1
|
Gan T, Liu Y, Qiao Y, Dong Y, Feng J, Chen X, Zhu L. Translation regulation in Bacillus subtilis and its applications in heterologous protein expression: A review. Int J Biol Macromol 2025; 311:143653. [PMID: 40311986 DOI: 10.1016/j.ijbiomac.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis is widely used for industrial enzyme production due to its food safety and good capability of protein synthesis and secretion. However, the production of heterologous proteins is often inefficient, partly due to poor compatibility and versatility of genetic elements in B. subtilis. Recent study shows that transcription and translation is uncoupled in B. subtilis, which is quite different from general knowledge about the transcription-translation coupling mechanism in bacteria. The uncoupling mechanism in B. subtilis shows that the transcription rate is much faster than translation rate. Therefore, the translation regulation will play an important role in highly-effective synthesis of heterologous protein. To better understanding the different regulation strategies at the translation level in B. subtilis, this review will summarize the translation process in B. subtilis cell and its regulatory mechanisms as well as the differences in comparison to other bacteria. Besides, the genetic engineering strategies for engineering the translation regulatory elements are also summarized.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yidi Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Qiao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangyang Dong
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Webster MW. Initiation of Translation in Bacteria and Chloroplasts. J Mol Biol 2025:169137. [PMID: 40221131 DOI: 10.1016/j.jmb.2025.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Relative rates of protein synthesis in bacteria generally depend on the number of copies of a messenger RNA (mRNA) and the efficiency of their loading with ribosomes. Translation initiation involves the multi-stage assembly of the ribosome on the mRNA to begin protein synthesis. In bacteria, the small ribosomal subunit (30S) and mRNA form a complex that can be supported by RNA-protein and RNA-RNA interactions and is extensively modulated by mRNA folding. The initiator transfer RNA (tRNA) and large ribosomal subunit (50S) are recruited with aid of three initiation factors (IFs). Equivalent translation initiation processes occur in chloroplasts due to their endosymbiotic origin from photosynthetic bacteria. This review first summarizes the molecular basis of translation initiation in bacteria, highlighting recent insight into the initial, intermediate and late stages of the pathway obtained by structural analyses. The molecular basis of chloroplast translation initiation is then reviewed, integrating our mechanistic understanding of bacterial gene expression supported by detailed in vitro experiments with data on chloroplast gene expression derived primarily from genetic studies.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
3
|
Kotaka Y, Nagai T, Tominaga K, Kurata T, Iwasaki W, Nobe Y, Taoka M, Asano T, Kato JI. Involvement of Escherichia coli unconventional G protein, YchF, in cell growth at the stationary phase. Genes Genet Syst 2025:24-00218. [PMID: 40128973 DOI: 10.1266/ggs.24-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
YchF is a universally conserved unconventional G protein. It is known to be involved in the translation of leaderless mRNA. However, leaderless mRNA is rare in E. coli under normal culture conditions, so we analyzed E. coli YchF to clarify its function in vivo. First, bioinformatics analysis was performed, and then the growth and survival of the ychF mutant were investigated. The results suggest that the functional domains and important amino acid residues of YchF are conserved. We next found that the E. coli ychF mutant exhibits delayed re-growth in late stationary phase in the presence of oxidative stress. And the growth inhibition by catalase overexpression was suggested to be caused by oxidase activity. We found that the E. coli ychF mutant exhibits reduced growth in early stationary phase and that is associated with decreased ribosomal 70S subunit. In the ychF mutant, we also found that overproduction of the ribosomal protein S18 inhibited growth, which was further suppressed by overproduction of S11. YchF of E. coli is involved in the regulation of ribosomal 70S levels possibly through interaction with ribosomal proteins S18 and S11 as well as IF-3, suggesting that YchF is important for growth and survival in the early and late stationary phase of growth.
Collapse
Affiliation(s)
- Yuto Kotaka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Bacteriology I, National Institute of Infectious Diseases
| | - Takahiro Nagai
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
| | - Tatsuaki Kurata
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Experimental Medicine, Lund University
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo
- Atmosphere and Ocean Research Institute, the University of Tokyo
- Institute for Quantitative Biosciences, the University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Tsunaki Asano
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Jun-Ichi Kato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| |
Collapse
|
4
|
Safdari HA, Morici M, Sanchez-Castro A, Dallapè A, Paternoga H, Giuliodori AM, Fabbretti A, Milón P, Wilson DN. The translation inhibitors kasugamycin, edeine and GE81112 target distinct steps during 30S initiation complex formation. Nat Commun 2025; 16:2470. [PMID: 40075065 PMCID: PMC11903750 DOI: 10.1038/s41467-025-57731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
During bacterial translation initiation, the 30S ribosomal subunit, initiation factors, and initiator tRNA define the reading frame of the mRNA. This process is inhibited by kasugamycin, edeine and GE81112, however, their mechanisms of action have not been fully elucidated. Here we present cryo-electron microscopy structures of 30S initiation intermediate complexes formed in the presence of kasugamycin, edeine and GE81112 at resolutions of 2.0-2.9 Å. The structures reveal that all three antibiotics bind within the E-site of the 30S and preclude 30S initiation complex formation. While kasugamycin and edeine affect early steps of 30S pre-initiation complex formation, GE81112 stalls pre-initiation complex formation at a further step by allowing start codon recognition, but impeding IF3 departure. Collectively, our work highlights how chemically distinct compounds binding at a conserved site on the 30S can interfere with translation initiation in a unique manner.
Collapse
Affiliation(s)
- Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Ana Sanchez-Castro
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Andrea Dallapè
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38122, Trento, Italy
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Anna Maria Giuliodori
- Laboratory of Genetics of Microorganisms and Microbial Biotechnology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Attilio Fabbretti
- Laboratory of Genetics of Microorganisms and Microbial Biotechnology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Pohl Milón
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
5
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
6
|
Mattingly JM, Nguyen HA, Roy B, Fredrick K, Dunham CM. Structural analysis of noncanonical translation initiation complexes. J Biol Chem 2024; 300:107743. [PMID: 39222680 PMCID: PMC11497404 DOI: 10.1016/j.jbc.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Collapse
MESH Headings
- Escherichia coli/metabolism
- Escherichia coli/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- Peptide Chain Initiation, Translational
- Cryoelectron Microscopy
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Anticodon/metabolism
- Anticodon/chemistry
- Codon, Initiator/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jacob M Mattingly
- Department of Chemistry, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Bappaditya Roy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
7
|
Chen M, Dai S, Chen D, Chen H, Feng N, Zheng D. Unveiling the translational dynamics of lychee (Litchi chinesis Sonn.) in response to cold stress. BMC Genomics 2024; 25:686. [PMID: 38992605 PMCID: PMC11241792 DOI: 10.1186/s12864-024-10591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Cold stress poses a significant threat to the quality and productivity of lychee (Litchi chinensis Sonn.). While previous research has extensively explored the genomic and transcriptomic responses to cold stress in lychee, the translatome has not been thoroughly investigated. This study delves into the translatomic landscape of the 'Xiangjinfeng' cultivar under both control and low-temperature conditions using RNA sequencing and ribosome profiling. We uncovered a significant divergence between the transcriptomic and translatomic responses to cold exposure. Additionally, bioinformatics analyses underscored the crucial role of codon occupancy in lychee's cold tolerance mechanisms. Our findings reveal that the modulation of translation via codon occupancy is a vital strategy to abiotic stress. Specifically, the study identifies ribosome stalling, particularly at the E site AAU codon, as a key element of the translation machinery in lychee's response to cold stress. This work enhances our understanding of the molecular dynamics of lychee's reaction to cold stress and emphasizes the essential role of translational regulation in the plant's environmental adaptability.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
8
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Prabhakar A, Pavlov MY, Zhang J, Indrisiunaite G, Wang J, Lawson M, Ehrenberg M, Puglisi JD. Dynamics of release factor recycling during translation termination in bacteria. Nucleic Acids Res 2023; 51:5774-5790. [PMID: 37102635 PMCID: PMC10287982 DOI: 10.1093/nar/gkad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305-5126, USA
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Michael R Lawson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| |
Collapse
|
11
|
Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria. Nat Commun 2023; 14:918. [PMID: 36806263 PMCID: PMC9938272 DOI: 10.1038/s41467-023-36528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
Collapse
|
12
|
Kohl MP, Kompatscher M, Clementi N, Holl L, Erlacher M. Initiation at AUGUG and GUGUG sequences can lead to translation of overlapping reading frames in E. coli. Nucleic Acids Res 2023; 51:271-289. [PMID: 36546769 PMCID: PMC9841429 DOI: 10.1093/nar/gkac1175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
During initiation, the ribosome is tasked to efficiently recognize open reading frames (ORFs) for accurate and fast translation of mRNAs. A critical step is start codon recognition, which is modulated by initiation factors, mRNA structure, a Shine Dalgarno (SD) sequence and the start codon itself. Within the Escherichia coli genome, we identified more than 50 annotated initiation sites harboring AUGUG or GUGUG sequence motifs that provide two canonical start codons, AUG and GUG, in immediate proximity. As these sites may challenge start codon recognition, we studied if and how the ribosome is accurately guided to the designated ORF, with a special focus on the SD sequence as well as adenine at the fourth coding sequence position (A4). By in vitro and in vivo experiments, we characterized key requirements for unambiguous start codon recognition, but also discovered initiation sites that lead to the translation of both overlapping reading frames. Our findings corroborate the existence of an ambiguous translation initiation mechanism, implicating a multitude of so far unrecognized ORFs and translation products in bacteria.
Collapse
Affiliation(s)
- Maximilian P Kohl
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lena Holl
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Chan AI, Sawant MS, Burdick DJ, Tom J, Song A, Cunningham CN. Evaluating Translational Efficiency of Noncanonical Amino Acids to Inform the Design of Druglike Peptide Libraries. ACS Chem Biol 2023; 18:81-90. [PMID: 36607609 PMCID: PMC9872084 DOI: 10.1021/acschembio.2c00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in genetic code reprogramming have allowed the site-specific incorporation of noncanonical functionalities into polypeptides and proteins, providing access to wide swaths of chemical space via in vitro translation techniques like mRNA display. Prior efforts have established that the translation machinery can tolerate amino acids with modifications to both the peptide backbone and side chains, greatly broadening the chemical space that can be interrogated in ligand discovery efforts. However, existing methods for confirming the translation yield of new amino acid building blocks for these technologies necessitate multistep workups and, more importantly, are not relevant for measuring translation within the context of a combinatorial library consisting of multiple noncanonical amino acids. In this study, we developed a luminescence-based assay to rapidly assess the relative translation yield of any noncanonical amino acid in real time. Among the 59 amino acids tested here, we found that many translate with high efficiency, but translational yield is not necessarily correlated to whether the amino acid is proteinogenic or has high tRNA acylation efficiency. Interestingly, we found that single-template translation data can inform the library-scale translation yield and that shorter peptide libraries are more tolerant of lower-efficiency amino acid monomers. Together our data show that the luminescence-based assay described herein is an essential tool in evaluating new building blocks and codon table designs within mRNA display toward the goal of developing druglike peptide-based libraries for drug discovery campaigns.
Collapse
Affiliation(s)
- Alix I Chan
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Manali S. Sawant
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Daniel J. Burdick
- Department
of Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Jeffrey Tom
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States,
| |
Collapse
|
14
|
Singh J, Mishra RK, Ayyub SA, Hussain T, Varshney U. The initiation factor 3 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of translation initiation and growth fitness in Escherichia coli. Nucleic Acids Res 2022; 50:11712-11726. [PMID: 36399509 PMCID: PMC9723500 DOI: 10.1093/nar/gkac1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.
Collapse
Affiliation(s)
| | | | - Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Correspondence may also be addressed to Tanweer Hussain. Tel: +91 80 22933262;
| | - Umesh Varshney
- To whom correspondence should be addressed. Tel: +91 80 22932686;
| |
Collapse
|
15
|
Translation initiation site of mRNA is selected through dynamic interaction with the ribosome. Proc Natl Acad Sci U S A 2022; 119:e2118099119. [PMID: 35605125 DOI: 10.1073/pnas.2118099119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceRibosomes translate the genetic codes of messenger RNA (mRNA) to make proteins. Translation must begin at the correct initiation site; otherwise, abnormal proteins will be produced. Here, we show that a short ribosome-specific sequence in the upstream followed by an unstructured downstream sequence is a favorable initiation site. Those mRNAs lacking either of these two characteristics do not associate tightly with the ribosome. Initiator transfer RNA (tRNA) and initiation factors facilitate the binding. However, when the downstream site forms structures, initiation factor 3 triggers the dissociation of the accommodated initiator tRNA and the subsequent disassembly of the ribosome-mRNA complex. Thus, initiation factors help the ribosome distinguish unfavorable structured sequences that may not act as the mRNA translation initiation site.
Collapse
|
16
|
Datta M, Singh J, Modak MJ, Pillai M, Varshney U. Systematic evolution of initiation factor 3 and the ribosomal protein uS12 optimizes Escherichia coli growth with an unconventional initiator tRNA. Mol Microbiol 2021; 117:462-479. [PMID: 34889476 DOI: 10.1111/mmi.14861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
The anticodon stem of initiator tRNA (i-tRNA) possesses the characteristic three consecutive GC base pairs (G29:C41, G30:C40, and G31:C39 abbreviated as GC/GC/GC or 3GC pairs) crucial to commencing translation. To understand the importance of this highly conserved element, we isolated two fast-growing suppressors of Escherichia coli sustained solely on an unconventional i-tRNA (i-tRNAcg/GC/cg ) having cg/GC/cg sequence instead of the conventional GC/GC/GC. Both suppressors have the common mutation of V93A in initiation factor 3 (IF3), and additional mutations of either V32L (Sup-1) or H76L (Sup-2) in small subunit ribosomal protein 12 (uS12). The V93A mutation in IF3 was necessary for relaxed fidelity of i-tRNA selection to sustain on i-tRNAcg/GC/cg though with a retarded growth. Subsequent mutations in uS12 salvaged the retarded growth by enhancing the fidelity of translation. The H76L mutation in uS12 showed better fidelity of i-tRNA selection. However, the V32L mutation compensated for the deficient fidelity of i-tRNA selection by ensuring an efficient fidelity check by ribosome recycling factor (RRF). We reveal unique genetic networks between uS12, IF3 and i-tRNA in initiation and between uS12, elongation factor-G (EF-G), RRF, and Pth (peptidyl-tRNA hydrolase) which, taken together, govern the fidelity of translation in bacteria.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
17
|
Jha V, Roy B, Jahagirdar D, McNutt ZA, Shatoff EA, Boleratz BL, Watkins DE, Bundschuh R, Basu K, Ortega J, Fredrick K. Structural basis of sequestration of the anti-Shine-Dalgarno sequence in the Bacteroidetes ribosome. Nucleic Acids Res 2021; 49:547-567. [PMID: 33330920 PMCID: PMC7797042 DOI: 10.1093/nar/gkaa1195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein—bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production.
Collapse
Affiliation(s)
- Vikash Jha
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Bappaditya Roy
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Zakkary A McNutt
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L Boleratz
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dean E Watkins
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry & Biochemistry, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
19
|
Liu M, Thijssen V, Jongkees SAK. Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angew Chem Int Ed Engl 2020; 59:21870-21874. [PMID: 32840944 PMCID: PMC7756408 DOI: 10.1002/anie.202003779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/04/2020] [Indexed: 11/22/2022]
Abstract
Genetic code reprogramming is a powerful approach to controlled protein modification. A remaining challenge, however, is the generation of vacant codons. We targeted the initiation machinery of E. coli, showing that restriction of the formyl donor or inhibition of the formyl transferase during in vitro translation is sufficient to prevent formylation of the acylated initiating tRNA and thereby create a vacant initiation codon that can be reprogrammed by exogenously charged tRNA. Our approach conveniently generates peptides and proteins tagged N‐terminally with non‐canonical functional groups at up to 99 % reprogramming efficiency, in combination with decoding the AUG elongation codons either with native methionine or with further reprogramming with azide‐ and alkyne‐containing cognates. We further show macrocyclization and intermolecular modifications with these click handles, thus emphasizing the applicability of our method to current challenges in peptide and protein chemistry.
Collapse
Affiliation(s)
- Minglong Liu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Vito Thijssen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
20
|
Liu M, Thijssen V, Jongkees SAK. Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minglong Liu
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Vito Thijssen
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| |
Collapse
|
21
|
Rudler DL, Hughes LA, Viola HM, Hool LC, Rackham O, Filipovska A. Fidelity and coordination of mitochondrial protein synthesis in health and disease. J Physiol 2020; 599:3449-3462. [PMID: 32710561 DOI: 10.1113/jp280359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
22
|
Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes. Nat Chem Biol 2020; 16:1129-1135. [PMID: 32690942 PMCID: PMC7982790 DOI: 10.1038/s41589-020-0599-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Stunning advances in the structural biology of multicomponent biomolecular complexes (MBCs) have ushered in an era of intense, structure-guided mechanistic and functional studies of these complexes. Nonetheless, existing methods to site-specifically conjugate MBCs with biochemical and biophysical labels are notoriously impracticable and/or significantly perturb MBC assembly and function. To overcome these limitations, we have developed a general, multiplexed method in which we genomically encode non-canonical amino acids (ncAAs) into multiple, structure-informed, individual sites within a target MBC; select for ncAA-containing MBC variants that assemble and function like the wildtype MBC; and site-specifically conjugate biochemical or biophysical labels to these ncAAs. As a proof-of-principle, we have used this method to generate unique single-molecule fluorescence resonance energy transfer (smFRET) signals reporting on ribosome structural dynamics that have thus far remained inaccessible to smFRET studies of translation.
Collapse
|
23
|
Rudler DL, Hughes LA, Perks KL, Richman TR, Kuznetsova I, Ermer JA, Abudulai LN, Shearwood AMJ, Viola HM, Hool LC, Siira SJ, Rackham O, Filipovska A. Fidelity of translation initiation is required for coordinated respiratory complex assembly. SCIENCE ADVANCES 2019; 5:eaay2118. [PMID: 31903419 PMCID: PMC6924987 DOI: 10.1126/sciadv.aay2118] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/30/2019] [Indexed: 05/22/2023]
Abstract
Mammalian mitochondrial ribosomes are unique molecular machines that translate 11 leaderless mRNAs; however, it is not clear how mitoribosomes initiate translation, since mitochondrial mRNAs lack untranslated regions. Mitochondrial translation initiation shares similarities with prokaryotes, such as the formation of a ternary complex of fMet-tRNAMet, mRNA and the 28S subunit, but differs in the requirements for initiation factors. Mitochondria have two initiation factors: MTIF2, which closes the decoding center and stabilizes the binding of the fMet-tRNAMet to the leaderless mRNAs, and MTIF3, whose role is not clear. We show that MTIF3 is essential for survival and that heart- and skeletal muscle-specific loss of MTIF3 causes cardiomyopathy. We identify increased but uncoordinated mitochondrial protein synthesis in mice lacking MTIF3, resulting in loss of specific respiratory complexes. Ribosome profiling shows that MTIF3 is required for recognition and regulation of translation initiation of mitochondrial mRNAs and for coordinated assembly of OXPHOS complexes in vivo.
Collapse
Affiliation(s)
- Danielle L. Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Laetitia A. Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Kara L. Perks
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Laila N. Abudulai
- Centre for Microscopy, Characterisation and Analysis and School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne-Marie J. Shearwood
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Helena M. Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C. Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Corresponding author.
| |
Collapse
|
24
|
Kaledhonkar S, Fu Z, Caban K, Li W, Chen B, Sun M, Gonzalez RL, Frank J. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature 2019; 570:400-404. [PMID: 31108498 PMCID: PMC7060745 DOI: 10.1038/s41586-019-1249-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/08/2019] [Indexed: 12/02/2022]
Abstract
The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Protein Conformation
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Time Factors
Collapse
Affiliation(s)
- Sandip Kaledhonkar
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ziao Fu
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wen Li
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bo Chen
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Joachim Frank
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Volkov IL, Johansson M. Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells. Biochemistry 2018; 58:7-14. [PMID: 30404437 DOI: 10.1021/acs.biochem.8b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Decades of traditional biochemistry, structural approaches, and, more recently, single-molecule-based in vitro techniques have provided us with an astonishingly detailed understanding of the molecular mechanism of ribosome-catalyzed protein synthesis. However, in order to understand these details in the context of cell physiology and population biology, new techniques to probe the dynamics of molecular processes inside the cell are needed. Recent years' development in super-resolved fluorescence microscopy has revolutionized imaging of intracellular processes, and we now have the possibility to directly peek into the microcosm of biomolecules in their native environment. In this Perspective, we discuss how these methods are currently being applied and further developed to study the kinetics of protein synthesis directly inside living cells.
Collapse
Affiliation(s)
- Ivan L Volkov
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| | - Magnus Johansson
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| |
Collapse
|
26
|
Shetty S, Shah RA, Chembazhi UV, Sah S, Varshney U. Two highly conserved features of bacterial initiator tRNAs license them to pass through distinct checkpoints in translation initiation. Nucleic Acids Res 2018; 45:2040-2050. [PMID: 28204695 PMCID: PMC5389676 DOI: 10.1093/nar/gkw854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Eubacterial translation initiation involves assembly of tRNAfMet, mRNA, initiation factors (IFs) and 30S ribosome in a 30S pre-initiation complex (30S pre-IC), which rearranges and joins 50S ribosome to form 70S IC. Upon releasing IFs, 70S IC becomes elongation-competent 70S. The direct recruitment of initiator tRNA (tRNAfMet) into the ribosomal P-site, crucial in accurate initiation of translation, is attributed to two conserved features of tRNAfMet: (i) formylation of amino acid attached to it and, (ii) the presence of three consecutive G-C base pairs (3GC base pairs) in the anticodon stem. However, the precise roles of these two conserved features of tRNAfMet during the various steps of initiation remain unclear. Using natural and engineered tRNAs, we show that the 3GC pairs license tRNAfMet transitions from 30S to 70S IC and then to elongation-competent 70S by release of IF3. Of the 3GC pairs, the middle GC pair (G30-C40), or merely G30 (in a specific context) suffices in this role and is essential for the sustenance of Escherichia coli. Furthermore, rescue of formylase deficient E. coli by overproduced tRNAfMet reveals that the feature of formylation licenses initial targeting of tRNAfMet to 30S ribosome
Collapse
Affiliation(s)
- Sunil Shetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Riyaz A Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ullas V Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
27
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
28
|
Beck HJ, Moll I. Leaderless mRNAs in the Spotlight: Ancient but Not Outdated! Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0016-2017. [PMID: 30006995 PMCID: PMC11633608 DOI: 10.1128/microbiolspec.rwr-0016-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Previously, leaderless mRNAs (lmRNAs) were perceived to make up only a minor fraction of the transcriptome in bacteria. However, advancements in RNA sequencing technology are uncovering vast numbers of lmRNAs, particularly in archaea, Actinobacteria, and extremophiles and thus underline their significance in cellular physiology and regulation. Due to the absence of conventional ribosome binding signals, lmRNA translation initiation is distinct from canonical mRNAs and can therefore be differentially regulated. The ribosome's inherent ability to bind a 5'-terminal AUG can stabilize and protect the lmRNA from degradation or allow ribosomal loading for downstream initiation events. As a result, lmRNAs remain translationally competent during a variety of physiological conditions, allowing them to contribute to multiple regulatory mechanisms. Furthermore, the abundance of lmRNAs can increase during adverse conditions through the upregulation of lmRNA transcription from alternative promoters or by the generation of lmRNAs from canonical mRNAs cleaved by an endonucleolytic toxin. In these ways, lmRNA translation can continue during stress and contribute to regulation, illustrating their importance in the cell. Due to their presence in all domains of life and their ability to be translated by heterologous hosts, lmRNAs appear further to represent ancestral transcripts that might allow us to study the evolution of the ribosome and the translational process.
Collapse
Affiliation(s)
- Heather J Beck
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| |
Collapse
|
29
|
Goyal A, Belardinelli R, Rodnina MV. Non-canonical Binding Site for Bacterial Initiation Factor 3 on the Large Ribosomal Subunit. Cell Rep 2018; 20:3113-3122. [PMID: 28954228 DOI: 10.1016/j.celrep.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Canonical translation initiation in bacteria entails the assembly of the 30S initiation complex (IC), which binds the 50S subunit to form a 70S IC. IF3, a key initiation factor, is recruited to the 30S subunit at an early stage and is displaced from its primary binding site upon subunit joining. We employed four different FRET pairs to monitor IF3 relocation after 50S joining. IF3 moves away from the 30S subunit, IF1 and IF2, but can remain bound to the mature 70S IC. The secondary binding site is located on the 50S subunit in the vicinity of ribosomal protein L33. The interaction between IF3 and the 50S subunit is largely electrostatic with very high rates of IF3 binding and dissociation. The existence of the non-canonical binding site may help explain how IF3 participates in alternative initiation modes performed directly by the 70S ribosomes, such as initiation on leaderless mRNAs or re-initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany.
| |
Collapse
|
30
|
tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nat Chem Biol 2018; 14:618-626. [PMID: 29769736 PMCID: PMC6124642 DOI: 10.1038/s41589-018-0063-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
Our ability to directly relate results from test tube biochemical experiments to the kinetics in living cells is very limited. Here we present experimental and analytical tools to directly study the kinetics of fast biochemical reactions in live cells. Dye-labeled molecules are electroporated into bacterial cells and tracked using super-resolved single-molecule microscopy. Trajectories are analyzed by machine-learning algorithms to directly monitor transitions between bound and free states. In particular, we measure the dwell-time of tRNAs on ribosomes, and hence achieve direct measurements of translation rates inside living cells at codon resolution. We find elongation rates with tRNAPhe in perfect agreement with previous indirect estimates, and that once fMet-tRNAfMet has bound to the 30S ribosomal subunit, initiation of translation is surprisingly fast and does not limit the overall rate of protein synthesis. The experimental and analytical tools for direct kinetics measurements in live cells have applications far beyond bacterial protein synthesis.
Collapse
|
31
|
Gibbs MR, Fredrick K. Roles of elusive translational GTPases come to light and inform on the process of ribosome biogenesis in bacteria. Mol Microbiol 2017; 107:445-454. [PMID: 29235176 DOI: 10.1111/mmi.13895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Protein synthesis relies on several translational GTPases (trGTPases), related proteins that couple the hydrolysis of GTP to specific molecular events on the ribosome. Most bacterial trGTPases, including IF2, EF-Tu, EF-G and RF3, play well-known roles in translation. The cellular functions of LepA (also termed EF4) and BipA (also termed TypA), conversely, have remained enigmatic. Recent studies provide compelling in vivo evidence that LepA and BipA function in biogenesis of the 30S and 50S subunit respectively. These findings have important implications for ribosome biogenesis in bacteria. Because the GTPase activity of each of these proteins depends on interactions with both ribosomal subunits, some portion of 30S and 50S assembly must occur in the context of the 70S ribosome. In this review, we introduce the trGTPases of bacteria, describe the new functional data on LepA and BipA, and discuss the how these findings shape our current view of ribosome biogenesis in bacteria.
Collapse
Affiliation(s)
- Michelle R Gibbs
- Department of Microbiology and Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Caban K, Pavlov M, Ehrenberg M, Gonzalez RL. A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nat Commun 2017; 8:1475. [PMID: 29133802 PMCID: PMC5684235 DOI: 10.1038/s41467-017-01492-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent "activation" of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA
| | - Michael Pavlov
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA.
| |
Collapse
|
33
|
Shetty S, Bhattacharyya S, Varshney U. Is the cellular initiation of translation an exclusive property of the initiator tRNAs? RNA Biol 2016; 12:675-80. [PMID: 25996503 DOI: 10.1080/15476286.2015.1043507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3 GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3 GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Collapse
Affiliation(s)
- Sunil Shetty
- a Department of Microbiology and Cell Biology; Indian Institute of Science ; Bangalore , India
| | | | | |
Collapse
|
34
|
Sprink T, Ramrath DJF, Yamamoto H, Yamamoto K, Loerke J, Ismer J, Hildebrand PW, Scheerer P, Bürger J, Mielke T, Spahn CMT. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. SCIENCE ADVANCES 2016; 2:e1501502. [PMID: 26973877 PMCID: PMC4783127 DOI: 10.1126/sciadv.1501502] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 05/30/2023]
Abstract
Throughout the four phases of protein biosynthesis-initiation, elongation, termination, and recycling-the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAi (Met) in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.
Collapse
Affiliation(s)
- Thiemo Sprink
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - David J F Ramrath
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Ismer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.; UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.; UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
35
|
70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc Natl Acad Sci U S A 2016; 113:E1180-9. [PMID: 26888283 DOI: 10.1073/pnas.1524554113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1-IF3). Here, we describe a novel type of initiation termed "70S-scanning initiation," where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine-Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism.
Collapse
|
36
|
Liu Q, Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 2016; 428:2146-64. [PMID: 26880335 DOI: 10.1016/j.jmb.2016.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 02/02/2023]
Abstract
The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.
Collapse
Affiliation(s)
- Qi Liu
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc Natl Acad Sci U S A 2015; 112:15874-9. [PMID: 26668356 DOI: 10.1073/pnas.1520337112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.
Collapse
|
38
|
Probing the Translation Dynamics of Ribosomes Using Zero-Mode Waveguides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 139:1-43. [PMID: 26970189 DOI: 10.1016/bs.pmbts.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments.
Collapse
|
39
|
Goyal A, Belardinelli R, Maracci C, Milón P, Rodnina MV. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 2015; 43:10700-12. [PMID: 26338773 PMCID: PMC4678851 DOI: 10.1093/nar/gkv869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Abstract
Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors--IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation.
Collapse
|
41
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
42
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
43
|
Caban K, Gonzalez RL. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. Biochimie 2015; 114:30-8. [PMID: 25882682 DOI: 10.1016/j.biochi.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
Decades of genetic, biochemical, biophysical, and structural studies suggest that the conformational dynamics of the translation machinery (TM), of which the ribosome is the central component, play a fundamental role in the mechanism and regulation of translation. More recently, single-molecule fluorescence resonance energy transfer (smFRET) studies have provided a unique and powerful approach for directly monitoring the real-time dynamics of the TM. Indeed, smFRET studies of the elongation stage of translation have significantly enriched our understanding of the mechanisms through which stochastic, thermally driven conformational fluctuations of the TM are exploited to drive and regulate the individual steps of translation elongation [1]. Beyond translation elongation, smFRET studies of the conformational dynamics of the initiation stage of translation offer great potential for providing mechanistic information that has thus far remained difficult or impossible to obtain using traditional methods. This is particularly true of the mechanisms through which the accuracy of initiator tRNA- and start codon selection is established during translation initiation. Given that translation initiation is a major checkpoint for regulating the translation of mRNAs, obtaining such mechanistic information holds great promise for our understanding of the translational regulation of gene expression. Here, we provide an overview of the bacterial translation initiation pathway, summarize what is known regarding the biochemical functions of the IFs, and discuss various new and exciting mechanistic insights that have emerged from several recently published smFRET studies of the mechanisms that guide initiator tRNA- and start codon selection during translation initiation. These studies provide a springboard for future investigations of the conformational dynamics of the more complex eukaryotic translation initiation pathway and mechanistic studies of the role of translational regulation of gene expression in human health and disease.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
44
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|
45
|
MacDougall DD, Gonzalez RL. Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J Mol Biol 2014; 427:1801-18. [PMID: 25308340 DOI: 10.1016/j.jmb.2014.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022]
Abstract
Ribosomal subunit joining is a key checkpoint in the bacterial translation initiation pathway during which initiation factors (IFs) regulate association of the 30S initiation complex (IC) with the 50S subunit to control formation of a 70S IC that can enter into the elongation stage of protein synthesis. The GTP-bound form of IF2 accelerates subunit joining, whereas IF3 antagonizes subunit joining and plays a prominent role in maintaining translation initiation fidelity. The molecular mechanisms through which IF2 and IF3 collaborate to regulate the efficiency of 70S IC formation, including how they affect the dynamics of subunit joining, remain poorly defined. Here, we use single-molecule fluorescence resonance energy transfer to monitor the interactions between IF2 and the GTPase-associated center (GAC) of the 50S subunit during real-time subunit joining reactions in the absence and presence of IF3. In the presence of IF3, IF2-mediated subunit joining becomes reversible, and subunit joining events cluster into two distinct classes corresponding to formation of shorter- and longer-lifetime 70S ICs. Inclusion of IF3 within the 30S IC was also found to alter the conformation of IF2 relative to the GAC, suggesting that IF3's regulatory effects may stem in part from allosteric modulation of IF2-GAC interactions. The results are consistent with a model in which IF3 can exert control over the efficiency of subunit joining by modulating the conformation of the 30S IC, which in turn influences the formation of stabilizing intersubunit contacts and thus the reaction's degree of reversibility.
Collapse
Affiliation(s)
- Daniel D MacDougall
- Columbia University Department of Chemistry, 3000 Broadway, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Columbia University Department of Chemistry, 3000 Broadway, New York, NY 10027, USA.
| |
Collapse
|
46
|
An extended Shine-Dalgarno sequence in mRNA functionally bypasses a vital defect in initiator tRNA. Proc Natl Acad Sci U S A 2014; 111:E4224-33. [PMID: 25246575 DOI: 10.1073/pnas.1411637111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiator tRNAs are special in their direct binding to the ribosomal P-site due to the hallmark occurrence of the three consecutive G-C base pairs (3GC pairs) in their anticodon stems. How the 3GC pairs function in this role, has remained unsolved. We show that mutations in either the mRNA or 16S rRNA leading to extended interaction between the Shine-Dalgarno (SD) and anti-SD sequences compensate for the vital need of the 3GC pairs in tRNA(fMet) for its function in Escherichia coli. In vivo, the 3GC mutant tRNA(fMet) occurred less abundantly in 70S ribosomes but normally on 30S subunits. However, the extended SD:anti-SD interaction increased its occurrence in 70S ribosomes. We propose that the 3GC pairs play a critical role in tRNA(fMet) retention in ribosome during the conformational changes that mark the transition of 30S preinitiation complex into elongation competent 70S complex. Furthermore, treating cells with kasugamycin, decreasing ribosome recycling factor (RRF) activity or increasing initiation factor 2 (IF2) levels enhanced initiation with the 3GC mutant tRNA(fMet), suggesting that the 70S mode of initiation is less dependent on the 3GC pairs in tRNA(fMet).
Collapse
|
47
|
Kuhle B, Ficner R. eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 2014; 33:1177-91. [PMID: 24686316 DOI: 10.1002/embj.201387344] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
eIF5B is a eukaryal translational GTPase that catalyzes ribosomal subunit joining to form elongation-competent ribosomes. Despite its central role in protein synthesis, the mechanistic details that govern the function of eIF5B or its archaeal and bacterial (IF2) orthologs remained unclear. Here, we present six high-resolution crystal structures of eIF5B in its apo, GDP- and GTP-bound form that, together with an analysis of the thermodynamics of nucleotide binding, provide a detailed picture of the entire nucleotide cycle performed by eIF5B. Our data show that GTP binding induces significant conformational changes in the two conserved switch regions of the G domain, resulting in the reorganization of the GTPase center. These rearrangements are accompanied by the rotation of domain II relative to the G domain and release of domain III from its stable contacts with switch 2, causing an increased intrinsic flexibility in the free GTP-bound eIF5B. Based on these data, we propose a novel domain release mechanism for eIF5B/IF2 activation that explains how eIF5B and IF2 fulfill their catalytic role during ribosomal subunit joining.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Wang Y, Lin HX, Chen L, Ding SY, Lei ZC, Liu DY, Cao XY, Liang HJ, Jiang YB, Tian ZQ. What molecular assembly can learn from catalytic chemistry. Chem Soc Rev 2014; 43:399-411. [DOI: 10.1039/c3cs60212e] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Pon CL, Fabbretti A, Brandi L. Antibiotics Targeting Translation Initiation in Prokaryotes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
50
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|