Certain 3'-Tail Sequences Are Sufficient for Tight and Complete Binding. PLoS One 2015; 10:e0132668. [PMID: 26172836 PMCID: PMC4501837 DOI: 10.1371/journal.pone.0132668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Ends of human chromosomes consist of the six nucleotide repeat d[pTTAGGG]n known as telomeric DNA, which protects chromosomes. We have previously shown that the DHX36 gene product, G4 Resolvase 1 (G4R1), binds parallel G-quadruplex (G4) DNA with an unusually tight apparent Kd. Recent work associates G4R1 with the telomerase holoenzyme, which may allow it to access telomeric G4-DNA. Here we show that G4R1 can tightly bind telomeric G4-DNA, and in the context of the telomeric sequence, we determine length, sequence, and structural requirements sufficient for tight G4R1 telomeric binding. Specifically, G4R1 binds telomeric DNA in the K+-induced "3+1" G4-topology with an apparent Kd = 10 ± 1.9 pM, a value similar as previously found for binding to unimolecular parallel G4-DNA. G4R1 binds to the Na+-induced "2+2" basket G4-structure formed by the same DNA sequence with an apparent Kd = 71 ± 2.2 pM. While the minimal G4-structure is not sufficient for G4R1 binding, a 5' G4-structure with a 3' unstructured tail containing a guanine flanked by adenine(s) is sufficient for maximal binding. Mutations directed to disrupt G4-structure similarly disrupt G4R1 binding; secondary mutations that restore G4-structure also restore G4R1 binding. We present a model showing that a replication fork disrupting a T-loop could create a 5' quadruplex with an opened 3'tail structure that is recognized by G4R1.
Collapse
Affiliation(s)
- Philip J. Smaldino
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
| | - Jung H. Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
| | - Banabihari Giri
- Department of Chemistry, Furman University, Greenville, South Carolina, 29613, United States of America
| | - Steven D. Creacy
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
- Harmonyx Diagnostics, Cordova, Tennessee, 38016, United States of America
| | - Roy R. Hantgan
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
| | - Steven A. Akman
- Department of Hematology and Oncology, Roper St. Francis Hospital, Charleston, South Carolina, 29401, United States of America
| | - James P. Vaughn
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States of America
- * E-mail:
| |
Collapse
|
30
|
Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun 2015; 6:7643. [PMID: 26158869 PMCID: PMC4510649 DOI: 10.1038/ncomms8643] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
It has been hypothesized that G-quadruplexes can sequester the 3' end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel, intermolecular conformations in vitro. These G-quadruplexes align correctly with the RNA template of telomerase, demonstrating that at least partial G-quadruplex resolution is required. A highly purified preparation of human telomerase retains this extension ability, establishing that the core telomerase enzyme complex is sufficient for partial G-quadruplex resolution and extension. The parallel-specific G-quadruplex ligand N-methyl mesoporphyrin IX (NMM) causes an increase in telomeric G-quadruplexes, and we show that telomerase colocalizes with a subset of telomeric G-quadruplexes in vivo. The ability of telomerase to partially unwind, extend and localize to these structures implies that parallel telomeric G-quadruplexes may play an important biological role.
Collapse
|
31
|
Reddel RR. Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 2015; 20:6361-74. [PMID: 24975603 PMCID: PMC4262939 DOI: 10.2174/1381612820666140630101047] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 01/20/2023]
Abstract
The presence of immortal cell populations with an up-regulated telomere maintenance mechanism (TMM) is an almost universal characteristic of cancers, whereas normal somatic cells are unable to prevent proliferation-associated telomere shortening and have a limited proliferative potential. TMMs and related aspects of telomere structure and function therefore appear to be ideal targets for the development of anticancer therapeutics. Such treatments would be targeted to a specific cancer-related molecular abnormality, and also be broad-spectrum in that they would be expected to be potentially applicable to most cancers. However, the telomere biology of normal and malignant human cells is a relatively young research field with large numbers of unanswered questions, so the optimal design of TMM-targeted therapeutic approaches remains unclear. This review outlines the opportunities and challenges presented by telomeres and TMMs for clinical management of cancer.
Collapse
Affiliation(s)
- Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
32
|
Bugaut A, Alberti P. Understanding the stability of DNA G-quadruplex units in long human telomeric strands. Biochimie 2015; 113:125-33. [PMID: 25888167 DOI: 10.1016/j.biochi.2015.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Human telomeric DNA is composed of GGGTTA repeats. The presence of consecutive guanines makes the telomeric G-strand prone to fold into contiguous (or tandem) G-quadruplexes (G4s). The aim of this study was to provide a clarified picture of the stability of telomeric tandem G4 structures as a function of the number of G4 units and of boundary sequences, and an understanding of the diversity of their melting behaviors in terms of the single G4 units composing them. To this purpose we undertook an UV-spectroscopic investigation of the structure and stability of telomeric repeats potentially able to fold into up to four contiguous G4s, flanked or not by TTA sequences at their 5' and 3' extremities. We explain why the stability of (GGGTTA)4m-1GGG structures (m = 2, 3, 4 …) decreases with increasing the number m of G4 units, whereas the stability of TTA-(GGGTTA)4m-1GGG-TTA structures does not. Our results support that the inner G4 units have similar stabilities, whereas the stabilities of the terminal G4 units are modulated by their flanking nucleotides: in a TTA-(GGGTTA)4m-1GGG-TTA tandem context, the terminal G4 units are roughly as stable as the inner G4 units; while in a (GGGTTA)4m-1GGG tandem context, the G4 at the 5' extremity is more stable than the G4 at the 3' extremity, which in turn is more stable than an inner G4. Our study provides new information about the global and local stability of telomeric tandem G4 structures under near physiological conditions.
Collapse
Affiliation(s)
- Anthony Bugaut
- Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 26, 75005 Paris, France; CNRS UMR 7196, 57 rue Cuvier, CP 26, 75005 Paris, France; Inserm U 1154, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Patrizia Alberti
- Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 26, 75005 Paris, France; CNRS UMR 7196, 57 rue Cuvier, CP 26, 75005 Paris, France; Inserm U 1154, 57 rue Cuvier, CP 26, 75005 Paris, France.
| |
Collapse
|
33
|
Sabouri N, Capra JA, Zakian VA. The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage. BMC Biol 2014; 12:101. [PMID: 25471935 PMCID: PMC4275981 DOI: 10.1186/s12915-014-0101-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. RESULTS We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. CONCLUSIONS In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.
Collapse
Affiliation(s)
- Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden.
| | - John A Capra
- Department of Biological Sciences and Biomedical Informatics and Center for Human Genetics Research, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
34
|
Berardinelli F, Siteni S, Tanzarella C, Stevens MF, Sgura A, Antoccia A. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells. DNA Repair (Amst) 2014; 25:104-15. [PMID: 25467559 DOI: 10.1016/j.dnarep.2014.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications.
Collapse
Affiliation(s)
- F Berardinelli
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy.
| | - S Siteni
- Department of Science, Università "Roma Tre", Rome, Italy; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - C Tanzarella
- Department of Science, Università "Roma Tre", Rome, Italy
| | - M F Stevens
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - A Sgura
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy
| | - A Antoccia
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy
| |
Collapse
|
35
|
Recent trends of polymer mediated liposomal gene delivery system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934605. [PMID: 25250340 PMCID: PMC4163454 DOI: 10.1155/2014/934605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022]
Abstract
Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.
Collapse
|
36
|
Wu RA, Collins K. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 2014; 33:921-35. [PMID: 24619002 DOI: 10.1002/embj.201387205] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With eukaryotic genome replication, incomplete telomere synthesis results in chromosome shortening and eventual compromise of genome stability. Telomerase counteracts this terminal sequence loss by synthesizing telomeric repeats through repeated cycles of reverse transcription of its internal RNA template. Using human telomerase domain-complementation assays for telomerase reverse transcriptase protein (TERT) and RNA in combination with the first direct footprinting assay for telomerase association with bound DNA, we resolve mechanisms by which TERT domains and RNA motifs direct repeat synthesis. Surprisingly, we find that product-template hybrid is sensed in a length- and sequence-dependent manner to set the template 5' boundary. We demonstrate that the TERT N-terminal (TEN) domain determines active-site use of the atypically short primer-template hybrid necessary for telomeric-repeat synthesis. Also against expectation, we show that the remainder of TERT (the TERT ring) supports functional recognition and physical protection of single-stranded DNA adjacent to the template hybrid. These findings establish unprecedented polymerase recognition specificities for DNA-RNA hybrid and single-stranded DNA and suggest a new perspective on the mechanisms of telomerase specialization for telomeric-repeat synthesis.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
37
|
Long X, Stone MD. Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One 2013; 8:e83420. [PMID: 24367594 PMCID: PMC3867459 DOI: 10.1371/journal.pone.0083420] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
Telomeres are specialized chromatin structures found at the end of chromosomes and are crucial to the maintenance of eukaryotic genome stability. Human telomere DNA is comprised of the repeating sequence (T2AG3)n, which is predominantly double-stranded but terminates with a 3’ single-stranded tail. The guanine-rich tail can fold into secondary structures known as a G-quadruplexes (GQs) that may exist as a polymorphic mixture of anti-parallel, parallel, and several hybrid topological isomers. Using single-molecule Förster resonance energy transfer (smFRET), we have reconstructed distributions of telomere DNA GQ conformations generated by an in situ refolding protocol commonly employed in single-molecule studies of GQ structure, or using a slow cooling DNA annealing protocol typically used in the preparation of GQ samples for ensemble biophysical analyses. We find the choice of GQ folding protocol has a marked impact on the observed distributions of DNA conformations under otherwise identical buffer conditions. A detailed analysis of the kinetics of GQ folding over timescales ranging from minutes to hours revealed the distribution of GQ structures generated by in situ refolding gradually equilibrates to resemble the distribution generated by the slow cooling DNA annealing protocol. Interestingly, conditions of low ionic strength, which promote transient GQ unfolding, permit the fraction of folded DNA molecules to partition into a distribution that more closely approximates the thermodynamic folding equilibrium. Our results are consistent with a model in which kinetic partitioning occurs during in situ folding at room temperature in the presence of K+ ions, producing a long-lived non-equilibrium distribution of GQ structures in which the parallel conformation predominates on the timescale of minutes. These results suggest that telomere DNA GQ folding kinetics, and not just thermodynamic stability, likely contributes to the physiological ensemble GQ structures.
Collapse
Affiliation(s)
- Xi Long
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
39
|
Holder IT, Drescher M, Hartig JS. Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorg Med Chem 2013; 21:6156-61. [PMID: 23693068 DOI: 10.1016/j.bmc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 12/20/2022]
Abstract
Guanosine-rich DNA sequences have the potential to adopt four-stranded conformations termed quadruplexes. The chromosomes of higher organisms are capped by so-called telomeres that are composed of repeats of the sequence TTAGGG. Up to 200 nucleotides of the G-rich strand form an overhang that is suspected to fold into intramolecular G-quadruplexes. Since induction of quadruplexes at the telomeres results in anti-proliferative effects, the intracellular structure of G-quadruplexes is of high interest as an anti-cancer drug target. Here we give a perspective on the elucidation of DNA sequence folds by electron paramagnetic resonance (EPR) distance measurements. The technique complements X-ray crystallography and NMR spectroscopy, as it can be applied in noncrystalline states, is not intrinsically limited by the size of the bio-macromolecular complex, and is able to analyze flexible structures or coexisting DNA conformation.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, 78467 Konstanz, Germany
| | | | | |
Collapse
|
40
|
Li QJ, Tong XJ, Duan YM, Zhou JQ. Characterization of the intramolecular G-quadruplex promoting activity of Est1. FEBS Lett 2013; 587:659-65. [PMID: 23376615 DOI: 10.1016/j.febslet.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/01/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, telomeric DNA includes TG1-3/C1-3A double-stranded DNA and a protruding G-rich overhang. Our previous studies revealed that the telomerase regulatory subunit Est1 promotes telomeric single-stranded DNA to form intermolecular G-quadruplex in vitro, and this activity is required for telomere replication and protection in vivo. In this study, we further characterized the G-quadruplex promoting activity of Est1. Here we report that Est1 is able to promote the single-stranded oligonucleotide of (TGTGTGGG)4, which mimics the natural telomeric DNA, to form intramolecular G-quadruplex. Therefore, it remains possible that the intramolecular G-quadruplex promoting activity of Est1 is biologically relevant in telomere replication in vivo.
Collapse
Affiliation(s)
- Qian-Jin Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
41
|
Chung CYS, Yam VWW. Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3−–Pt(ii) complex ensemble with Pt⋯Pt, electrostatic and π–π interactions. Chem Sci 2013. [DOI: 10.1039/c2sc20897k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
42
|
Telomere- and telomerase-interacting protein that unfolds telomere G-quadruplex and promotes telomere extension in mammalian cells. Proc Natl Acad Sci U S A 2012. [PMID: 23184978 DOI: 10.1073/pnas.1200232109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere extension by telomerase is essential for chromosome stability and cell vitality. Here, we report the identification of a splice variant of mammalian heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), hnRNP A2*, which binds telomeric DNA and telomerase in vitro. hnRNP A2* colocalizes with telomerase in Cajal bodies and at telomeres. In vitro assays show that hnRNP A2* actively unfolds telomeric G-quadruplex DNA, exposes 5 nt of the 3' telomere tail and substantially enhances the catalytic activity and processivity of telomerase. The expression level of hnRNP A2* in tissues positively correlates with telomerase activity, and overexpression of hnRNP A2* leads to telomere elongation in vivo. Thus, hnRNP A2* plays a positive role in unfolding telomere G-quadruplexes and in enhancing telomere extension by telomerase.
Collapse
|
43
|
Abstract
In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription.
Collapse
|
44
|
Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun 2012; 3:1074. [DOI: 10.1038/ncomms2091] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/24/2012] [Indexed: 02/06/2023] Open
|
45
|
G-ruption: the third international meeting on G-quadruplex and G-assembly. Biochimie 2012; 94:2475-83. [PMID: 22974982 DOI: 10.1016/j.biochi.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 12/31/2022]
Abstract
A three and a half day conference focusing on nucleic acid structures called G-quadruplexes (G4s) and other guanine-based assemblies was held in Sorrento, Italy (June 28-July 1, 2011) and featured 35 invited talks and over 89 posters. The G-quadruplex field continues to expand at an explosive rate with the emergence of new connections to biology, chemistry, physics, and nanotechnology. Following the trend established by the previous two international G4 meetings, the conference touched upon all these areas and facilitated productive exchanges of ideas between researchers from all over the world.
Collapse
|
46
|
Paul A, Maji B, Misra SK, Jain AK, Muniyappa K, Bhattacharya S. Stabilization and structural alteration of the G-quadruplex DNA made from the human telomeric repeat mediated by Tröger's base based novel benzimidazole derivatives. J Med Chem 2012; 55:7460-71. [PMID: 22827615 DOI: 10.1021/jm300442r] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Tröger's base skeleton with the G-quadruplex DNA (G4DNA). These Tröger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
47
|
Binding of gemini bisbenzimidazole drugs with human telomeric G-quadruplex dimers: effect of the spacer in the design of potent telomerase inhibitors. PLoS One 2012; 7:e39467. [PMID: 22737240 PMCID: PMC3380826 DOI: 10.1371/journal.pone.0039467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3′-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.
Collapse
|
48
|
Rubtsova M, Vasilkova D, Malyavko A, Naraikina Y, Zvereva M, Dontsova O. Telomere lengthening and other functions of telomerase. Acta Naturae 2012; 4:44-61. [PMID: 22872811 PMCID: PMC3408703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.
Collapse
Affiliation(s)
- M.P. Rubtsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | | | - A.N. Malyavko
- Lomonosov Moscow State University, Chemistry Department
| | - Yu.V. Naraikina
- Lomonosov Moscow State University, Faculty of Bioengineering and
Bioinformatics
| | - M.I. Zvereva
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | - O.A. Dontsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| |
Collapse
|
49
|
Jain AK, Paul A, Maji B, Muniyappa K, Bhattacharya S. Dimeric 1,3-Phenylene-bis(piperazinyl benzimidazole)s: Synthesis and Structure–Activity Investigations on their Binding with Human Telomeric G-Quadruplex DNA and Telomerase Inhibition Properties. J Med Chem 2012; 55:2981-93. [DOI: 10.1021/jm200860b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akash K Jain
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ananya Paul
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
50
|
Lech CJ, Cheow Lim JK, Wen Lim JM, Amrane S, Heddi B, Phan AT. Effects of site-specific guanine C8-modifications on an intramolecular DNA G-quadruplex. Biophys J 2012; 101:1987-98. [PMID: 22004753 DOI: 10.1016/j.bpj.2011.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/16/2022] Open
Abstract
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.
Collapse
|